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14.1. INTRODUCTION

Deformation of natural fault zones in the brittle crust 
(~0 to 40 km depth) is conventionally perceived of as two 
planes, sliding one against the other, loaded by constant 
slip at greater depth, and whose behavior is controlled by 
the frictional properties of the interface [Scholz, 1998]. 
Depending on these properties, when the frictional 

resistance is overcome, the accumulated stress is released 
by stable sliding or by unstable dynamic events. As a 
consequence, in recent years, numerous studies have been 
carried out to determine these properties for various 
settings [e.g., Byerlee, 1978; Scholz, 1998; King and Marone, 
2012; den Hartog et al., 2012]. However, if  the behavior of 
fault zones is intrinsically linked to the properties of the 
fault interface, it also depends on those of the surround-
ing medium [e.g., Andrews, 2005]. Fault not only consist 
of  a fine‐grained narrow fault core where slip occurs, 
but it is also surrounded by pervasively fractured rocks, 
within a complex 3D geometry.

Sibson’s [1977] contribution is largely recognized as 
the first attempt to give a coherent description of an 
active fault zone. Scholz [2002] further proposed a slightly 
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different fault rock classification, which is widely used 
nowadays. Following the enticing review by Biegel and 
Sammis [2004], one can use the Punchbowl fault zone as 
a representative model of “mature” strike‐slip faults that 
have recorded large displacement. Fault zone may be then 
idealized as an intricate structure consisting of a fault 
core, surrounded by a damage zone. Based on the revised 
description of the Punchbowl fault structure by Chester et al. 
[1993], the fault core comprises an inner layer of ultracata-
clasite bounded by an outer layer of foliated cataclasite. 
The extremely fine‐grained core material is then surrounded 
by a damage zone that includes layers of gouge and breccia 
bordered by fractured rocks. The last two layers are included 
in the damage zone because they lacked extensive shearing 
[Chester et al., 1993; Biegel and Sammis, 2004]. Evidently, 
there are significant variations from one fault zone to 
another, but they share in common a highly fine‐grained 
fault core (often extremely narrow band), where most of 
the displacement has occurred, surrounded by a damaged 
wall rock. However, the gouge and breccia layer is missing 
along various faults [Biegel and Sammis, 2004].

Systematic micro‐ and macrostructural field studies 
have recently been performed on damage zones [Shipton 
and Cowie, 2001; Faulkner et al., 2006; Dor et al., 2006; 
Mitchell and Faulkner, 2009; Faulkner et al., 2011; 
Savage and Brodsky, 2011] as a key component to under-
stand the energy balance of  earthquakes [e.g., Rice, 
2002; Kanamori, 2006]. The width of  the damage zone is 
determined by measuring the decay in crack intensity 
away from the fault core, until it falls to the background 
level of  the host rock [e.g., Chester and Logan, 1986; 
Biegel and Sammis, 2004; Faulkner et al., 2011]. The 
fractured rocks usually have a spatial scale of  the order 
of  meters to kilometers; however, this is difficult to 
define and particularly time consuming. Hence, there 
are few field surveys focused on the structure of  the 
damage zone. Among them, several studies in low‐
porosity rocks (crystalline, sedimentary rocks) have 
highlighted an exponential decay of  crack density away 
from the fault [Vermilye and Scholz, 1998; Wilson et al., 
2003; Mitchell and Faulkner, 2009; Faulkner et al., 2006, 
2011], or alternatively, that the decay could be fit using 
a power law [Savage and Brodsky, 2011]. As underlined 
by Faulkner et al. [2011], the trend is less clear for faults 
developed in higher porosity rocks [Shipton and Cowie, 
2001]. Possible mechanisms responsible for the develop-
ment of  off‐fault damage could include the fault geom-
etry, the linking of  structures, the quasi‐static stress 
field, the process zone associated with fault growth, and 
the coseismic fracture damage [Vermilye and Scholz, 
1998; Rice et al., 2005; Childs et al., 2009; Faulkner 
et  al., 2011; Vallage et al., 2015]. In their study of 
the Bolfín fault in northern Chile, Faulkner et al. [2011] 

discussed several processes that could explain the devel-
opment of  the observed scaling inside the fault zone and 
concluded that the spatial extent of  damage might be 
better explained by the damage zone growth with 
increasing displacement, due to geometric irregularities, 
or by coseismic damage.

Fault zone structure is of key importance in the mechan-
ics of faulting. In fact, several studies have underlined the 
importance of the fault zone fabric in controlling the slip 
behavior of fault zones [Collettini et al., 2009; Niemeijer et al., 
2010; Thomas et al., 2014a; Audet and Burgmann, 2014; 
Klinger et al., 2016]. For example, Audet and Burgmann 
[2014] recently highlighted a direct relation between the 
properties of the overlying forearc crust in subduction 
zones and the average recurrence time of slow earthquakes. 
Along the Longitudinal Valley fault in Taiwan, a structural 
analysis and a kinematic study have demonstrated that the 
damaged forearc formation favors aseismic creep, whereas 
the locked segments of the fault are in contact with intact 
rocks, or the protolith [Thomas et al., 2014b, a]. Fault zone 
structure is equally important during seismic slip. The 
complexity of  the fault zone system impacts the rheo-
logical properties of the fault core and the surrounding 
medium, both of which influence the seismogenic behavior 
of the fault. The changes in elastic stiffness of the bulk con-
trol the amount of elastic strain energy that can be stored 
during tectonic loading and released during earthquakes 
and can induce a stress rotations (due to contrasting elastic 
moduli with the host rock), allowing faults to slip under 
less‐optimal far‐field stress conditions [Faulkner et al., 
2006]. During seismic faulting, the stress concentration at 
the tip of the rupture generates, or reactivates, damage 
(fractures) around faults that modifies the microstructure 
and the constitutive response of the surrounding medium 
[e.g., Rice et al., 2005]. Seismic ruptures can trigger a sig-
nificant coseismic drop in velocity (reduction in elastic 
stiffness of up to 40%), on spatial scales of hundreds of 
meters normal to the fault and a few kilometers along 
depth, followed by a time‐dependent recovery over a couple 
of years [Hiramatsu et al., 2005; Li et al., 2006; Brenguier 
et al., 2008; Cochran et al., 2009; Froment et al., 2014]. In 
turn, the coseismic change in elastic moduli influences the 
rupture itself, which has a direct effect on the size of the 
earthquake, the radiated waves field, and near‐fault ground 
motion [Walsh, 1965a, b; Faulkner et al., 2006; Bhat et al., 
2012]. Therefore, recognizing the evolution of damage 
during earthquakes is critical to understanding the nuclea-
tion, propagation, and arrest of earthquakes. This numerical 
study in particular aims to explore intricate feedbacks 
between the spontaneous off‐fault damage generation and 
the dynamic rupture propagation.

Numerous studies in the last couple of decades 
have explored the effect of off‐fault plasticity on seismic 
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rupture, using either analytical approaches [Rice et al., 
2005; Ngo et al., 2012] or numerical simulations (see 
 following references). Some models have explored the 
effect of damage on the properties of the dynamic rupture 
(mode, speed, and directivity) and final slip by prescribing 
a low‐velocity zone around the fault [e.g., Kaneko and 
Fialko, 2011; Cappa et al., 2014; Huang et al., 2014]. 
Another set of models uses a Mohr‐Coulomb [e.g., 
Andrews and Harris, 2005; Ben‐Zion and Shi, 2005; Hok 
et  al., 2010; Gabriel et al., 2013] or Drucker‐Prager [e.g. 
Templeton and Rice, 2008; Ma, 2008; Dunham et al., 2011] 
yield criterion to investigate dynamic rupture propagation 
with spontaneous dynamic formation of off‐fault damage. 
In their studies, Yamashita [2000] and Dalguer et al. [2003] 
model the generation of off‐fault damage as the formation 
of tensile cracks, using a stress‐ and fracture‐energy‐based 
criterion, respectively. If these types of study provide a 
good insight on the effect of damage structure on seismic 
rupture, they do not account for dynamic changes of elas-
tic moduli in the medium and therefore do not completely 
model the feedbacks between the off‐fault damage and 
the seismic rupture. Determining the constitutive behavior 
of the surrounding medium requires developing models 
based on the mechanics of cracks and how they respond to 
the applied loading. It requires using an energy‐based 
approach to develop the new constitutive law [e.g., 
Lyakhovsky et al., 1997a; Finzi et al., 2009; Suzuki, 2012; 
Xu et al., 2014; Lyakhovsky and Ben‐Zion, 2014]. In par-
ticular, these models need to include a physical crack 
growth law to model the evolution of damage. Ideally, this 
law should incorporate the loading rate crack‐tip veloci-
ties dependency of fracture toughness [Chen et al., 2009; 
Dai et al., 2010, 2011; Wang et al., 2010, 2011; Zhang and 
Zhao, 2013], which is particularly important to model 
earthquake‐related processes. The latter constitutes the 
essential difference between the model presented in this 
chapter and the models aforementionned.

The development of the constitutive model is presented 
in section 14.2, followed by a description of the numerical 
method and the parameters we used for this chapter. In the 
third section we consider three different scenarios to explore 
the interplay between earthquake rupture and off‐fault 
damage, how it affects both the hosting medium and the 
rupture propagation, and what the damage‐related features 
are that can be pertinent to interpret geophysical observa-
tions. Our findings are summarized in section 14.5.

14.2. CONSTITUTIVE MODEL

This numerical study aims to explore the effect of spon-
taneous off‐fault damage generation on dynamic rupture 
propagation. This section provides the description of the 
constitutive model used to account for the dynamic 

evolution of elastic properties in the surrounding medium, 
related to dynamic off‐fault damage. The different param-
eters and constants used for the constitutive model are 
summarized in Table 14.1.

14.2.1. Energy‐Based Approach: General 
Considerations

The micromechanical method used in this study followed 
an energy‐based approach to determine the constitutive 
strain‐stress relationship of a damaged solid, as defined 
by Rice [1971], Hill and Rice [1973] and Rice [1975]. In 
other words, to account for fracture damage, we create an 
energetically equivalent solid. This formalism, thermody-
namically argued, was developed to model the inelastic 
behavior at macroscopic scale that arises from specific 
structural rearrangements at microscale, such as twinning 
in crystals, grain‐boundary‐sliding, phase transforma-
tion, or microcrack development. This approach relates 
inelastic deformation of a given solid to a sequence of 
constrained equilibrium states, characterized by the 
values of strain ε, temperature T, and internal variables ξ 
(such as damaged state). Then the relation between these 
properties and macroscopic stress are determined by fix-
ing the internal variables at their current values for each 
imaginary equilibrium state, for which elastic constitutive 
law can therefore be applied. In practice, internal varia-
bles will have a time‐dependent evolution, determined by 
the local conditions, but the kinetic aspect of it is taken 
care of separately (see section 14.2.7). Hence, the formal-
ism of equilibrium thermodynamics can be adopted and 
using the properties of thermodynamic potentials, local 

Table 14.1 Parameters of the damage constitutive model.

Parameter Symbol Equation

Angle to σ1 for microcracks Φ eq. 12
Projection of a to σ1 α cos Φ
Damage variable D eq. 13
Initial damage variable D0 eq. 11
Stress intensity factor KI eq. 21, 27
Dynamic stress intensity 

factor
KI

d Bhat [2012], 
eq. 43

Dynamic initiation 
toughness

KIC
D Bhat [2012], 

eq. 45
Dynamic fracture 

toughness
KIC

d Bhat [2012], 
eq. 46

Instantaneous wing‐crack 
speed

v l td d/ Bhat [2012], 
eq. 50

Stress σij or σ eq. 32, 35, 41
Stress invariant σ, τ Bhat [2012], 

eq. 11
Strain εij or ε eq. 6, 15
Strain invariant ε, γ eq. 30
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structural rearrangement can be related to correspond-
ing changes in the macroscopic stress and strain state 
[Rice, 1971].

Let ε denote the strain tensor for an arbitrary equilibrium 
state and let σ be the corresponding stress tensor such 
that σdε is the work per unit volume for any virtual defor-
mation dε. The variable ξ denotes the current “inelastic” 
state of  the material. Following the thermodynamic 
principles, we can therefore write:

 , ,T . (14.1)

The basic assumption is that work potential

 W W TH H , ,  (14.2)

exists at each ξ within the associated ε domain. Then for 
any strain variation δε at fixed ξ, i.e., for which we obtain 
purely elastic deformation, we can write:

 W TH , , , (14.3)

and therefore, we can determine the stress tensor as 
follows:

 

W TH , ,
. (14.4)

Within the elastic domain for any given ξ, WH actually 
corresponds to Helmotz free energy [Rice, 1971]. The 
complementary potential is the Gibbs free energy, so that

 W W T WG G H, , :  (14.5)

and

 

W TG , ,
. (14.6)

Variations in state at fixed ξ, noted δε, δΨ, etc., should be 
reversible (path independent). More general variations 
that involve a change dξ are defined by dε, dΨ, etc. In 
particular, let dΨi denote the change in the free energy 
function when the solid undergoes deformation that takes 
it from state ξ to state d  at constant σ and T:

 dW W T d W TG G Gi , , , ,  (14.7)

Therefore, the inelastic strain associated with dξ, by dif-
ferentiating equation (14.7), is given by

 
d dW

i
ij

ij

Gi . (14.8)

Thus, inelastic variations in the potentials are themselves 
potentials for inelastic variations in stress and strain 
[Rice, 1971]. As for the full strain increment, we can 
write that

 d M d dT dij ijkl kl ij
i

ij , (14.9)

the first term corresponding to the purely elastic strain 
and the second to the thermoelastic effect, with the 
compliance tensor M given by

 
M

W T
ijkl

G

ij kl

2 , ,
. (14.10)

Hence, following this framework, we can develop a 
damage‐constitutive model that accounts for inelastic 
deformation. The following section (14.2.2) defines the 
internal variable (ξ) used in our micromechanical model 
to describe the inelastic state, and then using the energy‐
based approach, we develop a constitutive strain‐stress 
relationship (section 14.2.5).

14.2.2. Inelastic Deformation in the Brittle Crust 
Is Largely Controlled by the Presence of Preexisting 
Fractures

Inelastic deformation in the brittle crust occurs by nucle-
ation, growth, and/or sliding on preexisting “fractures” at 
different scales. Fractures includes faults and joints but 
also smaller scale cracks and flaws such as mineral twins 
or defects in the crystal structure, grain boundaries, and 
pores. Frictional sliding occurs under compressive stress 
on preexisting fractures when the shear stress overcomes 
the frictional resistance acting on the fracture interface. 
Tensile cracking, on the other hand, can have different 
origins. Under regional tensile loading, the stress concen-
tration allows the local stresses at the crack tips to exceed 
the rock strength, leading to crack propagation. Tensile 
cracking can also occur by hydraulic cracking: locally, the 
pore pressure increase can lead to tensile stresses at the 
crack tips, even under compressive loading. Finally, fric-
tional sliding on fractures under compression creates a 
tensile force (as the faces slide in opposing direction) that 
opens wing cracks at the tip of the shear fractures. The 
wing cracks nucleate and grow in σ1 direction (most com-
pressive) and open in σ3 direction (least compressive).

Flaws described above (e.g., fractures, microcracks, 
faults, mineral defects, grain boundaries, pores), are 
found in all natural rocks. Therefore, for the purpose of 
this study, and following Ashby and Sammis [1990], and 
Deshpande and Evans [2008], we represent the medium 
surrounding faults as an isotropic elastic solid that 
contains preexisting monosized flaws, here represented 



EFFECT OF BRITTLE OFF‐FAULT DAMAGE 259

by penny‐shaped cracks of radius a (Figure 14.1). They 
are assumed to have a volume density Nv (prescribed) that 
remains fixed during the loading (i.e., no nucleation of 
new cracks). The density of these initial flaws per unit 
volume is characterized by a scalar D0 defined as

 
D N av0

34
3

, (14.11)

where αa is the projection of the crack radius parallel to 
the direction of σ1. We only take into account the cracks 
that are optimally oriented from a Coulomb friction 
 perspective for a given stress state, i.e., the cracks are 
aligned at the same angle Φ to the largest (most negative) 
remote compressive stress, σ1 (see Bhat et al. [2011] for a 
justification):

 
1
2

11tan ,/f  (14.12)

where f is the coefficient of friction.

Under suitable conditions, inelastic deformation 
occurs in the model by either opening the preexisting 
cracks or by propagation of  cracks. For simplicity, we 
account for opening and propagation of  cracks due to 
regional tensile loading and frictional sliding (compres-
sive loading), but we do not include hydrofracturing in 
the model. Cracks grow in the form of tensile wing cracks 
that nucleate at the tips of  the penny‐shaped flaws. 
Wings cracks, each of  length l, grow parallel to the σ1 
axis (Figure 14.1), and the current damage state is then 
defined by the scalar D (fraction of  volume occupied by 
micro‐cracks):

 
D N a lv

4
3

3 . (14.13)

D approaching 1 corresponds to the coalescence stage 
that leads to the macroscopic fracture of the solid. 
Henceforth, the internal variable D, which describes the 
current damage state of our solid, denotes the inelastic 
state of the material (replacing ξ in section 14.2.1).
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Figure 14.1 Schematics and parameters for simulations of dynamic ruptures in a 2D inplane model. We 
consider a right‐lateral planar fault (black line in the middle), embedded in a brittle off‐fault medium with a 
damage‐constitutive law. Material properties are defined by the density (ρ), the S‐ and P‐waves speed (cs and 
cp), and the initial damage density (D0). In some simulations, we assume a material contrast across the fault. 
In that case, material 1 is always the softer material, and material 2 the stiffer. Slip‐weakening friction (gray box) 
acts on the 18 km long fault, C and T denoting the compressional and the tensional quadrants, respectively. Also 
shown are the “+” and “–” directions defined by the material contrast across the fault. The “+” direction is 
defined as the direction of motion of the more compliant material (M2 in our case). The medium is loaded by 
uniform background stresses with the maximum compressive stress σ1 making an angle of 60° with the fault 
plane. The thick gray line corresponds to the nucleation‐prone patch where the initial shear stress is set up to 
be just above the fault strength.



260 FAULT ZONE DYNAMIC PROCESSES

14.2.3. Gibbs Free Energy of a Damage Solid

In this chapter, we use the aforementioned energy‐
based framework (section 14.2.1) to determine the strain‐
stress relationship of a damaged solid by defining the 
constitutive relationship in terms of Gibbs free energy 
WG. Henceforth, we assume isothermal conditions, and 
the Gibbs free energy density of a damaged solid, for a 
given stress state σ and damage state D, can be written as 
the sum of (i) the free energy W Ge ( ) of a solid, without 
flaws, deforming purely elastically and (ii) the free energy 
W DGi ( ),  corresponding to the contribution of micro‐
cracks :

 W D W W DG G Ge i, , . (14.14)

Consequently, the associated elastic and inelastic strains, 
ij
e and ij

i , respectively, can be expressed as:

 
ij ij

e
ij
i

G

ij

G

ij

W W De i

=
,

. (14.15)

Properties of the linear elastic material are described by its 
shear modulus μ, Poisson’s ratio v, and mass density ρ. 
The elastic strain energy density is given by

 
W

v

v
Ge

1
4

2
3 1 2

1
2 2 . (14.16)

Then, since all cracks in our model have the same ori-
entation, the Gibbs function associated with inelastic 
deformation at constant σ can be written in terms of the 
Gibbs free energy per crack ΔWG(σ, D) times the number 
of cracks per unit volume (Nv):

 W D N W DG
v

Gi , , . (14.17)

The Gibbs free energy per crack depends on the fracture 
energy release rate G (crack growth) and the surface 
energy γs (to create a surface):

 W D N W DG
v

Gi , , , (14.18)

where ds describes the position along the microcrack and 
Γ corresponds to the locus of all crack fronts. Based on 
fracture mechanics, for an isotropic elastic solid, the 
energy release rate G can be related to the stress intensity 
factors at the tip of the crack by

 
G D

v
E

K D K D
K D

vI II
III, , ,

,1
1

2
2 2

2

,

(14.19)

where E is the Young’s modulus. However, under 
dynamic loading rates, the wing cracks quickly quit mode 
II and mode III to become purely tensile. As a conse-
quence, their contributions are neglected in this model. 
We also neglect the work done by the starter flaws. The 
total Gibbs free energy of  the damaged solid can thus 
be approximated as

 
W D W N

v
E

K D sG G
v I s

e, , d
1

2
2

2 . 

(14.20)

The evaluation of the Gibbs free energy, and thus the 
mechanical constitutive description of the modeled brittle 
material, is hence based on the evaluation of the stress 
intensity factor KI at the tip of the microcracks inside the 
solid (see section 14.2.4).

14.2.4. Evaluating the Stress Intensity Factors 
at the Tip of the Crack

To account for the energy “lost” in the medium due to 
inelastic deformation in the brittle crust, we therefore 
need to compute the stress intensity factor KI. Once the 
loading is sufficiently large to induce inelastic deforma-
tion, it does so by opening preexisting cracks or by 
propagation of cracks. Based on structural observations 
(see section 14.2.2), we defined three regimes, depending 
on the overall stress‐state: one for tensile loading and two 
for compressive loading. Under Regime I (compressive 
loading), stresses are not high enough to allow sliding or 
opening of the microcracks. Hence, the solid is assumed 
to behave like an isotropic linear elastic solid, and there-
fore W DGi ( ),  is assumed to be zero. Still for compressive 
loading, Regime II is reached when the shear stress τ 
overcomes the frictional resistance f ( ) acting on 
microcracks. Then, as previously described, inelastic 
deformation is accounted for by growing tensile wing 
cracks at the tip of  the penny‐shaped cracks. Finally, our 
model also accounts for the overall remote tensile loading 
(Regime III). In that particular case, both penny‐shaped 
cracks and wing cracks open due to normal tensile stress.

Under Regime II (compressive loading), the mode I 
stress intensity factor KI

R II  for a unit volume containing 
Nv cracks of size (l a) can be expressed as

 K D a A D B DI
R II , 0 , (14.21)

where σ and τ correspond to the first invariant of  the 
stress tensor and the second invariant of  the deviatoric 
stress tensor, respectively (equation [14.11] in Bhat et al. 
[2012]). The parameters A and B both depend on the 
damage variable, with
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 A D fc D c D fc D1 3 2 1  (14.22)

 B D c D c D c D1 2 3  (14.23)

and

 

c D
D D

1

2

3 2
0

1 3 3 2

1

1/ / /
/ /

 (14.24)

 
c D

D
D2

2
0
2 3

2 3

1
1

/

/  (14.25)

 
c D D D3 0

1 3 1 22
1/ / /

 (14.26)

Regime III prevails under tensile loading, and the stress 
intensity factor KI

R II  is a quadratic function of the stress 
invariants:

 
K D a C D O DI

R III , 0
2 2 2 2 1 2/

 (14.27)

with

 C D A D D/ 0
1 3/  (14.28)

 
O D

B C
C A

2 2

2 2 . (14.29)

14.2.5. Determining the Constitutive Stress‐Strain 
Relationship

Following the energy‐based approach described in 
sections 14.2.1 and 14.2.3, we can define the constitutive 
stress‐strain relationship for a damage solid. The Gibbs 
free energy function WG(σ D) is determined by computing 
the stress intensity factors KI as described in section 
14.2.4, depending on the regime. Then, following equa-
tions (14.6) and (14.10), WG is differentiated once with 
respect to stress to obtain the strain‐stress relationship, 
and twice with respect to stress to get the compliance ten-
sor. The Gibbs free energy can also be expressed in terms 
of the conjugate strains invariants:

 kk ij ij ij ije e e ijand with= 2
3

, 

(14.30)

which gives the Helmotz free energy, WH (see equation 
[14.5]). Differentiating twice WH(ε, D) with respect to 
strain will then give the stiffness tensor Cijkl.

14.2.5.1. Constitutive Relationship for Regime I
Under Regime I, there is no sliding or opening of the 

microcracks. Therefore, the Gibbs free energy is given by

 
W D W

v

v
G Ge,

1
4

2
3 1 2

1
2 2 , (14.31)

and the strain‐stress relationship follows linear elasticity:

 
ij ij ij ij ij

v
v

2
1 2

2 , (14.32)

where λ is the Lamé’s first parameter.

14.2.5.2. Constitutive Relationship for Regime II
For Regime II and III, following equation (14.20), the 

Gibbs free energy can be written as the sum of the elastic 
contribution, W Ge ( ), and the inelastic contribution due 
to the presence of microcracks, W DGi ( ),  (see equation 
[14.20]). Following Deshpande and Evans [2008] and Bhat 
et al. [2012], we assume that the constants A and B 
of  KI

R II  and C and O of  KI
R III  are only a function of  the 

ratio l/a (and not l and a separately), and therefore we can 
treat them as constants. We thus find that the Gibbs free 
function for Regime II can be approximated by

 
W D W A BG Ge,

1
4 1 1

2 , (14.33)

where
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(14.34)

If  we state the above expression in terms of conjugate 
strains (ε and γ), we obtain the Helmotz free energy that 
can be differentiated once with respect to strain to obtain 
the stress‐strain relation:
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Based on equation (14.35), we can define the equivalent 
Lamé parameters μ* and λ*:

* *
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B A
and , 

(14.37)

and therefore approximate the change in waves speed 
occurring in the medium:

 
c cp s
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2

and  (14.38)

14.2.5.3. Constitutive Relationship for Regime III
Under Regime III, the Gibbs free energy is given by

 
W D W C OG Ge,

1
4 1

2 2
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where
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If  we state the above expression in terms of conjugate 
strains, and differentiating the obtained Helmotz free 
energy WH with respect to strain, we can derive the the 
constitutive relationship
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Following the same logic as for Regime II, we can define 
the equivalent Lamé parameters μ* and λ*:

* *4
2

2
3 1 2

1

4
3 21

2

1
2 1

2O v
v

C O
and , 

(14.42)

and therefore compute the change in wave speed occur-
ring in the medium.

14.2.6. Criteria for Regime Transition

Criteria to determine the regimes to be applied in the 
model are defined based on the stress intensity factor KI. 
In Regime I the stresses are not sufficient to allow inelastic 

deformation (sliding or opening of the microcracks). This 
implies 0IK  at the tip of the cracks (KI

RII  or KI
RIII, since 

C and O are related to A and B). Therefore, based on 
equation (14.21), the criteria for Regime I is

 A B 0. (14.43)

For the two regimes (II and III) undergoing inelastic 
deformation, KI is positive and the transition between 
regimes is obtained by ensuring the continuity of conju-
gate plastic strains εi and γi. Following equation (14.8), 
the conjugate plastic strains are derived as i GW i /  
and i GW i / . The first invariant of  the plastic strain 
tensor corresponds to the opening of the microcracks, 
whereas the second invariant is related to the frictional 
sliding of the penny‐shaped cracks. Under compressive 
loading, tensile deformation only occurs by opening of 
the wing cracks, whereas under Regime III, both penny‐
shaped cracks and wing cracks open due to normal tensile 
stress. As a consequence, εi is smaller for compressive 
loading (Regime II) than for tensile loading (Regime III). 
Therefore, we are in Regime II when

 A B A C AB0 02 2and  (14.44)

and Regime III is reached for

 A B A C AB0 02 2and . (14.45)

14.2.7. Dynamic Crack Growth Law

In the previous sections, we have developed the consti-
tutive laws that prescribe the response of a damaged solid 
to a remote tensile or compressive loading. The energy‐
based approach used in this model requires computing of 
the Gibbs free energy, WG(σ, D), which depends on the 
stress tensor and the microcrack density D per unit volume 
(section 14.2.3). Therefore, we need to define the state of 
cracks in the medium, or how they respond to remote 
loading, since as cracks grow, the state parameter D also 
increases (equation [14.13]), which in turn affects the 
 constitutive response of  the material (section  14.2.5). 
To complete the constitutive model, we thus define a state 
evolution law for the parameter D. Differentiating equa-
tion (14.13) with respect to time leads to
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, (14.46)

where d /dl t v corresponds to the instantaneous wing‐
crack tip speed. We adopt the crack growth law developed 
by Bhat et al. [2012] that accounts for loading rate 
dependent fracture initiation toughness, KIC

D  [Wang et al., 
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2010, 2011; Zhang and Zhao, 2013], and propagation 
toughness, KI

d [Chen et al., 2009; Dai et al., 2010, 2011; 
Zhou and Aydin, 2010; Gao et al., 2015].

14.3. NUMERICAL METHOD AND MODEL 
DESCRIPTION

14.3.1. Numerical Method

This study aims to evaluate the influence of the dynamic 
evolution of damage in the surrounding medium on seis-
mic ruptures. Therefore, the constitutive damage model 
described above has been implemented in the 2D spectral 
element code SEM2DPACK [Ampuero, 2002, available at 
http://web.gps.caltech.edu/~ampuero/software.html]. 
Reactivation of damage depends on the state of stress in 
the medium, which in turn is influenced by the dynamic 
evolution of damage density (see section 14.2.5). Hence, to 
realize the micromechanics‐based model, in the context 
of dynamic rupture, we developed a constitutive update 
scheme that takes into account this intricate feedback, 
using a Runge‐Kutta‐Fehlberg (RKF) method to integrate 
equation (14.46). Between each time step during the simula-
tions, for a given a strain field (ε), we solve for the new 
damage density field D using an RKF update. Then, given 
this new value of the state parameter, we solve for the stress 
field (σ) using the damage constitutive law (section 14.2.5).

14.3.2. Model Setup

In our simulations, we consider a 2D inplane model 
with a 1D right lateral fault embedded in a brittle off‐
fault medium that allows for dynamic evolution of elastic 

moduli (Figure 14.1). To simplify the problem, we assume 
plane strain conditions. In our simulations, the medium is 
loaded by uniform background stresses. The maximum 
compressive stress σ1 and the minimum compressive stress 
σ3 are in the x z  plane, whereas the intermediate princi-
pal stress σ2 coincides with σyy. The fault plane makes a 
60° angle with σ1, and we assume a uniform normal stress 
( 0

0
zz) and shear stress ( 0

0
xz) distribution on the 

fault, except for the nucleation‐prone patch (thick gray 
line in Figure 14.1), for which we assign a value slightly 
above the nominal static strength (section 14.3.3). Finally, 
to warrant any interference with the propagating dynamic 
rupture, we set the domain (5 1 18.  km) large enough and 
we apply absorbing boundary conditions on the edge of 
the computation domain. Reference values for the differ-
ent parameters are summarized in Table 14.2.

14.3.3. Friction Law and Nucleation Procedure

Rupture propagation along the fault plane is governed 
by a slip‐weakening friction law [e.g. Palmer and Rice, 
1973]. Slip occurs when the on‐fault shear stress reaches 
the shear strength f ( )*  (see section  14.3.4 for a 
definition of σ*). The friction coefficient f depends on the 
cumulated slip (δ) and drops from a static (fs) to a dynamic 
(fd) value over a characteristic distance δc:

 
f

f f f
f

s s d c c

d c

/ if
if

. (14.47)

In our models, we set the static friction coefficient at 
0.6, which corresponds to a value measured in laboratory 

Table 14.2 Input parameters for our simulations.

Parameter Symbol Value

Normal stress on the fault (MPa) σ0 60.7
Shear stress on the fault (MPa) τ0 19.9 or 36.4
Static friction coefficient fs 0.6
Dynamic friction coefficient fd 0.1
Characteristic slip (m) δc 1
Prakash and Clifton [1993] time (s) t* 40 10 3

Poisson’s ratio v 0.276
Branching speed (km s. 1) vm 1.58
Quasi‐static fracture toughness KIC

ss
1 2 106.

Ashby and Sammis [1990] factor β 0.1
Crack factor Ω 2.0

Parameter for Material Symbol Granite (m1, m2) Gabbro (m2)

Penny‐shaped cracks radius (m) a0 60 or ~ 0 60
Volume density of cracks ( 10 7#/m3) Nv 1.68 or 3.36 1.68
Density ρ 2 7 103. 3 103

S‐wave speed (m s. 1) cs 3 12 103. 3 25 103.
P‐wave speed (m s. 1) cp 5 6 103. 5 84 103.
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experiments for a large range of rocks [Byerlee, 1978]. 
Then, following high strain‐rate experiments at range 
covering earthquake slip rate, we assign a value of 0.1 for 
the dynamic friction coefficient [Wibberley et al., 2008].

To promote dynamic rupture, we create a nucleation‐
prone patch in the middle of the fault (see blue line in 
Figure 14.1), for which τ0 is defined to be just above the 
fault strength (~0.03% greater). Following Kame et al. 
[2003], the minimum nucleation size Lc determined by the 
energy balanced for a slip weakening law is
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s d
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64
90 2 2 0

2

, (14.48)

where

 s s zz d d zzf fand . (14.49)

Here μ is the shear modulus, G is the fracture energy of 
the medium, and R G d0

0 23 4/ /( )  is the length 
of the static sleep weakening zone as defined by Palmer 
and Rice [1973]. For our simulations and choice of param-
eters we set the size of the nucleation patch to be 1.5 km.

14.3.4. Regularization for Bimaterial Effect

Andrews and Ben‐Zion [1997] and Cochard and Rice 
[2000] have shown that the problem of slip on bimaterial 
fault is ill posed. Yet in our simulations, evolution of off‐
fault damage during the rupture leads to dynamic changes 
of elastic moduli, which creates a damage‐related mate-
rial contrast across the fault. Moreover, the effect of off‐
fault damage on dynamic rupture has been explored for 
both homogeneous and dissimilar material. To provide a 
regularization to the ill‐posed problem in such scenarios, 
a characteristic time or slip scale of normal stress response 
has been proposed [Cochard and Rice, 2000; Ranjith and 
Rice, 2001]. Following Rubin and Ampuero [2007], we 
adopt a simplified form of the Prakash and Clifton [1993] 
law, where the fault strength is assumed to be proportional 
to a modified normal stress σ*, which evolves toward a 
residual value over a time scale t* in response to abrupt 
change of the actual fault normal stress:

 
� *

*
* .

1
t

 (14.50)

Ideally, t* should be much larger than the time step during 
the simulation (Δt) yet much smaller than the time to undergo 
slip weakening, T. Here we use t x cs

* 4 40 10 3/ �  s.
Another possibility to reduce numerical oscillations is 

to add an artificial Kelvin‐Voigt visco‐elastic layer around 

the fault [e.g., Brietzke and Ben‐Zion, 2006; Xu et al., 
2012, 2014]. However, this may also remove true small 
scale features and modify the response of the off‐fault 
medium by absorbing energy. Therefore, we did not damp 
the high‐frequency numerical noise with such method to 
avoid tampering the physical response in our models.

14.3.5. Resolution

To properly solve the problem at hand, we need to 
define a grid spacing Δx that is small enough to resolve 
the smallest physical length scale. The spatial discretiza-
tion Δx (distance between two neighbor nodes) is taken 
so that there are multiple cells to resolve the process zone 
Λ for a slip‐weakening law, the shortest wavelength λmin, 
and the nucleation stage.

Following Day et al. [2005], if  we assume that the 
process zone Λ is small enough to use a small‐scale yield-
ing limit of  fracture mechanics [Rice, 1968] (stress field 
around Λ dominated by the singular part of the crack 
front) and if  we assume the crack propagation to be 
steady, for a slip‐weakening law Λ can be expressed as

 0
1 vr  (14.51)

 
with 0
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32 1 v

c
f f

c s

d s zz

,  (14.52)

where Λ0 is the static value of  the process zone (vr 0) 
for a mode II rupture and 1 is a monotonic function 
of  the rupture speed (see Day et al. [2005] for details) 
for details). Consequently, values for the process zone 
go from Λ0 to 0, when vr reaches the limiting speed, 
which corresponds to the Rayleigh wave speed cR for a 
mode‐II rupture in homogeneous solid, and the shear‐
wave speed for mode III (see Rubin and Ampuero 
[2007] for an estimate of  the Λ when there is a material 
contrast across the fault). Λ0 is therefore a convenient 
upper bound for the process zone size, and numerical 
simulation should resolve with more than one spatial 
element. In our models, to ensure a good resolution for 
the dynamic phenomena, the domain is discretized into 
square 600 170 elements with three Gauss‐Lobatto‐
Legendre nodes (Ngll) nonuniformly distributed per 
element edge. This provides an element size h of  30 m, 
and a Δx of  ~3 m. The grid spacing Δx is much smaller 
than the  element size h ( 2Ngll  times smaller) since in 
SEM code, each element is subdivided onto a nonregu-
lar grid of  Ngll Ngll nodes. Consequently, the process 
zone is resolved with ~35 spatial elements, or ~316 
nodes. This also satisfies a Bhat et al. [2012] criterion 
that requires h a/ 1 to properly account for off‐fault 
damage evolution.
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Finally, the time step Δt during the simulations is deter-
mined from the Courant‐Friedrichs‐Lewy (CFL) stability 
criterion:

 CFL c t xp / ,  (14.53)

where cp is the P‐wave speed. For stability, the CFL is 
taken to be 0.55 in all simulations.

14.4. RESULTS

An important result of this chapter is that we model not 
only what is happening on the fault plane but also the 
constitutive response of the surrounding medium to 
the dynamic rupture. In the following section we explore 
the dynamics of earthquake rupture and the associated 
generation of new damage, how it affects both the hosting 
medium and the rupture propagation, and what are the 
damage‐related features that can be pertinent to interpret 
geophysical observations. To investigate the intricate 
feedbacks between off‐fault damage generation and earth-
quake rupture propagation, we start the study with a simple 

case, a 2D right‐lateral fault inside a homogeneous medium 
(Granite), where damage is only occurring on one side. 
Then we increase complexity by first keeping a homoge-
nous elastic medium but with different initial damage on 
both sides. The last example presented in this study explores 
the combined effect of a bimaterial fault (Granite/Gabbro) 
and a damage evolution law. Reference values for the differ-
ent parameters are summarized in Table 14.2.

14.4.1. Effect of Damage on Dynamic Rupture 
for a Single Material

To provide an element of comparison, we first discuss the 
results for a dynamic rupture in a homogeneous solid 
(typical Granite, see Table 14.2 for properties) with dam-
age evolution only on the top side of the fault (material 1 
in Figure 14.2a). The initial flaw size (a, radius of penny‐
shaped cracks) was assumed to be 60 m for material 1, 
which scales with secondary fractures that usually surround 
main faults extending over several tens of kilometers. The 
volume density of cracks, Nv, was set to be 1 68 10 7. , which 
gives an initial damage density value, D0, of 0.1. To prevent 
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Figure 14.2 Simulation of a dynamic rupture on a right‐lateral fault embedded in a homogeneous medium (Granite). 
We impose a material contrast across the fault by changing the size of the initial microcracks (60 m and 0), which 
leads to damage evolution on only the top side of the fault. (a) Evolution of the state parameter D (density of micro-
cracks in the medium) at t 4 9.  s. Also shown are the “+” and “–” directions as defined in Figure 14.1). Dynamic 
damage essentially occurs in the tensile quadrant. Cumulative slip (b) and slip rate (c) on the fault are displayed with 
a time increment of 0.35 s. Colored curves correspond to the dynamic simulation with the damage evolution law; 
thin black curves depict a simulation with the same parametrization only for a pure elastic medium. See electronic 
version for color representation.
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damage from occuring on the bottom side of the fault, we 
simply assigned a very small initial flaw size for material 2 
(a 6 10 8 m). Keeping Nv constant, this returns of value 
of D0 0� . As a consequence, the medium on the bottom 
side of the fault is behaving in a purely elastic manner.

14.4.1.1. Damage Density and Dynamic Changes 
of Wave Speeds

Figure 14.2a shows a snapshot (at t 4 9.  s) of the state 
parameter D (density of  microcracks in the medium), 

for a bilateral rupture propagating along the interface 
between the damaged (above in the graph) and the 
undamaged material (below). This corresponds to the 
final stage, at the end of the numerical simulation, chosen 
to avoid boundary effects. Time evolution of damage 
with respect to slip rate on the fault is also represented 
in Figure 14.3. For a right‐lateral fault, the rupture tip 
propagating to the left puts material 1 in tension while 
the rupture tip on the right induces compression in the 
medium (T‐ and C‐directions, respectively, in Figure 14.1). 
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Figure 14.3 Temporal evolution of the damage parameter D for a dynamic rupture on a right‐lateral fault embedded 
in a homogeneous medium (Granite) with damage evolution only on the top side of the fault (see also Figure 14.2). 
Corresponding slip rate (white) is superimposed on the snapshots. See electronic version for color representation.
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As illustrated by the parameter D, the response of the 
damaged elastic solid is different in the compressional 
and tensional quadrants, with more damage in the tensile 
lobe. Thus, the rupture traveling on the compressional 
side activates and/or interacts little with the off‐fault 
damage; whereas on the extensional side, the rupture tip 
induces a reduction in elastic moduli (Figure 14.4), which 
differs from a classic bimaterial rupture since the genera-
tion of damage induces a dynamic evolution of the elastic 
properties (or a “dynamic” bimaterial effect). Based on 
equations (14.37), (14.38), and (14.42), we record a maxi-
mum change of 32.7 % for S‐wave and 28.0 % for P‐wave. 
Those results are consistent with geophysical observa-
tions of temporal changes in seismic velocity along a 
natural fault following earthquake ruptures [Hiramatsu 
et al., 2005; Li et al., 2006; Brenguier et al., 2008; Cochran 
et al., 2009; Froment et al., 2014]. At the maximum, the 
width of  the newly created damage zone reaches 900 m 
and corresponds to the location where the higher slip rate 
has been recorded (Figure 14.2c). However, the extent of 
the highly damaged zone (D 0 5. ) does not exceed 300 m.

In all our models, we also note the formation of localized 
damage zones, which is a direct consequence of  the 
constitutive law. This localization of high damage density 
could be related to the occurrence of  branched faults 
along mature faults. On average, they form a 60° angle 
with the main fault plane. However, at this stage, caution 
must prevail and these results should be taken more 
qualitatively here. Capturing localization accurately in 
numerical simulations is impossible for constitutive laws 
that do not have an internal length scale. There are few 
ways to address this problem, and we are in the process of 
exploring these remediations. We therefore do not make 
any conclusions about spacing between branched faults 
or the width of these localized damage zones.

14.4.1.2. Cumulative Slip, Slip Rate, and Rupture 
Speed on the Fault

Figures 14.2b and 14.2c display the cumulative slip and 
slip rate on the fault, respectively, with a time increment 
of 0.35 s. We compare the model (colored lines) with a 
right‐lateral rupture occurring in a pure elastic medium 
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Figure 14.4 Reduction (in %) of S‐wave (a) and P‐wave (b) speeds in the medium at t 4 9.  s, in relation to off‐fault 
damage for a dynamic rupture occuring in a homogeneous medium (Granite) with damage evolution only on the 
top side of the fault (Figure 14.2). Since evolution of damage essentially occurs on the upper tensile quadrant 
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of 32.7 % for S‐wave speed and 28.0 % for P‐wave speed. See electronic version for color representation.
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(thin black curves). In terms of  cumulative slip, we 
observe little differences with the pure elastic model. 
In both cases, we record a crack‐like rupture and we only 
observe a small decrease in total slip at the rupture tip, 
where the widest damage zone was developed (between 

8 5.  and 6 km, left zoom in Figure 14.2b).
On the other hand, evolution of  slip rate along the 

fault plane strongly differs from a classic elastic model. 
Figure  14.2c shows that the rupture is bilateral but is 
asymmetric, with more complexity in the negative 
direction, which results in high‐frequency content in 
the radiated ground motion (see section  14.4.3). The 
development of slip rate oscillations is likely related to 
the development of a low‐velocity zone (LVZ), with up to 
32.7 % drop in wave‐speed (Figure  14.4). In fact, we 
observe that the oscillations occur at some distance 
behind the rupture front and that they are developed only 
with the emergence of a damage zone around the fault, in 
relation to the rupture propagation (Figure 14.3). We also 
notice that oscillations increase in amplitude as the LVZ 
becomes larger. As shown by the spacing between sym-
bols on Figure 14.2c, which corresponds to the value at 
each node, the oscillations of slip rate are well resolved 
numerically. The development of a material contrast 
(LVZ) can produce internal wave reflections, which in 
turn gives rise to an additional feedback mechanism 
between the evolving off‐fault medium and the dynamic 
rupture [e.g., Huang et al., 2014]. Similar trapped waves 
were recognized by Li et  al. [1994] during the 1992 
Landers earthquake. From this study, authors estimated 
a fault zone width of ~180 m, and a strong decrease of 
fault zone shear velocity (~30%), as observed in our simu-
lations (see in particular results for a bimaterial fault, 
section 14.4.2.2). However, in regard to the complex pattern 
of the LVZ, it is hard to evaluate the relative importance 
of the different parameters on the complicated feedbacks 
we can observe (e.g., velocity contrast, width, and relative 
distance between branches, etc).

Finally, in our simulations with damage evolution we 
observe little modulation of the rupture front, compared to 
the elastic case. This is because the dynamic rupture, which 
propagates at subshear velocity on average (~2.7 Km.s−1), 
interacts with an intact material (Figure  14.3). However, 
some modulation can be observed, and sometimes the 
rupture can even reach supershear velocity locally. This is 
probably related to a process where the radiated waves 
interact with the LVZ behind the rupture front and further 
interfere with the rupture front itself.

14.4.2. Evolution of Damage for Dissimilar Materials

For the two following scenarios we chose to increase 
the complexity by introducing a material contrast across 
the fault, as usually observed for natural cases. First, we 

simply keep the same material (Granite) on both sides 
but assign a different initial damage density (see section 
14.4.2.1 and Table 14.2 for details). This could be inter-
preted as being the cumulative result of dynamic events, 
propagating dominantly in one direction, which would 
create a damage contrast across the fault. In the second 
scenario, we assign different elastic properties on both sides 
but keep the damage density constant (see section 14.4.2.2 
and Table 14.2 for details). For both scenarios, we set the 
initial microcrack size at 60 m.

14.4.2.1. Variation in Initial Damage Density
For this particular simulation (Figure 14.5a), the elastic 

properties correspond to those of a typical Granite 
(Table 14.2), but we change the damage density across the 
fault: D0 0 2.  on the top part of the fault (material 1) 
and D0 0 1.  for the bottom part (material 2). For an initial 
microcrack size of  60 m, this leads to a volume density 
of  cracks Nv of  3 36 10 7.  (#/m3) and 1 68 10 7.  (#/m3), 
respectively.

Figure 14.5a shows a snapshot of the state parameter 
D at t 4 9.  s, which corresponds to the end of the numer-
ical simulation. Time evolution of damage with respect to 
slip rate on the fault is also represented in Figure 14.6a. 
The small initial difference in damage density actively 
impacts the final result since we observe more dynamic 
damage generation in the softer material (D0 0 2. ). On 
the left tensile quadrant, the highly damaged zone 
(D 0 5. ) extends up to 600 m, whereas in the right tensile 
lobe, it does not exceed 300 m. We also notice a more 
“gradual” decay in damage density for material 1. 
Concurrently, we observe a stronger reduction in elastic 
properties for the more compliant material (maximum 
change of 34.4 % for S‐wave and 28.2 % for P‐wave) than 
for the material with less initial damage (maximum 
change of 32.7 % for S‐wave and 28.0 % for P‐wave).

Figures 14.5b and 14.5c display the cumulative slip and 
slip rate on the fault, respectively, with a time increment 
of  0.35 s. In accordance with previous observations 
(section  14.4.1.2), the cumulative slip in the negative 
direction is slightly smaller than in the positive direction, 
where less damage is recorded. We also notice slip rate 
oscillations in both directions. However, they occur earlier 
in the negative direction, in relation to the development 
of an LVZ that arises closer to the nucleation prone patch 
on that part of the fault. Finally, this simulation displays 
little modulation in the rupture speed, with no significant 
difference between the two rupture fronts. Again, this is 
likely related to the fact that the subshear rupture propa-
gates inside an intact material, in both directions.

This simple scenario underlines the importance of 
incorporating not only the fault history but also the 
off‐fault medium history in dynamic modeling of earth-
quakes: damage can accumulate over time and influence 
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For subshear ruptures, this bimaterial effect instigates a 
normal stress change behind the rupture tip, with a tensile 
stress perturbation in the positive direction and a dynamic 
compression in the opposite direction [e.g., Rice, 2002; Shi 
and Ben‐Zion, 2006; Langer et al., 2013]. The effect is also 
sensitive to the degree of material contrast and to the details 
of static and dynamic friction on the fault plane. In turn, 
the change in normal stress influences the generation of 
damage. The compressive perturbation in the negative 
direction likely explains why the off‐fault medium is less 
damaged when the fault is a bimaterial interface.

Figures 14.7b and 14.7c display the cumulative slip and 
slip rate on the fault, respectively, with a time increment 

of 0.35 s. The first subfigure shows a correlation between 
the size of  the LVZ and the importance of  cumulative 
slip reduction, in comparison to the elastic case, like we 
observed before. In Figure 14.7c, as expected, the mate-
rial contrast leads to a reduction in slip rate, compared to 
the homogeneous case (Figure 14.2c). We also notice that 
the size of the damage zone correlates with the occur-
rence of slip rate oscillations. They are more important 
and occurred earlier in the negative direction, in relation 
to the development of an LVZ that arises closer to the 
nucleation‐prone patch on that part of the fault. As for 
the previous simulations, there is also very little modula-
tion in the rupture speed, with no significant difference 
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Figure 14.6 Temporal evolution of the damage parameter D for (a) a dynamic rupture on a right‐lateral fault 
embedded in a homogeneous medium (Granite) with a material contrast across the fault by changing the initial 
damage density (see also Figure 14.5) and (b) a dynamic rupture on a bimaterial fault with the initial damage 
density of D0 0 1.  on both sides. Corresponding slip rate (white) is superimposed on the snapshots. See electronic 
version for color representation.
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between the two rupture fronts (rupture propagates inside 
an intact material, in both directions).

In the different simulations we run, we also explore the 
case where we have a material and a damage density 
contrast across the fault (Granite & D0 0 2.  for material 
1 and Gabbro & D0 0 2.  for material 2). For that particu-
lar scenario (not shown here), we basically observe the 
combined effects described in this section and the section 
above. The material on the top part of the fault is even 
more compliant, and we observe a strong difference in 
damage pattern on both sides of the fault. We also notice 
that overall less damage is occurring than for the homog-
enous case (section  14.4.2.1). The broken symmetry in 
this simulation is the combined result of contrast in elas-
tic properties and the dynamic inelastic asymmetry. The 
latter depends on whether the tensile or compressive 
stress concentration lobe is on the side of the fault with a 
low or high initial damage density. This is coherent with 
experimental studies that found that fracture damage 
introduces an additional asymmetry beyond that due to 
the associated elastic contrast [Bhat et al., 2010; Biegel 
et  al., 2010]. Based on these simulations, one should 

expect to see a cumulative effect on the off‐fault medium 
that would produce an asymmetric damage pattern across 
the fault, which has been observed by Dor et al. [2006].

14.4.3. Effects of Damage on Near‐Fault 
Ground Motion

This last section explores the effects of  off‐fault 
damage generation on strong ground motion in the near‐
source region. Figure 14.8 displays synthetic seismograms 
of fault‐parallel and fault‐normal velocities for a dynamic 
rupture on a right‐lateral fault embedded in a homogene-
ous medium (Granite) with different initial damage on 
both sides of the fault (cf  section 4.2.1 and Figure 14.5). 
For comparison, we also plot the velocities for an elastic 
medium without damage evolution (colored curves). 
Seismograms are located on the extensional side and 
sample the two newly created damaged zones and the 
medium that has not undergone any reduction in wave 
speed. As expected for a sub‐Rayleigh rupture, the fault‐
normal component dominates over the fault‐parallel 
component in both cases. Then, if we compare the different 
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for color representation.
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seismograms, we observe at first that the four receivers 
near the fault, inside the LVZs, record long‐lived signal 
oscillations higher in amplitude than the receivers 
 farther away from the fault. We also notice that this 
phenomenon is even more emphasized for the two 
receivers located in the softer material, which has under-
gone a stronger reduction in elastic properties (section 
14.4.2.1). Thereafter, if  we compare the simulations with 
a damage evolution’s law and those without, we can see 
that the velocity profiles are superimposed at first, but 
then there is a strong mismatch in particle velocity behind 
the rupture front. This is due to the fact that the rupture 
front propagates at first in an undamaged material. The 
oscillations and changes in particle velocity we further 
observe are related to the off‐fault reduction in elastic 
properties due to dynamic damage and the potential 
reflections of seismic waves in LVZs. As a consequence, the 
seismograms located farther away from the fault are less 
likely to be affected by these oscillations than the receivers 
inside the LVZs, which record more intense ground 
shaking. Seismic waves are in fact affected by the damage 
zone at first, but then propagate away in a homogeneous 
medium.

Figure 14.9 shows the Fourier velocity spectra of  the 
synthetic seismograms displayed in Figure  14.8. For 
comparison, we also compute the Fourier amplitude 
spectra (FAS) for a dynamic rupture in an elastic medium 
without damage evolution (colored curves). If  we 
compare the two models, we can see that incorporating 
off‐fault damage evolution changes the high‐frequency 
content of  the seismograms. We observe that between 
5 and 100 Hz, Fourier velocity spectra has a higher slope 
than the elastic case. This contrast is essentially observed 
for the fault‐normal component and to a smaller extent 
for the fault‐parallel component. The difference between 
the two models is also more pronounced for the receivers 
that sample the damaged zones than for the ones farther 
away from the fault. The complexity we observe in slip 
rate (section 14.4.1.2), together with the change in elastic 
properties, is responsible for the high‐frequency content 
in the velocity spectra. The additional high‐frequency 
content is most likely due to the localized nature of  dam-
age. Since these localized zones are effectively cracks 
accelerating at a significant fraction of  the shear wave 
speed, they should contribute to the high‐frequency con-
tent. This is consistent with the near‐fault strong motion 
records of  real earthquakes [Housner, 1947; Wald and 
Heaton, 1994; Semmane et al., 2005; Dunham et al., 2011] 
and laboratory experiment observations. Indeed, in his 
PhD thesis, Passelègue [2015] relates the high‐frequency 
radiation recorded during laboratory earthquakes to 
the amount of  damage that was produced. However, 
in natural cases, damage is not likely the only source 

contribution to high‐frequency content. Dunham et al. 
[2011] has, for example, demonstrated that fault rough-
ness induces accelerations and decelerations of  the 
dynamic rupture, together with slip heterogeneities, 
which also result in ground acceleration spectra that 
are flat at high frequency. With the model we developed, 
we can explore in future work these combined effects 
on the radiated ground motion.

14.4.4. Resolution Test

We appraised the robustness of the results discussed in 
previous sections by comparing simulations with the 
same parametrization but for different grid resolutions 
(Figure  14.10). We compare simulations for a dynamic 
rupture on a right‐lateral fault embedded in a homogene-
ous medium (Granite) with damage evolution only on 
the top side of the fault for two different mesh sizes: 30 m 
(as in section  14.4.1) and 15 m. Figure  14.10 displays 
synthetic seismograms of fault‐normal velocity and the 
corresponding FAS. Although we observe differences in 
the location and amplitude of  the small oscillations 
(as a result of localization of damage), overall, the velocity 
profiles are farely well captured (Figure 14.10a–d). Accor-
dingly, the Fourier analyses performed on these seismo-
grams show very similar profiles with the same slope for 
the two different resolutions (Figure 14.10e–h), support-
ing further the robustness of  the features described in 
section 14.4. Notably, we observe a similar high‐frequency 
content we relate to dynamic damage generation (section 
14.4.3), for the two different resolutions. At this stage, we 
offer once again a note of caution that our results have to 
be taken more qualitatively here. As previously under-
lined in section  14.4.1.1, our constitutive law does not 
have an internal length scale, which affects the exact 
localization of damage branches.

14.5. DISCUSSION AND CONCLUSION

In this chapter, we have provided the description of a 
micromechanical model that accounts for the dynamic 
evolution of elastic properties in the surrounding 
medium, related to dynamic off‐fault damage. We have 
numerically investigated the role of spontaneous off‐fault 
damage generation on earthquake rupture processes and 
underlined damage‐related features that can be pertinent 
to interpret geophysical observations.

The main difference with models allowing for plastic 
deformation is that the developed constitutive law accounts 
for dynamic changes of elastic properties in the off‐fault 
medium. These changes of elastic moduli, related to 
damage generation, have been observed along natural 
faults during earthquakes and in laboratory experiments 



y = 2 km

2

0

–2

2

~
lo

g|
V p

|

~
lo

g|
V p

|
~

lo
g|

V n
|

~
lo

g|
V n

|

0

–2

2

0

–2

2

0

–2

2

0

–2

2

0

–2
–2 –1 0 1 2–2 –1 0

log f log f
1 2

–2 –1 0 1 2 –2 –1 0 1 2 –2 –1 0 1 2 –1–2 0 1 2

–2 –1 0 1 2–2 –1 0
log f log f

1 2

2

1.5

1

0.5

0

–2
–5

distance (km)

0 0.2 0.4 0.6
D

0.8 1

2

0

–2

2

0

–2

2

0

–2

2

0

–2

2

0

–2

2

0

–2

2

0

–2

2

0

–2

–12

0

–2

2

0

–2

x = –7.5 km x = –5 km x = 5 km

y = –0.125 km y = –0.125 km

x = 7.5 km

y = 2 km

y = 0.125 km

y = 0.125 km

y = 2 km

y = 2 km

y = –2 km y = –2 km

y = –2 kmy = –2 km

y = 0.125 km

y = 0.125 km

y = –0.125 km y = –0.125 km

Figure 14.9 Fourier amplitude spectra (FAS) of fault‐parallel velocity, vp (eight upper quadrants with green curves), and fault‐normal velocity, 
vn (eight lower quadrants with red curves), corresponding to the seismograms in Figure 14.8. Black curves correspond to the dynamic simula-
tion with homogenous elastic properties but different initial damage (section 4.2.1 and Figure 14.5). Colored curves correspond to a simula-
tion with the same parametrization but within a pure elastic medium. Seismograms are selected in order to sample both the damaged and 
undamaged zones (see the white dots in the middle for location). See electronic version for color representation.



EFFECT OF BRITTLE OFF‐FAULT DAMAGE 275

3
2

2

0

–2

–4

1

–1

–3

–5

y = 2.04 km y = 2.04 km

3

V n
 (m

/s
)

3 3.5 4
time (s) time (s)

4.5 5 3 4 5

0

–2

–4

1

–1

–3

–5

4

3

2

1

0

–1

–2

4

3

2

~
lo

g|
Vn

|

1

0

–1

–2
–2 –1 0

log f log f
1 2

4

3

2

1

0

–1

–2

4

3

2

1

0

–1

–2
–2 –1 0 1 2

y = 0.12 km

y = 2.04 km y = 2.04 km

y = 0.12 km

y = 0.12 km y = 0.12 km

x = –7.5 km x = –5 km(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 14.10 Numerical tests on the resolutions of our model with two different mesh sizes. We compare four 
synthetic seismograms of fault‐normal velocity (a–d) and their corresponding FAS (e–h) for a dynamic rupture on 
a right‐lateral fault embedded in a homogeneous medium (Granite) with damage evolution only on the top side 
of the fault (section 14.4.1 and Figure 14.2). Black and red curves correspond to the dynamic simulations with a 
15 m and 30 m mesh size, respectively. For the FAS (e–h), the light blue curves correspond to a simulation with 
a 30 m mesh size, with the same parametrization but within a pure elastic medium. See electronic version for 
color representation.



EFFECT OF BRITTLE OFF‐FAULT DAMAGE 277

REFERENCES

Ampuero, J. P. (2002), Etude physique et numérique de la nuclé-
ation des séismes, Ph.D. thesis, Université Paris VII.

Andrews, D. J. (2005), Rupture dynamics with energy loss 
 outside the slip zone, Journal of Geophysical Research: Solid 
Earth, 110(B1), 307.

Andrews, D. J., and Y. Ben‐Zion (1997), Wrinkle‐like slip pulse 
on a fault between different materials, Journal of Geophysical 
Research: Solid Earth, 102(B1), 553–571.

Andrews, D. J., and R. A. Harris (2005), The wrinkle‐like slip 
pulse is not important in earthquake dynamics, Geophysical 
Research Letters, 32(23), L23,303.

Ashby, M. F., and C. G. Sammis (1990), The damage mechanics 
of brittle solids in compression, Pure and Applied Geophysics, 
133(3), 489–521.

Audet, P., and R. Burgmann (2014), Possible control of subduc-
tion zone slow‐earthquake periodicity by silica enrichment, 
Nature, 510(7505), 389–392.

Ben‐Zion, Y., and Z. Q. Shi (2005), Dynamic rupture on a mate-
rial interface with spontaneous generation of  plastic strain 
in the bulk, Earth and Planetary Science Letters, 236(1‐2), 
486–496, doi:10.1016/j.epsl.2005.03.025.

Bhat, H., R. Biegel, A. Rosakis, and C. Sammis (2010), The 
effect of asymmetric damage on dynamic shear rupture prop-
agation II: With mismatch in bulk elasticity, Tectonophysics, 
493(3‐4), 263–271.

Bhat, H. S., A. J. Rosakis, and C. G. Sammis (2012), A micro-
mechanics based constitutive model for brittle failure at high 
strain rates, Journal of Applied Mechanics: Transactions of 
the ASME, 79(3), 031,016.

Bhat, H. S., C. G. Sammis, and A. J. Rosakis (2011), The micro-
mechanics of Westerley granite at large compressive loads, 
Pure and Applied Geophysics, 168(12), 2181–2198.

Biegel, R., H. Bhat, C. Sammis, and A. Rosakis (2010), The 
effect of asymmetric damage on dynamic shear rupture prop-
agation I: No mismatch in bulk elasticity, Tectonophysics, 
493(3‐4), 254–262.

Biegel, R. L., and C. G. Sammis (2004), Relating fault mechan-
ics to fault zone structure, in Advances in geophysics, vol. 47, 
pp. 65–111, Elsevier.

Brenguier, F., M. Campillo, C. Hadziioannou, N. M. Shapiro, 
R. M. Nadeau, and E. Larose (2008), Postseismic relax-
ation along the San Andreas fault at Parkfield from 
 continuous seismological observations, Science, 321(5895), 
1478–1481.

Brietzke, G. B., and Y. Ben‐Zion (2006), Examining tendencies 
of  in‐plane rupture to migrate to material interfaces, 
Geophysical Journal International, 167(2), 807–819, 
doi:10.1111/j.1365‐246X.2006.03137.x.

Byerlee, J. (1978), Friction of rocks, Pure and Applied Geophysics, 
116(4‐5), 615–626.

Cappa, F., C. Perrin, I. Manighetti, and E. Delor (2014), Off‐
fault long‐term damage: A condition to account for generic, 
triangular earthquake slip profiles, Geochem. Geophys. 
Geosyst., 15(4), 1476–1493.

Chen, R., K. Xia, F. Dai, F. Lu, and S. Luo (2009), Determination 
of dynamic fracture parameters using a semi‐circular bend 

technique in split Hopkinson pressure bar testing, Engineering 
Fracture Mechanics, 76(9), 1268–1276.

Chester, F. M., J. P. Evans, and R. L. Biegel (1993), Internal 
structure and weakening mechanisms of the San Andreas 
fault, Journal of Geophysical Research: Solid Earth, 98(B1), 
771–786.

Chester, F. M., and J. M. Logan (1986), Implications for 
mechanical properties of brittle faults from observations of 
the Punchbowl fault zone, California, Pure and Applied 
Geophysics, 124(1), 79–106, doi:10.1007/BF00875720.

Childs, C., T. Manzocchi, J. J. Walsh, C. G. Bonson, A. Nicol, 
and M. P. Schpfer (2009), A geometric model of fault zone 
and fault rock thickness variations, Journal of Structural 
Geology, 31(2), 117–127.

Cochard, A., and J. R. Rice (2000), Fault rupture between dis-
similar materials: Ill‐posedness, regularization, and slip‐pulse 
response, Journal of Geophysical Research: Solid Earth, 
105(B11), 25,891–25,907.

Cochran, E. S., Y. G. Li, P. M. Shearer, S. Barbot, Y. Fialko, 
and J. E. Vidale (2009), Seismic and geodetic evidence for 
extensive, long‐lived fault damage zones, Geology, 37(4), 
315–318.

Collettini, C., C. Viti, S. A. F. Smith, and R. E. Holdsworth 
(2009), Development of interconnected talc networks and 
weakening of continental low‐angle normal faults, Geology, 
37(6), 567–570.

Dai, F., R. Chen, M. Iqbal, and K. Xia (2010), Dynamic cracked 
chevron notched Brazilian disc method for measuring rock 
fracture parameters, International Journal of Rock Mechanics 
and Mining Sciences, 47(4), 606–613.

Dai, F., K. Xia, H. Zheng, and Y. Wang (2011), Determination 
of dynamic rock mode‐I fracture parameters using cracked 
chevron notched semi‐circular bend specimen, Engineering 
Fracture Mechanics, 78(15), 2633–2644.

Dalguer, L. A., K. Irikura, and J. D. Riera (2003), Simulation of 
tensile crack generation by three‐dimensional dynamic shear 
rupture propagation during an earthquake, J. Geophys. Res., 
108(B3).

Day, S. M., L. A. Dalguer, N. Lapusta, and Y. Liu (2005), 
Comparison of finite difference and boundary integral solu-
tions to three‐dimensional spontaneous rupture, Journal of 
Geophysical Research: Solid Earth, 110(B12), B12,307, 
doi:10.1029/2005JB003813.

den Hartog, S. A. M., C. J. Peach, D. A. M. de Winter, C. J. 
Spiers, and T. Shimamoto (2012), Frictional properties of 
megathrust fault gouges at low sliding velocities: New data 
on effects of normal stress and temperature, Journal of 
Structural Geology, 38, 156–171.

Deshpande, V. S., and A. G. Evans (2008), Inelastic deforma-
tion and energy dissipation in ceramics: A mechanism‐based 
constitutive model, Journal of the Mechanics and Physics of 
Solids, 56(10), 3077–3100.

Dor, O., T. K. Rockwell, and Y. Ben‐Zion (2006), Geological 
observations of damage asymmetry in the structure of the 
San Jacinto, San Andreas and Punchbowl faults in Southern 
California: A possible indicator for preferred rupture prop-
agation direction, Pure and Applied Geophysics, 163(2), 
301–349, doi:10.1007/s00024‐005‐0023‐9.



278 FAULT ZONE DYNAMIC PROCESSES

Dunham, E. M., D. Belanger, L. Cong, and J. E. Kozdon (2011), 
Earthquake ruptures with strongly rate‐weakening friction 
and off‐fault plasticity, part 2: Nonplanar faults, Bulletin of 
the Seismological Society of America, 101(5), 2308–2322.

Faulkner, D. R., T. M. Mitchell, D. Healy, and M. J. Heap 
(2006), Slip on “weak” faults by the rotation of  regional 
stress in the fracture damage zone, Nature, 444(7121), 
922–925.

Faulkner, D. R., T. M. Mitchell, E. Jensen, and J. Cembrano 
(2011), Scaling of fault damage zones with displacement and 
the implications for fault growth processes, J. Geophys. Res., 
116(B5).

Finzi, Y., E. H. Hearn, Y. Ben‐Zion, and V. Lyakhovsky (2009), 
Structural properties and deformation patterns of evolving 
strike‐slip faults: Numerical simulations incorporating 
damage rheology, Pure and Applied Geophysics, 166(10), 
1537–1573, doi:10.1007/s00024‐009‐0522‐1.

Froment, B., J. J. McGuire, R. D. van der Hilst, P. Gouedard, E. 
C. Roland, H. Zhang, and J. A. Collins (2014), Imaging 
along‐strike variations in mechanical properties of the Gofar 
Transform fault, East Pacific Rise, Journal of Geophysical 
Research: Solid Earth, 119(9), 7175–7194.

Gabriel, A. A., J. P. Ampuero, L. A. Dalguer, and P. M. Mai 
(2013), Source properties of dynamic rupture pulses with off‐
fault plasticity, Journal of Geophysical Research: Solid Earth, 
118(8), 4117–4126, doi:10.1002/jgrb.50213.

Gao, G., W. Yao, K. Xia, and Z. Li (2015), Investigation of 
the rate dependence of  fracture propagation in rocks 
using digital image correlation (DIC) method, Engineering 
Fracture Mechanics, 138, 146–155, doi:10.1016/j.
engfracmech.2015.02.021.

Hill, R., and J. R. Rice (1973), Elastic potentials and structure 
of  inelastic constitutive laws, Siam Journal on Applied 
Mathematics, 25(3), 448–461.

Hiramatsu, Y., H. Honma, A. Saiga, M. Furumoto, and 
T.  Ooida (2005), Seismological evidence on characteristic 
time of  crack healing in the shallow crust, Geophys. Res. 
Lett., 32(9).

Hok, S., M. Campillo, F. Cotton, P. Favreau, and I. Ionescu 
(2010), Off‐fault plasticity favors the arrest of  dynamic rup-
tures on strength heterogeneity: Two‐dimensional cases, 
Geophysical Research Letters, 37, L02,306, doi:10.1029/ 
2009GL041888.

Housner, G. W. (1947), Characteristics of  strong‐motion 
earthquakes, Bulletin of the Seismological Society of America, 
37(1), 19–31.

Huang, Y., J.‐P. Ampuero, and D. V. Helmberger (2014), 
Earthquake ruptures modulated by waves in damaged fault 
zones, J. Geophys. Res. Solid Earth, 119(4), 3133–3154.

Kame, N., J. R. Rice, and R. Dmowska (2003), Effects of pre-
stress state and rupture velocity on dynamic fault branching, 
J. Geophys. Res., 108(B5).

Kanamori, H. (2006), Lessons from the 2004 Sumatra‐
Andaman earthquake, pp. 1927–1945, Royal Society.

Kaneko, Y., and Y. Fialko (2011), Shallow slip deficit due to 
large strike‐slip earthquakes in dynamic rupture simulations 
with elasto‐plastic off‐fault response, Geophysical Journal 
International, 186(3), 1389–1403.

King, D. S. H., and C. Marone (2012), Frictional properties 
of  olivine at high temperature with applications to the 
strength and dynamics of the oceanic lithosphere, Journal of 
Geophysical Research: Solid Earth, 117, B12,203, doi:10.1029/ 
2012JB009511.

Klinger, Y., J.‐H. Choi, and A. Vallage (2017), Fault branching 
and long‐term earthquake rupture scenario for strike‐slip 
earthquakes, in Fault Zone Dynamic Processes: Evolution 
of  Fault Properties During Seismic Rupture, edited by 
M. Thomas, H. S. Bhat, and T. Mitchell, this volume, AGU/
Wiley.

Langer, S., D. Weatherley, L. Olsen‐Kettle, and Y. Finzi (2013), 
Stress heterogeneities in earthquake rupture experiments 
with material contrasts, Journal of the Mechanics and Physics 
of Solids, 61(3), 742–761.

Li, Y.‐G., K. Aki, D. Adams, A. Hasemi, and W. H. K. Lee 
(1994), Seismic guided waves trapped in the fault zone of the 
Landers, California, earthquake of 1992, J. Geophys. Res., 
99(B6), 11,705–11,722.

Li, Y.‐G., P. Chen, E. S. Cochran, J. E. Vidale, and T. 
Burdette (2006), Seismic evidence for rock damage and 
healing on the San Andreas fault associated with the 2004 
m 6.0 Parkfield earthquake, Bulletin of  the Seismological 
Society of  America, 96(4B), S349–S363, doi:10.1785/ 
0120050803.

Lyakhovsky, V., and Y. Ben‐Zion (2014), A continuum damage–
breakage faulting model and solid‐granular transitions, Pure 
and Applied Geophysics, 171(11), 3099–3123, doi:10.1007/
s00024‐014‐0845‐4.

Lyakhovsky, V., Y. Ben‐Zion, and A. Agnon (1997a), Distributed 
damage, faulting, and friction, Journal of Geophysical 
Research: Solid Earth, 102(B12), 27,635–27,649.

Lyakhovsky, V., Z. Reches, R. Weinberger, and T. E. Scott 
(1997b), Non‐linear elastic behaviour of damaged rocks, 
Geophysical Journal International, 130(1), 157–166.

Ma, S. (2008), A physical model for widespread near‐surface 
and fault zone damage induced by earthquakes, Geochem. 
Geophys. Geosyst., 9(11).

Mitchell, T. M., and D. R. Faulkner (2008), Experimental 
measurements of permeability evolution during triaxial com-
pression of initially intact crystalline rocks and implications 
for fluid flow in fault zones, Journal of Geophysical Research: 
Solid Earth, 113(B11), 412.

Mitchell, T. M., and D. R. Faulkner (2009), The nature and 
 origin of off‐fault damage surrounding strike‐slip fault zones 
with a wide range of displacements: A field study from the 
Atacama fault system, Northern Chile, Journal of Structural 
Geology, 31(8), 802–816.

Morrow, C. A., D. E. Moore, and D. A. Lockner (2001), 
Permeability reduction in granite under hydrothermal condi-
tions, J. Geophys. Res., 106(B12), 30,551–30,560.

Ngo, D., Y. Huang, A. Rosakis, W. A. Griffith, and D. Pollard 
(2012), Off‐fault tensile cracks: A link between geological 
fault observations, lab experiments, and dynamic rupture 
models, J. Geophys. Res., 117(B1).

Niemeijer, A., C. Marone, and D. Elsworth (2010), Fabric 
induced weakness of tectonic faults, Geophysical Research 
Letters, 37, L03,304.



EFFECT OF BRITTLE OFF‐FAULT DAMAGE 279

Palmer, A. C., and J. R. Rice (1973), The growth of  slip sur-
faces in the progressive failure of  over‐consolidated clay, 
Proceedings of the Royal Society of London A: Mathematical, 
Physical and Engineering Sciences, 332(1591), 527–548, 
doi:10.1098/rspa.1973.0040.

Passelègue, F. (2015), Experimental study of the seismic 
 rupture., Ph.D. thesis, Laboratoire de Géologie de l’École 
Normale Supérieure, advisors: Ral Madariaga and Alexandre 
Schubnel.

Prakash, V., and R. Clifton (1993), Time resolved dynamic fric-
tion measurements in pressure shear, Experimental Techniques 
in the Dynamics of Deformable Solids, 165, 33–48.

Ranjith, K., and J. Rice (2001), Slip dynamics at an interface 
between dissimilar materials, Journal of the Mechanics and 
Physics of Solids, 49(2), 341–361.

Rice, J. R. (1968), A path independent integral and the approxi-
mate analysis of strain concentration by notches and cracks, 
Journal of Applied Mechanics, 35(2), 379–386, doi:10.1115/ 
1.3601206.

Rice, J. R. (1971), Inelastic constitutive relations for solids: 
An internal‐variable theory and its application to metal plas-
ticity, Journal of the Mechanics and Physics of Solids, 19(6), 
433–455, doi:10.1016/0022‐5096(71)90010‐X.

Rice, J. R. (1975), Continuum mechanics and thermo-
dynamics of  plasticity in relation to microscale deforma-
tion mechanisms, in Constitutive equations in plasticity, 
edited by A. Argon, chap. 2, MIT Press, Cambridge, 
Mass.

Rice, J. R. (2002), New perspectives on crack and fault dynam-
ics, Mechanics for a New Millennium: Proceedings of the 20th 
International Congress of Theoretical and Applied Mechanics 
Chicago, Illinois, USA 27 August–2 September 2000, pp. 1–24, 
Springer, Netherlands, Dordrecht.

Rice, J. R., C. G. Sammis, and R. Parsons (2005), Off‐fault 
secondary failure induced by a dynamic slip pulse, Bulletin 
of the Seismological Society of America, 95(1), 109–134, 
doi:10.1785/0120030166.

Rubin, A. M., and J.‐P. Ampuero (2007), Aftershock asymme-
try on a bimaterial interface, J. Geophys. Res., 112(B5).

Savage, H. M., and E. E. Brodsky (2011), Collateral damage: 
Evolution with displacement of  fracture distribution and 
secondary fault strands in fault damage zones, J. Geophys. 
Res., 116, B03405, doi:10.1029/2010JB007665.

Scholz (2002), The mechanics of earthquakes and faulting, 
Cambridge University Press.

Scholz, C. H. (1998), Earthquakes and friction laws, Nature, 
391, 37–42.

Semmane, F., F. Cotton, and M. Campillo (2005), The 2000 
Tottori earthquake: A shallow earthquake with no surface 
rupture and slip properties controlled by depth, J. Geophys. 
Res., 110(B3).

Shi, Z., and Y. Ben‐Zion (2006), Dynamic rupture on a bimate-
rial interface governed by slip‐weakening friction, Geophysical 
Journal International, 165(2), 469–484.

Shipton, Z., and P. Cowie (2001), Damage zone and slip‐surface 
evolution over µm to km scales in high‐porosity Navajo 
sandstone, Utah, Journal of Structural Geology, 23(12), 
1825–1844.

Sibson, R. H. (1977), Fault rocks and fault mechanisms, Journal 
of the Geological Society of London, 133(3), 191–213, 
doi:10.1144/gsjgs.133.3.0191.

Suzuki, T. (2012), Understanding of dynamic earthquake slip 
behavior using damage as a tensor variable: Microcrack 
 distribution, orientation, and mode and secondary faulting, 
J. Geophys. Res., 117(B5).

Templeton, E. L., and J. R. Rice (2008), Off‐fault plasticity and 
earthquake rupture dynamics: 1. dry materials or neglect of 
fluid pressure changes, J. Geophys. Res., 113(B9).

Thomas, M. Y., J.‐P. Avouac, J.‐P. Gratier, and J.‐C. Lee (2014a), 
Lithological control on the deformation mechanism and the 
mode of fault slip on the Longitudinal Valley fault, Taiwan, 
Tectonophysics, 632, 48–63.

Thomas, M. Y., J.‐P. Avouac, J. Champenois, J.‐C. Lee, and 
L.‐C. Kuo (2014b), Spatiotemporal evolution of  seismic 
and aseismic slip on the Longitudinal Valley fault, Taiwan, 
Journal of Geophysical Research: Solid Earth, 119, 
5114–5139.

Vallage, A., Y. Klinger, R. Grandin, H. S. Bhat, and M. Pierrot‐
Deseilligny (2015), Inelastic surface deformation during the 
2013 Mw 7.7 Balochistan, Pakistan, earthquake, Geology, 
43(12), 1079–1082.

Vermilye, J. M., and C. H. Scholz (1998), The process zone: 
A  microstructural view of fault growth, Journal of 
Geophysical Researc: Solid Earth, 103(B6), 12,223–12,237.

Wald, D. J., and T. H. Heaton (1994), Spatial and temporal dis-
tribution of slip for the 1992 Landers, California, earthquake, 
Bulletin of the Seismological Society of America, 84(3), 
668–691.

Walsh, J. B. (1965a), The effect of cracks in rocks on Poisson’s 
ratio, J. Geophys. Res., 70(20), 5249–5257.

Walsh, J. B. (1965b), The effect of cracks on the compressibility 
of rock, J. Geophys. Res., 70(2), 381–389.

Wang, L., S. Hainzl, M. Sinan Zeren, and Y. Ben‐Zion (2010), 
Postseismic deformation induced by brittle rock damage of 
aftershocks, Journal of Geophysical Research, 115(B10), 422.

Wang, Q., F. Feng, M. Ni, and X. Gou (2011), Measurement 
of  mode I and mode II rock dynamic fracture toughness 
with cracked straight through flattened Brazilian disc 
impacted by split Hopkinson pressure bar, Engineering 
Fracture Mechanics, 78(12), 2455–2469.

Wibberley, C. A., G. Yielding, and G. Di Toro (2008), Recent 
advances in the understanding of  fault zone internal struc-
ture: A review, Geological Society, London, Special 
Publications, 299(1), 5–33.

Wilson, J. E., J. S. Chester, and F. M. Chester (2003), 
Microfracture analysis of fault growth and wear processes, 
Punchbowl fault, San Andreas system, California, Journal of 
Structural Geology, 25(11), 1855–1873.

Xu, S., Y. Ben‐Zion, and J.‐P. Ampuero (2012), Properties 
of  inelastic yielding zones generated by in‐plane dynamic 
ruptures II. Detailed parameter‐space study, Geophysical 
Journal International, 191(3), 1343–1360, doi:10.1111/ 
j.1365‐246X.2012.05685.x.

Xu, S., Y. Ben‐Zion, J.‐P. Ampuero, and V. Lyakhovsky (2014), 
Dynamic ruptures on a frictional interface with off‐fault 
brittle damage: Feedback mechanisms and effects on slip and 



280 FAULT ZONE DYNAMIC PROCESSES

near‐fault motion, Pure and Applied Geophysics, 172(5), 
1243–1267, doi:10.1007/s00024‐014‐0923‐7.

Yamashita, T. (2000), Generation of microcracks by dynamic 
shear rupture and its effects on rupture growth and elastic 
wave radiation, Geophysical Journal International, 143(2), 
395–406.

Zhang, Q., and J. Zhao (2013), Effect of loading rate on frac-
ture toughness and failure micromechanisms in marble, 
Engineering Fracture Mechanics, 102, 288–309.

Zhou, X., and A. Aydin (2010), Mechanics of pressure solution 
seam growth and evolution, Journal of Geophysical Research, 
115(B12), 207.


