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Résumé

Les failles sont rarement uniques et planes, le plus souvent elles agissent
en réseau et présentent des complexités géométriques (rugosité, branches
etc) à toutes les échelles. Cependant, la majorité des modèles de cycles
sismique jusqu’à ce jour, ne prennent pas en compte ces complexités géo-
métriques. Cela est principalement dû aux limites des ressources informa-
tiques, et au temps de calcul qui ne peut être accéléré simplement qu’en géo-
métrie plane. Dans cette thèse, nous avons développé un nouveau modèle
quasi - dynamic du cycle sismique, avec une loi de friction de type ”rate and
state” et une loi d’évolution de la variable d’état ”aging”. Pour surmonter le
problème du temps de calcul, sans pour autant se restreindre à une géomé-
trie plane, nous avons fait appel à deux méthodes : la méthode multipolaire
rapide et les matrices hiérarchiques. Ces deux méthodes permettent des
gains de temps significatifs en réduisant la complexité du temps de calcul
de l’ordre deO(N2) àO(N logN),N étant le nombre d’éléments utilisés pour
discrétiser la faille. En utilisant ce modèle, nous avons pu explorer le com-
portement de deux failles dont une partie se superpose en mode III. Alors
qu’une faille unique donne lieu à un comportement périodique, avec toujours
le même tremblement de terre se répétant, l’introduction d’une seconde faille
interagissant avec la première fait apparaître une grande complexité dans le
cycle sismique : comportement apériodique, ruptures partielles, ”afterslip”,
coexistance des évènements lents et rapides. Dans le domaine particulier
ou évènements de glissement lent et rapide coexistent, nous avons montré
que le moment des ces deux types d’événement suivaient des lois d’échelle
qui s’apparentent aux lois observées dans la nature par Ide et al. (2007).
Nous avons aussi montré que la rugosité et les réseaux de failles en mode
II (”in-plane”), provoquaient le même genre de complexités dans le cycle
sismique.
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Chapitre 1

Introduction

Avant-propos

Cette section présente une introduction générale à la problématique de
cette thèse. La première partie est une introduction historique à la décou-
verte des failles en temps qu’origine des tremblements de terre. Nous nous
attachons à retracer les principales découvertes et intuitions qui ont amené
à identifier les failles comme moyen de relâcher les déformations accumu-
lées dans la croûte terrestre. Dans une deuxième partie, nous présentons
les failles vues dans leur ensemble et non plus seulement en temps qu’en-
tité unique. Au travers d’exemples, nous montrons que, dans de nombreux
cas, la rupture sismique met en jeu de nombreuses failles établies en ré-
seau. Nous nous attachons à démontrer que la géométrie et les réseaux
de failles ont un rôle important dans le cycle sismique. Les découvertes ré-
centes sur la présence d’évènements de glissement lent, a remis en cause
notre compréhension du cycle sismique. Les évènements lents peuvent en
effet relâcher une partie non négligeable des contraintes sur les failles. L’in-
vention de la loi empirique de friction ”rate and state” a permis, en introdui-
sant une récupération de la résistance des failles après rupture, de simuler
pour la première fois le cycle sismique complet (inter-sismique, sismique,
post-sismique) en incluant plusieurs évènements (Rice, 1993 ; Liu and Rice,
2005 ; Barbot et al., 2012). Les modèles patins resort ont montré des com-
portements similaires (lois d’Omori et de Gutenberg, comportement apério-
dique) aux cycles sismiques lorsqu’on les a mis en réseau, reliés entre eux
par des resorts (Burridge and Knopoff , 1967 ; Nussbaum and Ruina, 1987 ;
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CHAPITRE 1. INTRODUCTION 7

Carlson and Langer , 1989). Cependant, le passage aux modèles continus
correctement discretisés, conduit à un cycle sismique sans complexités par-
ticulières (périodique et toujours le même évènement) (Rice, 1993). ce qui a
amené à devoir complexifier ces modèles continus pour pouvoir reproduire
les comportements observés (séismes lents et rapides, ruptures partielles,
glissements post-sismiques). En particulier les modèles actuels sont très dé-
pendant de la longueur de nucléation, qui semble régir le domaine de com-
portement du cycle : apparition de séisme lent ou pas (Liu and Rice, 2005,
2007 ; Rubin, 2008 ; Veedu and Barbot, 2016), ruptures partielles (Chen and
Lapusta, 2009 ; Michel et al., 2017). Ce paramètre est souvent controlé par
le truchement de la variation des paramètres rhéologiques (des paramètres
de la loi de friction) sur la faille. Peu de travaux se sont vraiment intéressés
à l’effet des interactions de faille, et de la géométrie sur le cycle sismique, et
comment la géométrie peu changer ou contrôler cette longueur de nuclea-
tion. Le but de cette thèse est donc d’étudier plus en détail l’influence de la
géométrie des failles sur le cycle sismique.

1.1 The faulting origin of earthquakes

Earthquakes are one of the most striking manifestation of earth dyna-
mics. Since the birth of humanity, people are experiencing these destructive
events. However the comprehension of these phenomenons was difficult,
because most of the time they do not provoke any surface fault trace, they
are underground phenomena, and they can be felt far away from their hypo-
center.

The first physical mechanism for earthquake was proposed by Aristotle
(384-322 B.C.). Aristotle was one of the person trying to move forward the
classical explanation of a divine retribution. He tried to explain earthquake
based on the experience they have on atmospheric events, like thunder and
lightening. His theory was that in the Earth, there are caverns producing fires,
and drawing an analogy to sudden storm and lightening, these fires would
sometimes expand rapidly and result in violent burst. These violent bursts
would shake the ground, and create an earthquake (Agnew, 2002). Although
the mechanisms they suggested were incorrect, it was the first time that they
were trying to explain what was happening, relying on their experience on
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other phenomena. Besides some modifications of that theory, like replacing
the fire with smoky vapor, the underlying idea of explosion in the ground will
remain the predominant idea until the 18th century.

One of the first key point of the understanding of earthquakes was to dif-
ferentiate the propagation of waves from the phenomenon that created these
waves. At least two writers, J Michell (1761) and J Drijhout (1765) unders-
tood this idea (Agnew, 2002). By doing an analogy with sounds propagating
in air, J. Michell inferred that waves were propagating through the elasticity
of rocks. However the origin of these waves was still thought to be an explo-
sion due to water vaporized suddenly by underground fires. This led to the
knowledge that earthquake can be felt although the earthquake source is far
away.

In the beginning of the 19th century, the development of solid mechanics
provided the physical basis for the mathematical description of earthquakes.
Robert Mallet (1810-1881), a polymathic Irish engineer, was most probably
one the first person to try to explain earthquakes, gathering the newly deve-
loped solid mechanics together with geology and engineering. We owe him
not only the term Seismology, but also a great improvement in seismology
as a science. He made up one of the first catalog of more than 6800 of ear-
thquakes with their location and effects. He also published one of the first
world seismic hazard map (Lee et al., 2002) based on this catalog (Fig. 1.1).
He was the first to create artificial earthquakes with gunpowder and used its
invention to calculate for the first time the P wave velocity in different kind of
rocks. He found 280m/s for sandy soil and 600m/s for granite (values that are
now known to be too small and are likely caused by insensitive instruments)
(Agnew, 2002). Charles Lyell (1797-1875) was a contemporary of Robert
Mallet, made important contributions in the recognition of earthquakes as a
engine of earth Dynamism -p179- of Scholz (2002). Although the distinction
between the origin of earthquakes and the propagating waves was made,
and the fault relationship with earthquake was established, the emergence
of the faulting origin hypothesis of earthquakes would only happen in late
19th century.

Grove Carl Gilbert (1843-1918) was a geologist, working on normal fault
system in the Basin and Range province of west America (Segall, 2010). He
was the first to recognized that a strain release along fault was the source
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Figure 1.1 – Seismic hazard map by Robert Mallet and his son that was published
in 1858. This map was only based on felt reports of earthquakes. Main subduction
zones are well represented, Mallet also noted the association with large Mountain
ranges. Taken from Lee et al. (2002)
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of earthquakes. He also understood earthquake phenomenon as a stick slip
phenomena 80 years before the famous paper of Brace et al. (1966) (Gilbert,
1884). He wrote in 1884 :

The upthrust produces a local strain in the crust . . . and this strain
increases until it is sufficient to overcome the starting friction on
the fractured surface. Suddenly, and almost instantaneously, there
is an amount of motion sufficient to relieve the strain, and this
is followed by a long period of quiet, during which the strain is
gradually reimposed. The motion at the instant of yielding is so
swift and so abruptly terminated as to constitute a shock, and
this shock vibrates through the crust with diminishing force in all
directions.

At the same time as Gilbert understood the faulting origin of earthquakes,
at least two authors Alexander McKay (1841-1917) and Bunjiro Koto (1856-
1935) made observations of new fresh scarp concomitant with earthquakes.
This observation made Bunjiro Koto think that earthquake was the result of
dislocation on a fault (Koto, 1893). The controversy at that time was to know
if faults were the origin or a consequence of earthquake. The final proof
came from geodetic observations after the 1906 San Francisco earthquake
by Harry Fielding Reid (1859-1944). He showed that the rupture was not only
superficial but also happened in depth.This led to the generally accepted
faulting origin of earthquakes. Reid gave the five statements of his elastic
rebound theory in 1911 (Segall, 2010) :

1. The fracture of the rock, which causes a tectonic earthquake, is the
result of elastic strains, greater than the strength of the rock can withs-
tand, produced by the relative displacements of neighboring portions
of the earth crust.

2. These relative displacements are not produced suddenly at the time
of the fracture, but attain their maximum amounts gradually during a
more or less long period of time.

3. The only mass movements that occur at the time of the earthquake
are the sudden elastic rebounds of the sides of the fracture towards
position of no elastic strain ; and these movements extend to distances
of only a few miles from the fracture.
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4. The earthquake vibrations originate in the surface of fracture ; the sur-
face from which they start has at first a very small area, which may
quickly become very large, but at a rate not greater than the velocity of
compressional elastic waves in the rock.

5. The energy liberated at the time of an earthquake was, immediately
before the rupture, in the form of energy of elastic strain of the rock.
(Reid 1911, p. 436)

These statements lay the foundations for the understanding of faulting
origin of earthquake. With small modification it is possible to identify from
these statements three main ingredients that are necessary to get earth-
quakes :

An elastic medium The elastic medium has the role of storing energy,
before the next earthquake releases it. The most simple system that one
can think about in order to store elastic energy is a spring. Of course real
mediums are much more complex, in reality earthquakes happen in 3 di-
mensional, heterogenous fractured rocks.

An inherent resistance Following Reid’s theory, this inherent limit was
mainly thought to be the strength of rock, although this appeared to be in-
correct. We now know that this resistance is mainly frictionally controlled.
However, the ways the friction acts on the two sliding parts of the faults is
still an open question.

Loading The loading of the fault remained unsolved till the beginning of the
60’s, where the plate tectonic was really demonstrated. It is now accepted
that this is the engine that loads fault system.

1.2 Observations

1.2.1 Crust is composed of a myriad of interconnected
fault that interact with each other

Along with these three ingredients, we need to account for the fact that
the faults themselves are geometrically complex. In figure 1.2, it is possible
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Figure 1.2 – Fault surface map of the 1992 Mw7.3 Landers earthquake modified
from Sowers et al. (1994). (A) Faults that rupture the surface are shown in red line.
Earthquake really ruptures a geometrically complex fault system . (B) Zoom on a
location of the Kickapoo fault. Even at smaller scale, the fault still shows geometrical
complexities.

to see a fault map of the area of the 1992 Mw7.3 Landers earthquake, in the
eastern California shear zone. The 1992 Mw7.3 Landers earthquake ruptu-
red at least 5 major right lateral faults and many more smaller faults (Sieh
et al., 1993). The fault surface map of the area (Fig. 1.2 red line, from Sowers
et al. (1994)) shows an extremely complex network of fault system with jogs,
branches, and overlap of faults. If we zoom in, it is still possible to see a com-
plex fault system with many subsidiary structures. The earthquake nucleated
on the Johnson Valley Fault (Sieh et al., 1993) and quickly continued to the
Homestead valley fault through the Kickapoo fault (Sowers et al., 1994).

An other more recent example of a complex fault network is the 2016
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5km

Figure 1.3 – Fault surface map of the 2016 Mw7.8 Kaikoura earthquake from Ham-
ling et al. (2017). Faults that ruptured to the surface are shown in red line.

Mw7.8 Kaikoura earthquake that happened in north east coast of the south
Island in New Zealand. This earthquake have ruptured at least 12 major
faults (Hamling et al., 2017). Long period analysis showed that this earth-
quake initiated on a small strike slip fault and propagated to the north-east
(Duputel and Rivera, 2017). This earthquake apparently triggered slip on a
splay fault, being one of the rare example where intraplate and interplate
faults interact with each other (Hollingsworth et al., 2017 ; Duputel and Ri-
vera, 2017).

Geometry of faults themselves, including bend, jogs, kinks, was also
identified to have strong implications for earthquake dynamics like initia-
tion and arrest of ruptures (King and Nabelek, 1985 ; Sibson, 1985 ; Wes-
nousky, 1988). An other kind of geometrical complexity is the natural self-
affine roughness of fault surfaces. It was initially measured at the laboratory
sample scale (∼ 1cm) using surface profiler (Power et al., 1987 ; Schmittbuhl
et al., 1993). The self-affine nature of faults was shown to be a robust ob-
servation over more than 9 decades of length scales (Lee and Bruhn, 1996 ;
Renard et al., 2006 ; Candela et al., 2009, 2012). The surface rupture map
of faults also shows roughness Candela et al. (2012) (Fig. 1.4, for rupture
surface map of different strike-slip fault system from Klinger (2010)).

It is known that these geometrical complexities are of particular impor-
tance for the dynamic of earthquakes, and some earlier work have tried to
reproduce these features from a modeling perspective : how does an ear-
thquake rupture navigate a fault branch (Kame and Yamashita, 2003 ; Bhat
et al., 2007, among others) ? What is the cause of the arrest of a rupture ?
Is the cause of the enhanced high radiation pattern the roughness of the
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1872, Owens Valley earthquake

10km

1920, Haiyuan earthquake

1957, Gobi-Altay surface ruptures

20km

20km

Figure 1.4 – Fault surface map for the 1872 Mw7.5− 7.8 Owens Valley earthquake
(US), the 1920 Ms8 Haiyuan earthquake (China) and the 1957 Mw8.3 Gobi-Altay
earthquake (Mongolia). Modified from Klinger (2010).

fault (Dunham et al., 2011) ?. These are questions that are still not comple-
tely resolved. However, very little effort seems to have been done on the
behavior of the long term seismic cycle itself. This raises a host of questions
like : in a given fault network, are there areas of the fault that are subject to
rupture more often that others ? How does stress transfer work in a given
geometry ? Are there recurrent pattern of seismic cycles (same sequence
of faults that rupture) ? Some observation seems to provide a partial answer
for these questions. For example it has been observed that the roughness of
the fault correlates with the slip on the fault (Candela et al., 2011). However,
we are still at the beginning to understand the whole complexity of fault net-
works. The recent years have provided a whole new host of observations,
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and with that the fact that faults does not only release the stress dynamically
(an earthquake), but can also release stress a-seismically.

1.2.2 The seismic cycle budget has now to take into ac-
count slow-phenomena

Discovery of slow events Until the sixties, the classic image of earth-
quake cycle was that faults slowly accumulate stress due to plate loading
during a long period called interseismic period, until this stress exceeds the
strength of the fault and is suddenly released (coseismic period), resulting in
an earthquake. The first evidence of another mode of slip was discovered in
the sixties on San Andreas fault. Steinbrugge et al. (1960) observed a slow
offset of a winery wall near Hollister, although no earthquakes happened at
that time.

In the early 90s, the development of continuous GPS brought a new light
on slow phenomena : the occurence of Slow-Slip-Events (SSEs). They are
slip episodes, that happen along subduction zone. They propagate along the
fault, at small rupture velocity (about 0.5 km/h in Cascadia (Dragert et al.,
2004) to about 1 km/day in Mexico (Franco et al., 2005)) and with a small
slip-velocity (from about 1mm/yr in the Bungo Channel, Japan to about 1
m/year in Cascadia) (Schwartz and Rokosky, 2007). Since the first detec-
tion of SSEs in Bungo Channel in Japan (Hirose et al., 1999), they were
discovered in nearly all subduction zones : Cascadia (Dragert et al., 2001,
2004), Central Ecuador (Vallee et al., 2013), Guerrero (Lowry et al., 2001 ;
Kostoglodov et al., 2003 ; Franco et al., 2005), Hikurangi (Douglas et al.,
2005). However, it is worth noting that some areas seem to lack slow-slip
events. In Chile, only one large SSE was recorded, happening prior to the
Mw8.1 Iquique megathrust event in 2014 (Ruiz et al., 2014). In Japan for the
subduction related to the pacific plate, a small number of them have been
detected prior to the Mw9.0 Tohoku megathrust (Kato et al., 2012 ; Ito et al.,
2013) . In Sumatra, there were not any slow-slip ever recorded to my know-
ledge. Although GPS is still nowadays the main SSE detection tool, new
observations tools now allow for a broader detection of slow-slip, like net-
works of sea-bottom pressure gauges (Ito et al., 2013 ; Wallace et al., 2016)
or via the migration of microseismicity, repeating earthquakes and tremors
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(Igarashi et al., 2003 ; Kato et al., 2012 ; Kato and Nakagawa, 2014), thus
increasing significantly the probability of their detection.

At the same time in early 2000, analysts from the Japan Meteorologi-
cal Agency (Japanese nationwide database for natural phenomena) star-
ted to see unknown signal in seismograms. They were observing low fre-
quency signal, without any clear P-wave arrival although the S-arrival was
clear. These events were called Low Frequency Earthquakes (LFE) (Beroza
and Ide, 2011). Non-volcanic tremors were also discovered around the same
time. Tremors are weak persistent signals of low frequencies. They were first
discovered in south-west Japan (Obara, 2002). A year after, slow slip events
and tremors were found to be associated in Cascadia (Rogers and Dragert,
2003). Tremors were found to correlate spatially and temporally with SSEs.
This join phenomenon is called Episodic Tremor and Slip (ETS). ETS are
also seen in southwest japan subduction zone (Obara et al., 2004).

The attention in recent years, to observe above phenomena, was mainly
focused on subduction zone. However slow-events also appear in conti-
nental systems. In San Andreas fault system, as mentioned previously, it is
known since the 1960s that part of the fault are creeping continuously, parts
are experiencing creep bursts, and some parts are blocked. Creep burst and
sudden acceleration of slip were also discovered in other strike slip fault sys-
tems, like in Hayward fault, USA with creepmeters (Lienkaemper et al., 1997)
or using INSAR technics like in Haiyuan fault, China (Jolivet et al., 2013) and
in North Anatolian fault, Turkey (Rousset et al., 2016). However there is still
no clear evidence of propagation along strike of these slow-phenomena like
it can be observed in subduction zones (Rogers and Dragert, 2003).

Interactions with earthquakes All these slow phenomena release stress
accumulated during the inter-seismic period. This means that these slow
phenomena have a mean positive stress drop (Maury et al., 2014) although
thought to be less than for earthquake (Gao et al., 2012). However, they
also participate in loading the system at their edge, so they can increase the
probability of events (slow or fast). A complete detection and description of
slow-slip events may help to characterize the stress state in the medium.
It has been proposed that because of the sensitivity of slow slip to small
stress changes, it can be used as stress meters (Obara and Kato, 2016). At
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Figure 1.5 – Fault surface of the Haiyuan fault, China and the associated cumula-
tive aseismic distribution of fault-parallel slip from Jolivet et al. (2015). Dash lines
represent significant fault bends.

least two big megathrust events, seem to have been preceded by a slow slip
event : the Mw9 Tohoku-Oki event (Ito et al., 2013 ;Mavrommatis et al., 2015)
and the Mw8.1 Iquique event (Ruiz et al., 2014 ; Brodsky and Lay, 2014). The
Mw7.3Papanoa earthquake in Guerrero, Mexico was apparently triggered by
a large slow slip event detected geodetically. On the other part, there also
exist a few examples of slow-events being triggered either by surface waves
(Itaba and Ando, 2011 ; Zigone et al., 2012) or by static stress transfer (Kato
and Nakagawa, 2014).

In the previous section we showed that most earthquake happen in a
context were multiple faults are there, and where the fault surfaces are not
planar. It has been suggested that the slip due to aseismic creep burst cor-
relates with the geometry of the fault (Jolivet et al., 2015, Fig. 1.5). One can
wonder to what extend the geometry can influence the absence or the pre-
sence of slow events. Can one trigger the other ? Are some places of the
fault more likely to host slow events ?
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1.3 Models of earthquake cycles

The mechanical models of earthquakes follows the three ingredient re-
cipe : an elastic medium, a loading of the system, and a friction law. In this
section, we will focus on models that incorporate restrengthening of the fault
surface after an event. This condition allows for the simulation of a full seis-
mic cycle including multiple events, with coseismic and inter-seismic periods.

Rate and state friction laws

Although Reid’s theory was providing good results, the pattern of elastic
radiation, explanation of surface ruptures, the behaviour of rock in laboratory
experiments, some studies were challenging this idea. The relatively low
stress drop observed for earthquakes was difficult to explain in the classical
theory (Brace and Byerlee, 1966). Brace and Byerlee (1966), in their famous
experiment, show that creating new fractures was not the only model that can
explain earthquake faulting. In their experiment, they saw-cut a sample rock
and load it at both ends with a confining pressure. They observed that the
sliding between the two pieces of rocks was not smooth but rather in boom
and bust motion. This was really the beginning of the well accepted theory of
frictionally controlled earthquakes. As noted by Scholz (2002) in section 2.3 ,
the new emphasise of Brace et al. (1966) was not on a criteria for sliding (i.e.
the strength of the material), but on the existence of a stability regime of a
system. Friction is the resistance of motion that appears when two surfaces
are in contact and slide one against the other. The two main characteristics
of friction are : that the friction force is independent of the surface area of
contact. The second main characteristic of friction is that friction force Ff is
proportional with a constant f0 to the normal force Fn that is applied (eq.
(1.1)).

Ff = f0Fn (1.1)

Early experiments showed that the static friction coefficient was actually dif-
ferent from the dynamic friction (Rabinowicz, 1958). The static friction has
the property to increase with the logarithm of time, and the dynamic friction
to depend on the velocity. Rabinowicz (1958), introduced a critical distance
Dc to bridge the gap between the static friction and kinetic friction by linking
them by V = Dc/t. Weakening friction laws were introduced to reproduce
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the earthquake behavior. They are called weakening because the friction
decreases with the ongoing sliding (or sliding rate), making these friction
laws able to lead to instabilities, i.e. earthquakes.

Dieterich (1979) in his work was the first to propose constitutive rela-
tionship to model velocity jump experiments. The experiment consisted of
velocity jump, in a shear apparatus, of two ground surfaces of granodiorite.
When a jump of slip velocity was suddenly applied, the friction coefficient
showed a first increase, called the direct effect, and then relaxes toward a
new steady state value (Fig. 1.6). Based on the previous experiments that
showed increase in friction coefficient with increase time of contact (Rabi-
nowicz, 1958), he interpreted the decrease in friction modulus with velocity
as a effect of decrease in average contact time. For that purpose, he follo-
wed Rabinowicz (1958) by introducing a relaxation over the length scale Dc,
that relates contact time t to sliding velocity V as following : V = Dc/t. This
empirical law was the first to manage to reproduce qualitatively as well as
quantitatively the friction jump experiment. It also unified the different static
and dynamic friction coefficients into one rate dependent coefficient. This
law was later improved by Ruina (1983), by introducing a state variable θ,
that follows a evolution law. One common interpretation of this state variable
θ is the life time of contact asperities. A modern form of this law was given
by Marone (1998).

τ f = σn

(
f0 + a log

(
V

V0

)
+ b log

(
θV0

Dc

))
(1.2)

With either the aging state evolution law :

θ̇ = 1− θV

Dc
(1.3)

Or the slip evolution law :

θ̇ = −V θ

Dc
log
(
V θ

Dc

)
(1.4)

Nowadays, none of the state evolution reproduce the whole experimental
data set. Slip law lacks the logarithmic time dependence of friction, if V = 0,
θ does not evolve with time. This probably led modelers to favor the aging
law (Ampuero and Rubin, 2008). However ageing law has a non symmetric
response for velocity step experiment if we either increase or decrease the
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(a − b) ln
V2

V1

a ln
V2

V1
bln

V2

V1

V1 V2 (V2 > V 1 ) V1

D c Relaxation over Dc

Direct effect

Figure 1.6 – The velocity stepping experiment for different materials from Dieterich
and Kilgore (1994).

velocity (Blanpied et al., 1998 ; Ampuero and Rubin, 2008). Several attempts
have been made to improve the state evolution law, by introducing normal
stress dependence (Linker and Dieterich, 1992), by proposing other forms
of the state evolution (Perrin et al., 1995 ; Kato and Tullis, 2001), by adding
shear stress rate dependance (Bhattacharya et al., 2015). Nethertheless,
none of these laws have reached a consensus. Another promising impro-
vement in friction laws is the add of other physic-based frictional mecha-
nisms like dilatant strengthening (Segall and Rice, 1995 ; Segall and Brad-
ley, 2012a) and thermal pressurisation (Rice, 2006 ; Schmitt et al., 2011).
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1.3.1 Spring slider models

Description of the model

Nussbaum and Ruina (1987), 
Huang and Turcotte (1990), 

F1 = F2

F1 ̸= F2

Ruina (1983)
Gu et al. (1984)

Burridge and Knopoff (1967)
Carlson and  Langer (1989)

Figure 1.7 – Modified fromNussbaum and Ruina (1987),Carlson and Langer (1989)
and Gu et al. (1984). This figure shows the different models of spring sliders used
to mimic earthquake cycles.

Spring sliders, were for long used to conceptualise stick slip behaviour in
rocks. One of the first mention of this analogy to earthquake can be find in the
article of Gilbert (1884). It consists into a slider that is set down on a surface,
and is dragged at constant velocity by a spring. A friction force is developed
at the interface of the slider and the surface, and resists the movement of the
slider. The stick slip behaviour coming from a model of a spring slider can
be conceptualised by introducing two different friction coefficients, one that
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represents static friction and the other dynamic friction. Although this picture
is now know to be incomplete, it is sufficient to understand the behaviour of
stick slip. Suppose that the slider does not move, the spring is then loaded
at a constant velocity, creating a force on the slider. The slider does not
move until this force becomes greater than the frictional resistance, then
the slider starts to move. Because the dynamic resistance is lower than the
static resistance, an instability develops. When the spring is finally unloaded,
the slider returns to rest, and the cycle continues. As we saw in previous
section, it was for long known that dynamic and static friction were not equal
to each other. In order to get more physical insight, one need to focus on the
transition from a resting slider, to a dynamically moving slider. This can be
done using the spring slider model together with a rate and state friction law.

Stability analysis

One of the most important question maybe in seismology is what does
give rise to the instability, in other words, what would made a fault exhi-
bit earthquakes instead of steady creeping. For spring-slider system in rate
and state framework, this question has been answered, for both Ruina-slip
state evolution law and Dieterich-aging state evolution law. The first linear
statibility analysis was done by Ruina (1983) for both slip and aging state
evolution law. It was followed by a non linear stability analysis using Lya-
punov function for slip law (Gu et al., 1984), and for aging law (Ranjith and
Rice, 1999). The main result of their analysis was the existence of the same
critical stiffness of the spring for both state evolution laws :

kc = σn(b− a)/Dc (1.5)

For the aging law, the non linear analysis showed that if the stiffness of the
spring is greater than this critical stiffness k > kc, then the system is stable
for any finite perturbation. For the slip law, the non linear analysis showed
that for k > kc, the system is conditionally stable. In other words, this means
that for aging law, any perturbation to a stable system will return to the creep
behaviour, whereas for slip law, strong enough perturbation in a stable sys-
tem may lead to a stick-slip behaviour.
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Phenomenology

An interesting feature of spring slider models is that they show very com-
plex spacio-temporal behaviour as soon as two spring sliders are connected
through a spring to each other. Two spring sliders connected to each other
with total symmetry shows asymmetry in their behaviour : either a global
complete event including the two sliders with always the same first block to
move or global complete events with alternating first block to move (Nuss-
baum and Ruina, 1987). When the symmetry is broken by putting different
frictional responses of the two blocks, the behaviour of the two blocks can
be chaotic (Huang and Turcotte, 1990). The Buridge-Knopoff model consists
into several spring sliders that are all linked to each other through a spring.
This model was able to mimic Gutenberg-Richter scaling law, and also Omo-
ri’s law (Burridge and Knopoff , 1967). It consists into assembling several
sliders in series, each of them being link to its neighbours by a spring (see
Fig. 1.7). Although these models can reproduce some of the statistics of
earthquakes, one has to be careful with extrapolating ideas from this kind
of models. Obviously there is no wave propagation in the spring slider mo-
del. Another criticism is that it was thought that increasing the order of the
system will lead to more spatio-temporal complexity of the response (Huang
and Turcotte, 1990), however it seems not to hold always true. Rice (1993)
showed that when a continuous system is correctly discretised in rate and
state framework, the behaviour of the system can be less complex than the
discretised system. Madariaga et al. (1992) also showed that when increa-
sing the number of sliders with a specific rate weakening friction, the system
can lose its ability to reproduce correctly scaling laws.

1.3.2 Continuum models

Evolution of spring slider models

Continuum models benefits a lot from the development of numerical me-
thods like finite differences, finite elements, boundary element method. It
was expected that the complexity coming from multiple spring sliders simu-
lation will show up even strongly in continuum models (Carlson and Langer ,
1989 ; Huang and Turcotte, 1990). However, this was shown not to be the
case for correctly discretized continuum models with rate and state friction
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law (Rice, 1993).

Stability analysis

The same question is raised as for spring sliders : what would make a
continuous fault unstable ? Although the general answer is unavailable in
the framework of rate and state, it is possible to infer a length scale in some
limiting cases for simple straight continuum faults with homogeneous frictio-
nal parameters. The first nucleation length-scale derived for continuous fault
came from the spring slider modelling. If it is assumed that the stiffness of a
fault kfault is inversely proportional to its length, we can derive a nucleation
length scale Lnuc (Rice, 1992). At the critical length Lnuc, the stiffness of the
fault equals the critical stiffness derived from a spring slider (Rice, 1992).

kc = σn
b− a

Dc
=

µ

Lnuc
= kfault (1.6)

Thus,
Lnuc =

µDc

σn(b− a)
(1.7)

By studying the nucleation on fault with rate and state resistance, Dieterich
derived another nucleation length scale Lb inversely proportional to the fric-
tion parameter b (Dieterich, 1992).

Lb =
µDc

σnb
(1.8)

More recent work shows that the nucleation actually depends on the ratio
a/b (Rubin and Ampuero, 2005 ; Ampuero and Rubin, 2008 ; Viesca, 2016).
Rubin and Ampuero (2005) first derived analytical solution in the limiting case
where V θ/Dc >> 1 for the aging state evolution law. They showed that this
assumption would remain valid only if the ratio a/b < 0.3781. For high a/b

however, they pointed out that the coefficient V θ/Dc was nearly constant
at the interior of the nucleation patch. Using that as an assumption, with
energetic consideration, they were able to derive another expression for the
nucleation length scale when a/b approaches 1. We can summarize their
result by : ⎧

⎪⎨

⎪⎩

Lnuc = 2 ∗ 1.3774 ∗ Lb 0 ≤ a/b < 0.3781

Lnuc = 2 ∗ Lb

π(1− a/b)2
a/b → 1

(1.9)
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The nucleation length scale found by Rubin and Ampuero (2005), was later
shown to hold true by recasting the system of equations to look for instabi-
lities and doing a linear perturbation analysis of these instabilities (Viesca,
2016). The figure 1.8 shows simulation of slip evolution for different values
of length of the fault, and ratio a/b. The fault is straight and single. In that
particular setting, we see that the nucleation length scale given by equation
1.9 provides very good results (Fig. 1.8).
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Figure 1.8 – Slip velocity in logarithmic scale for quasi-dynamic simulations. The
three nucleation length scales are shown for various length of the fault.



CHAPITRE 1. INTRODUCTION 26

1.4 Spatio-temporal complexities in earthquake
cycle modeling

In the introduction, we saw that the faulting origin of earthquakes, and
their modelling, mainly rely on our comprehension of the three ingredients
(elastic medium, loading, frictional resistance) that are needed for earth-
quakes. The 19th century marked a great improvement in our understan-
ding of earthquakes. The beginning of the 21th century, with the discovery
of slow phenomena, improved a lot our understanding of the seismic cycle.
We now know that a fault can dissipate a non-negligible part of the accumu-
lated stress a-seismically. This is of particular importance because it means
that slow-events must be accounted in slip budget on fault systems together
with earthquakes. However the diversity of slip events, and the complexity
of the seismic cycles remains difficult to model and to explain. The fact that
earthquake does not rupture the entire fault, that some ruptures show com-
plex pattern of acceleration and deceleration, the interplay between slow
and fast dynamics, and between network of faults, is not emerging natu-
rally with single planar fault system with homogenous rheology (i.e. friction
parameters) (Rice, 1993). Therefore this model needed some improvement
to be able to reproduce natural seismicity. A possible candidate that can
bring this complexity would be the actual geometry of fault networks. We
saw that faults are rarely planar and isolated, but are rather rough and ac-
ting in networks. The effect of this natural complexity of fault networks have
been poorly studied mainly because of the limitation of computational re-
sources. Since the earlier work of Liu and Rice (2005, 2007), it is known
that a simple way to obtain both slow and fast dynamic on a fault is to ad-
just the length of the fault to be close to the nucleation length scale (Rubin,
2008). This size of the patch to nucleation length scale appear to be the
main controlling parameters in many studies (Rubin and Ampuero, 2005 ;
Rubin, 2008 ; Viesca, 2016). These studies were able to explain and repro-
duce many of the observed complexities like interplay between slow and fast
events (Liu and Rice, 2005, 2007 ; Rubin, 2008 ; Veedu and Barbot, 2016),
repeaters (Chen and Lapusta, 2009), partial ruptures (Chen and Lapusta,
2009 ; Michel et al., 2017). However, the controlling parameter in these si-
mulation is also the limiting parameter of the studies, slow events are not
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emerging if this ratio is to large and this appears contradictory to the nearly
ubiquitous detection of slow events. One way to overcome this issue was
to appeal to other frictionnal mechanism like dilatent strenghtening (Segall
and Rice, 1995 ; Rubin, 2008 ; Segall et al., 2010) that stabilize the rupture
at intermediate slip-velocity.

The goal of this thesis is to show that networks of faults, and geometri-
cal complexities when correctly accounted can also produce a wide range of
complex slip behavior, and even more that they are necessary to take into
account if we want to fully understand the seismic cycle. We will see in this
thesis that only appealing to geometrically complex networks of faults wi-
thout any variation in rheology is sufficient to reproduce earthquakes, slow
events, partial ruptures and aperiodicity of the seismic cycles. For that pur-
pose we will use two recently developed methods, Fast Multipole Method
and H-matrices, that can accelerate the computation time significant enough
to account for a myriad of complex fault networks. This work can be thought
as a continuation of many other works, that focus more on interaction of as-
perities and statistics (Dublanchet et al., 2013), effect of stress perturbation
from another fault and emergence of slow events (Liu and Rice, 2007), and
more generally the effect of geometry on the seismic cycle (Li and Liu, 2016).

This thesis is organized as followed : Section II is a description of the
quasi-dynamic model for both in plane and out of plane elasticity, with rate
and state friction law. We also described two new methods : Fast Multipole
Method and H-matrices that can accelerate the calculation, without any li-
mitation on the geometry of the faults, hence allowing for relatively fast long
term simulation of the seismic cycle. Section III is an exploration of the para-
meter space of a system of two overlapping faults. In this section, we show
that even one of the most basic geometrical complexity (two overlapping
faults), can give rise to several modes of slip including creep burst, slow and
fast events, partial ruptures, afterslips and apparent chaotic behavior of the
seismic cycle. Moreover, taking advantage of the fast methods depicted in
section II, we were able to do some statistics on the events that were emer-
ging in our simulation, and we showed that the moment of slow and fast
events follow the scaling law discovered by Ide et al. (2007). Section IV is
a demonstration of the power of our methodology on three different topics.
1) We explore the effect of self-similar geometrical roughness of faults on
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the seismic cycle. We show that the behavior of the seismic cycle differs
greatly if we consider in-plane or out-of-plane elasticity, and that the rough-
ness of fault may provide an appealing explanation for size distribution of
earthquakes. 2) We ran fluid injection simulation, by using pore pressure dif-
fusion, and showed that this is perturbing the seismic cycle of the fault. 3)
We ran seismic cycle simulation on a real fault network from the the eastern
California shear zone area (Sowers et al., 1994).



Chapitre 2

Fast methods for quasi-dynamic
earthquake cycles in 2D non
planar geometries

Avant-propos

Ce chapitre présente le modèle utilisé dans le reste de cette thèse. Dans
un premier temps, nous introduisons brièvement les équations intégrales de
frontière, en élasticité plane. Ces équations intégrales sont en fait la solution
analytique (sous forme d’intégrale) du problème d’élasticité dont le glisse-
ment ou les contraintes sont connus sur la l’élément frontière (la faille). Cette
intégrale est ensuite discrétisée pour pouvoir être intégrée numériquement.
Ce type d’approche présente plusieurs avantages : tout d’abord, la conver-
gence est très bonne parce que la solution provient de la discrétisation d’une
solution analytique. Ensuite, il n’y a pas de difficulté de maillage, car seule-
ment la faille nécessite d’être maillée. Finalement, cette approche se marie
très bien avec la résolution d’un problème de type ”rate and state”, si l’on ne
s’intéresse qu’à la partie quasi-dynamique. En effet, dans ce cas particu-
lier, la solution de ce problème peut se réécrire sous la forme d’un système
d’équations différentielles ordinaires, ce qui se prête très bien à la résolution
avec un solveur à pas de temps variable de type Runge-Kutta ou Bulirsch-
Stoer. Néanmoins cette méthode présente des défauts : elle nécessite la
connaissance de la fonction de Green du problème ce qui limite l’utilisation
de la méthode des éléments frontières à des cas simples de type milieu in-

29
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finis et homogènes. La deuxième difficulté est que la résolution du problème
est couteuse en terme de temps de calcul. En effet, le temps de calcul croit
avec le carré de la taille du problème, ce qui signifie par exemple que doubler
la longueur d’une faille, multipliera par quatre le temps de calcul. Cependant
ce dernier point peut être résolu en faisant appel à des méthodes accéléra-
trices comme la méthode Multipolaire Rapide ou les matrices hiérarchiques.
La présentation de ces méthodes représente le coeur de ce chapitre. Elles
permettent une diminution drastique du temps de calcul de la méthode des
éléments frontières tout en gardant une excellente précision. Dans l’avant
dernière section de ce chapitre nous présentons comment sont réalisés le
chargement et l’inclusion de la loi de friction. Pour clore ce chapitre, nous dé-
montrons la robustesse de notre méthode par une comparaison de la vitesse
(avec et sans méthode accélératrice), et nous comparons aussi la précision
de notre méthode par rapport à une solution analytique.

2.1 Introduction

The complexity that arises on fault systems is extraordinary rich in beha-
viour, spanning several orders of magnitude in space, from micro-seismicity
to large megathrust earthquakes, and in time, from seconds for earthquake
to years for slow-slip phenomena. The space-time occurrence of earthquakes
also show complexities. For decades, earthquake models have tried to cap-
ture this complexity. The rate and state framework (Dieterich, 1979 ; Ruina,
1983), that formulates a law for the frictional strength of the fault and the
recovery of this strength after an earthquake, has helped a lot to understand
the temporal complexity of earthquakes.

In earthquake mechanics, many numerical methods have been used to
solve the governing elastodynamics equation, together with friction laws and
specific boundary conditions (free surface, layered medium). The first nume-
rical methods used were finite difference methods (for e.g. Andrews, 1976 ;
Madariaga, 1976 ; Virieux and Madariaga, 1982), and we can cite among
others the finite element (Melosh and Raefsky, 1981), method and the spec-
tral element method (Komatitsch and Vilotte, 1998). All these methods are
based on a discretisation of the entire volume. The Boundary Element Me-
thod (BEM) is a numerical method based on the discretisation of a boundary
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integral equation. Contrary to the previous methods, the BEM requires only
the discretisation of the boundary of the volume (i. e. faults), which makes
it easier to capture complex fault geometries. Usually a boundary element
equation for the static stress change due to slip on a fault can be represented
as :

τ(x) =
∫

Γ

K(x, ξ)f(ξ)dξ (2.1)

Where f is a function of the gradient of the slip for the elasto-static problem
f(ξ) = ∂∆u(ξ)/∂ξ. The kernel, K(x, ξ), depends on the geometry and the
kind of problem we are solving. And Γ is the boundary of the system, it is the
fault in our particular case. This representation becomes a double convolu-
tion over time and space for the dynamic problem.

Boundary integral equations were first introduced in the sixties to solve
2D potential problem (Jaswon and Ponter , 1963 ; Symm, 1963 ; Jaswon and
Ponter , 1963). Since then, it has undergone rapid development, and was qui-
ckly applied in crack propagation problems (Kostrov, 1966 ; Burridge, 1969),
in 2D planar, anti-plane stress and strain configuration. The regularised BEM
for elastodynamics in 2D for a general geometry in in-plane stress and strain
was developed by Tada (1995). Five years later, he generalised it into 3D
infinite elastic medium (Tada and Madariaga, 2001).

The main advantage of BEM is the ease of meshing faults as it only re-
quires to mesh the boundary surface i.e. the fault surface. Another advan-
tage of this method is its accuracy, and convergence. Indeed, the boundary
element method is based on a semi-analytical (meaning an analytical solu-
tion in a form of an integral), hence if integration is done carefully, it naturally
converges towards the solution. Finally one of the other advantage is that
solving a elasto-quasidynamic BEM with a rate-and-state friction law, it can
be recast as a set of ordinary differential equations. A set of ordinary diffe-
rential equation (ODE) is particularly well suited for the modelling of earth-
quake cycle because we can use very effective adaptive step-size solvers
like Runge Kutta (Press et al., 1993 ; Stuart and Tullis, 1995 ; Liu and Rice,
2005) or Bulirsch-Stoer method (Bulirsch and Stoer , 1966). Adaptive time
step is needed if we want to keep a good accuracy during earthquakes, and
to be able to march through inter-seismic period.

However this method has two main drawbacks : first, it requires the know-
ledge of the Green’s function. Unfortunately, Green’s functions are only avai-
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lable for simple settings like infinite homogeneous medium. For more com-
plicated medium, we need to precompute numerically the Green’s function.
The second drawback of this method is that is requires the computation
of fully populated matrices, making all big problems, computationally out of
reach. However this last point can be compensated by accelerating methods
(Greengard and Rokhlin, 1987 ; Carrier et al., 1988 ; Hackbusch, 1999). The
kernel in elasticity is generally smooth at the far field so that methods like
Fast Multipole Method or Hierarchical matrices can be used to accelerate the
calculation. Fast multipole method was applied successfully to elasto-static
3D crack problems (Nishimura et al., 1999 ; Yoshida et al., 2001), and to
seismic cycle modelling (Hirahara et al., 2009). H-matrix has already been
used in the context of quasi dynamic modelling of subduction zone faults
(Ohtani et al., 2011).

2.2 Boundary Integral Equation for planar elas-
ticity

Representation Theorem

n(ξ) t(ξ)
ξ

y(s)
s

y(ξ) e1

e2

n(s)
t(s)

e3

Real geometry

Figure 2.1 – The fault geometry and associated parameters that are needed for
equation 2.3

One fundamental question in seismology is probably the following, kno-
wing the displacement or the traction along a fault, and a fundamental res-
ponse of earth, is it possible to infer the displacement everywhere else at any
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time ? A solution to that problem comes from the representation theorem,
that relates the displacement everywhere, and at any time, to the displace-
ment and traction on the boundary of the system. This theorem is derived
from Betty’s reciprocal theorem. If we now consider a fault with a slip distri-
bution ∆u(ξ) = u+ − u−, where ξ represent the curvilinear abscise on the
fault, u+(ξ) and u−(ξ) represent respectively the upper/lower side displace-
ment of the fault, the representation theorem for a fault with a slip distribution
becomes (Aki and Richards, 2002 ; Udías et al., 2014) :

un(y(s)) =
∫

Γ

∆ui(y(ξ))cijklnj(ξ)
∂

∂yl(ξ)
Gnk(y(s), y(ξ))dξ

= −
∫

Γ

∆ui(y(ξ))cijklnj(ξ)
∂

∂yl(s)
Gnk(y(s), y(ξ))dξ

(2.2)

Where s is the curvilinear abscise at the evaluation point. y(s) is the location
of the point s in the global coordinate system (e1, e2, e3). un represents the
n’th component of displacement. n(ξ) and t(ξ) are respectively the normal
and tangential vector to the fault at point ξ. Their component in the global
coordinate system are written with the corresponding subscript.

In this representation (that represents the displacement field due to a
slip distribution on a fault), Gni(x, y) is the n component of the displacement
at location x, due to a Dirac volume force in the ith direction at location y.
This function G is the so called Green’s function. Because there is a one
to one connection with the curvilinear abscise and the position on the fault
s ↔ y(s), we will write τ(s) and G(s, ξ) instead of τ(y(s)) and G(y(s), y(ξ)).
cijkl is the stiffness tensor that links the stress tensor to the strain tensor for
elastic linear material (Hooke’s law). Although this theorem is very general,
it is only useful when we can derive the Green’s function that characterises
the medium. Unfortunately, these Green’s functions have only known ana-
lytic solutions in a few restrictive cases, like an infinite elastic medium in 3D
or in 2D. For more complex medium, for example with a free surface, these
Green’s functions have to be computed numerically. We can now derive the
stress field from the displacement field. For this purpose, we apply the Hoo-
ke’s law (Tada, 1995 ; Tada and Yamashita, 1997) :

σkl(x) =
1

2
cklrs

(
∂us

∂xr
+

∂ur

∂xs

)

= −
∫

Γ

∆ui(ξ)cijpqnj(ξ)
∂

∂xq
Σklp(x, y)dξ

(2.3)
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Where,
Σklp(x, y) = cklrs

∂

∂xs
Grp(x, y) (2.4)

Conservation of linear momentum for Green’s function ∀(i, k) :

∂

∂xj
Σijk = 0 (2.5)

Although this representation theorem may seem easy to use, it is not as
straight forward. Indeed, a naive replacement of Green’s function by their
analytical formulation for infinite elastic medium leads to hyper-singular inte-
gral (also called Hadamard finite part integral). These integrals are naturally
diverging. However they can regularised by modifying the singular term (Sla-
dek and Sladek, 1984 ; Koller et al., 1992) into a weaker singular form known
as Cauchy principal value. An approach to regularise these hyper-singular
integrals is to perform an integration by parts (Tada, 1995 ; Tada and Yama-
shita, 1997).

Boundary Integral Equation for anti-plane strain and stress

In the particular case of out-of-plane strain, the only non-zeros displace-
ment is ∆u3. This results in only two non-zeros stress components : σ32 and
σ31. The Green’s function for an infinite medium expresses as :

G33(x, y) =
− log(r)
2πµ

(2.6)

Where r = |x−y| is the distance between x and y, µ is the shear modulus. If
we inject that expression and regularise the hyper-singular integral obtained
in eq. (2.3), we get the shear traction on the fault (Tada and Yamashita,
1997) :

τ3(s) = e3 · σ(y(s)) · n(s)

=

∫

Γ

KIII(s, ξ)
∂

∂ξ
∆u3(ξ)dξ

(2.7)

Where :
KIII(s, ξ) =

µ

2π

(
n1(s)

γ2
r

− n2(s)
γ1
r

)
(2.8)

and γ1 = e1 ·
y(s)− y(ξ)

r
and γ2 = e2 ·

y(s)− y(ξ)
r
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Boundary Integral Equation for in plane strain and stress

In the particular case of in plane strain, the two values u1(y) and u2(y) are
non-zeros displacements. For convenience we will note the tangential slip
on the fault ∆ut(s) = t(s) ·∆u(s) (Tada and Yamashita, 1997). For in-plane
strain, we have this time four components of the Green’s function :

G11(s, ξ)−G22(s, ξ) =
1

4πµ

[(
c2s
c2p

− 1

)
(γ2

2 − γ2
1)

]

G11(s, ξ) +G22(s, ξ) =
1

4πµ

[(
1− c2s

c2p

)
− 2

(
1 +

c2s
c2p

)
log(r)

]

G12(s, ξ) =
1

4πµ

(
1− c2s

c2p

)
γ1γ2

G33(s, ξ) =
−2

4πµ
log(r)

(2.9)

Where cp and cs are respectively the dilatational and shear wave speed of
the medium. Again if we regularised and inject the Green’s function in eq.
(2.3)(Tada and Yamashita, 1997) :

τt(s) = t(s) · σ(y(s)) · n(s)

=

∫

Γ

Kt
II(s, ξ)

∂

∂ξ
∆ut(ξ)dξ

(2.10)

τn(s) = n(s) · σ(y(s)) · n(s)

=

∫

Γ

Kn
II(s, ξ)

∂

∂ξ
∆ut(ξ)dξ

(2.11)

Where the kernels are :

Kt
II(s, ξ) =

µ

π

(
1− c2s

c2p

){
[4n1(s)n2(s)γ1γ2 + (n2

2(s)− n2
1(s))(γ

2
2 − γ2

1)]×

×
(
n2(ξ)

γ1
r

− n1(ξ)
γ2
r

)}

(2.12)

Kn
II(s, ξ) =

µ

π

(
1− c2s

c2p

){(
n1(ξ)

γ1
r

+ n2(ξ)
γ2
r

)
+

+ [2n1(s)n2(s)(γ
2
2 − γ2

1)− 2(n2
2(s)− n2

1(s))γ1γ2]
}

(2.13)
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ξj

si

Discretised geometry

t(ξj)
n(ξj)

Evaluated point

Element

Point source (center of element)

(edge of element)

t(si)
n(si)

e1

e2

e3

∆s
with constant

slip

Figure 2.2 – Discretised version of the real fault geometry.

2.2.1 Numerical calculation

In order to evaluate the previous singular integrals in the sense of Cauchy
principal values, we will assume piece-wise constant slip over fixed length
∆s, centred on y(si). The slip is discretised as follows (see Fig. 2.2)(Rice,
1993 ; Cochard and Madariaga, 1994) :

∆u(s) =
N∑

j=1

∆u(sj)[H(s− sj +∆s/2)−H(s− sj −∆s/2)] (2.14)

Where H is the Heaviside function and N is the number of elements used
to discretise the fault. Then the boundary element integral 2.1 becomes a
summation :

τ(si) =
N∑

j=1

[K(si, ξj+1)−K(si, ξj)]∆uj (2.15)

The naive implementation of that problem requires to calculate for each τ(si)

(N terms) a sum over N terms (for each j), which leads to a computational
complexity of O(N2). It means that the time required to compute numerically
this problem will grow with the square of the problem size. This makes large
problems difficult to handle with a naive implementation. However, most of
the time in elasticity, the kernel K is smooth when the source point y(ξj) is far
enough from the evaluated point y(si), or in other words :|y(si)−y(ξj)| >> 1.
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2.3 Fast Fourier Transform

In the particular case of a flat fault, the aforementioned expressions for
shear traction can be simplified :

τt(x) =
µ

2πϵ

∫

Γ

1

x− ξ

∂

∂ξ
∆ut(ξ)dξ (2.16)

Here ϵ = 1 for out of plane formulation, and ϵ = 1 − ν, ν being Poisson’s
ratio, for in plane formulation. The normal traction due to a slip distribution
in in-plane elasticity is zero for the special case where the fault is planar,
τn = 0. We can recognise here an Hilbert transform of the gradient of slip
distribution on the fault. Using the properties of Fourier transform F , it is
possible to simplify the calculation of the traction (Segall, 2010) : The Fourier
transform of a convolution of two functions f and g is the product of the
Fourier transform of the functions.

F (f ∗ g) = F(f)F(g) (2.17)

The derivative is simplified :

F
(

∂

∂ξ
∆ut(ξ)

)
= ikF(∆ut(ξ)) (2.18)

The Fourier transform of
1

x
has an analytical form :

F
(
1

x

)
= −iπsgn(k) (2.19)

Finally, we get :
F(τt) = −µ

2
|k|F(∆ut) (2.20)

The power of this method is that the Fourier transform can be evalua-
ted with a Fast Fourier Transform method (FFT). This algorithm, allows to
decrease the complexity of the algorithm from O(N2) to O(N logN). This
method is widely used in earthquake cycle simulators (Perrin et al., 1995 ;
Liu and Rice, 2005 ; Segall, 2010 ; Dublanchet et al., 2013). However this
methods requires two assumptions to be valid, the fault has to be infinite
with periodic replication of the behaviour, and the fault has to be planar.
This drawback arises because of the necessity for equispaced discretisation
when one uses FFT. This makes the FFT method inappropriate for modelling
complex geometrical problems, or even multiple fault systems.
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2.4 Fast Multipole Method

Another method which can accelerate the computation of summation
(eqn. 2.15) is the Fast Multipole Method (FMM). This method was initially
used in astrophysics to overcome the complexity of calculation of N − body

problems. FMM was first introduced by Greengard and Rokhlin (1987). Be-
cause of the analogy of the static elastic kernel in mode III and the gravity po-
tential in 2D forN planets of massmi located at xi (φgrav(x) =

∑N
i=1 mi log ∥x−

xi∥), we can use Fast multipole method to accelerate the calculation of the
kernel. The fast multipole method is based on four steps : (1) Create a quad-
tree structure with the position of particles (here these are the fault nodes).
(2) Find cluster of particles that are interacting with each other and can be
simplified. (3) Do a multipole expansion of group of points that are close en-
ough (we will explicit mathematically what does ”close enough” mean in the
following section). (4) Do a local Taylor series expansion for the far field of
the multipole points.

Instead of calculating each point to point interaction, FMM creates cluster
of particles and summarise the effect of the cluster in only one point (an
analogy would be calculating a centre of mass). This is what is called the
multipole expansion. The local expansion is a way to sum up all the far field
interactions coming from all the far cluster of particles.

Mode III

In mode III the shear stress can be easily written in term of a potential on
the fault φ(s) :

τ3(s) =
µ

2π

∫

Γ

∂

∂ξ
∆u3(ξ)

[
n1(s)

(
y2(s)− y2(ξ)

r2

)
− n2(s)

y1(s)− y1(ξ)

r2

]
dξ

=
µ

2π

∫

Γ

∂

∂ξ
∆u3(ξ)

[
n1(s)

(
y(s)− y(ξ)

r2
· e2
)
− n2(s)

(
y(s)− y(ξ)

r2
· e1
)]

dξ

= − µ

2π
t(s) ·

∫

Γ

(
∂

∂ξ
∆u3(ξ)

)(
y(s)− y(ξ)

r2

)
dξ

= − µ

2π
t(s) ·

∫

Γ

(
∂

∂ξ
∆u3(ξ)

)
∇y(s)(log ∥ y(s)− y(ξ) ∥)dξ

= − µ

2π
t(s) ·∇y(s)

[∫

Γ

(
∂

∂ξ
∆u3(ξ)

)
log ∥ y(s)− y(ξ) ∥ dξ

]
(2.21)
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After discretising, the integral becomes :

τ3(s) =
µ

2π
t(s) ·∇φ(s) (2.22)

Where

φ(s) =
N∑

j=1

∆uj[log ∥ y(s)− y(ξj+1) ∥ − log ∥ y(s)− y(ξj) ∥] (2.23)

This sum can be reorganised so that :

φ(s) =
N+1∑

j=1

(∆uj−1 −∆uj) log ∥ y(s)− y(ξj) ∥ (2.24)

Where ∆u0 = 0 and ∆uN+1 = 0. Doing so, the computation of two different
kernels is avoided. In order to simplify the multipole expansion and the local
expansion, and following other authors like Greengard and Rokhlin (1987) ;
Carrier et al. (1988), we will introduce a complex potential :

φ(z) =
N+1∑

j=1

(∆uj−1 −∆uj) log(z − zj) (2.25)

Where the relationship between the real and the complex potential is given
by :

φ(x) = ℜe(φ(z)) (2.26)

ℜe and ℑm represent respectively the real part and the imaginary part of
the expression in parenthesis. z and zj are complex numbers that represent
respectively the points y(s) and y(ξj). Likewise we can write an expression
of the gradient in term of the complex potential which is :

∇φ(x) =
[

ℜe[φ′(z)]

−ℑm[φ′(z)]

]
(2.27)

FMM provides a fast way to compute the complex potential given in equation
(2.25).

2.4.1 Adaptive quad-tree structure

This algorithm needs to create clusters of particles that are spatially close.
For this purpose a quad-tree structure is used. Imagine that all the particles



CHAPITRE 2. ACCELERATED ALGORITHMS 40

are in a square (Fig. 2.3, A). We will recursively subdivide this square into
four new squares that are called the children (Fig. 2.3, B,C). We continue
this process there remains less than a given number, Nleaf , of particles in a
square. This naturally defines a quad-tree structure in which each square is
called a cell. A square that contains less than Nleaf particles is called a leaf.
The first cell is called the root. This structure can be divided into several
levels, the root is at level 1. If a cell is at level l, then its children are at level
l + 1. Because the subdivision is done based on the number of particles
in each square, and that we pruned the empty cells (Fig. 2.3, B,C,D), this
quad-tree is called Adaptive.

A B

C D

Cell removed

Cell removed

Cell removed

Fault

Fault

Fault

Fault

Level 1 Level 2

Level 3 Level 4

Figure 2.3 – The quad tree construction steps for the specific case where Nleaf = 2

We will introduce some definitions relative to the quadtree structure (see
Fig. 2.4).
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Near Neighbours Two cells are said to be near neighbours if they are at
the same level and they share at least one boundary point.

Well separated Two cells are said to well separated if they are at the same
level and they are not near neighbours.

Interaction list The interaction list of a cell consists into the children of the
near neighbours of the cell’s parent, which are well separated from the cell.

Near Neighbours Interation List
Interation List of
 the cell’s parent

The ratio of the distance 
of the interaction list to 

the size of the cell is 
constant at each level

Figure 2.4 – Definition of the interaction list of a cell. The cross denotes the consi-
dered cell. Please note that at each level of refinement, the ratio of the size of the
cell to the distance from the interaction list is constant. We will see later that this
ratio controls the accuracy of the FMM.

2.4.2 Analytic approximation of the kernel

In this section, the kernel is developed assuming some conditions on
the distance between points. For clarity, only mathematical developments
are shown in this section. Basically, we are introducing two set of points
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which are respectively the multipole points Mn and the local expansion points
Lm. These points are used to perform Taylor series expansion of the kernel.
There are two theorems of expansion, one for the multipole expansion and
one for local expansion, but also two other theorems to translate the centre
of these expansions to new centres.

Mn

r

zj |z −Mn| z

Figure 2.5 – Notations and assumptions for the multipole expansion

Multipole Expansion Imagine that we want to know the potential field due
to a group of J point sources zj far from the point z (Fig. 2.5). The first
and exact method is to sum up all the contributions from individual source
point using equation (2.25). However the far field potential of those points
is smooth, hence we can develop the contribution of each point zj on a
multipole point Mn close to the group. Let choose one point Mn such that
∀j,∥ zj − Mn ∥< r and ∥ r

z −Mn
∥< 1 (see Fig 2.5). Using a Taylor se-

ries expansion, equation (2.25) can then be written (Greengard and Rokhlin,
1987) :

φ(z) = a0 log(z −Mn) +
∞∑

k=1

ak
(z −Mn)k

(2.28)

Where

a0 =
J∑

j=1

(∆uj−1 −∆uj) and ak =
J∑

j=1

−(∆uj−1 −∆uj)(zj −Mn)k

k
(2.29)
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If we decide to truncate the infinite series at order p, we can get an error
bound (Greengard and Rokhlin, 1987) :
∣∣∣∣∣φ(z)− a0 log(z −Mn)−

p∑

k=1

ak
(z −Mn)k

∣∣∣∣∣ ≤
(

A

p+ 1

)(
1

c− 1

)(
1

c

)p

(2.30)

Where

c =

∣∣∣∣
z −Mn

r

∣∣∣∣ A =
J∑

j=1

|(∆uj−1 −∆uj)| (2.31)

Mn

zj zr1

r

Mn+1

Figure 2.6 – Notations and assumptions for the translation of multipole expansions

Translation of Multipoles Suppose that we have a multipole expansion
centered in Mn :

φ(z) = a0 log(z −Mn) +
∞∑

k=1

ak
(z −Mn)k

(2.32)

If the circle of radius r centered in Mn is included in the circle of radius r1

centered in Mn+1 (Fig. 2.6) and that the point z is outside of this circle, we
can rewrite this multipole to be centered in Mn+1 (Greengard and Rokhlin,
1987) :

φ(z) = a0 log(z −Mn+1) +
∞∑

l=1

bl
(z −Mn+1)l

(2.33)
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Where

bl = −a0
l
(Mn −Mn+1)

l +
l∑

k=1

ak(Mn −Mn+1)
l−k

(
l − 1

k − 1

)
(2.34)

Moreover the error bound is :
∣∣∣∣∣φ(z)− a0 log(z −Mn+1)−

p∑

l=1

bl
(z −Mn+1)l

∣∣∣∣∣ <

A

1−
∣∣∣∣

r1
z −Mn+1

∣∣∣∣

∣∣∣∣
r1

z −Mn+1

∣∣∣∣
p+1 (2.35)

Mn

r

zj
z

r

|Mn − Lm|
Lm

Figure 2.7 – Notations and assumptions for the local expansion

Conversion of multipole expansion into local expansion Now imagine
that we calculate several multipole expansion of the points Mn, n = 1..N .
|Mn − Lm| > (c+ 1)R where c > 1

φ(z) = a0 log(z −Mn) +
∞∑

k=1

ak
(z −Mn)k

(2.36)

we can transform this expression into (Greengard and Rokhlin, 1987) :

φ(z) =
∞∑

l=0

bl(z − Lm)
l (2.37)
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where

b0 = a0 log(Lm −Mn) +
∞∑

k=1

ak
(Lm −Mn)k

(2.38)

bl =
−a0
l

1

(Mn − Lm)l
+

1

(Mn − Lm)l

∞∑

k=1

ak
(Lm −Mn)k

(
l + k − 1

k − 1

)
(2.39)

∣∣∣∣∣φ(z)−
p∑

l=0

bl(z − Lm)
l

∣∣∣∣∣ <
A(4e(p+ c)(c+ 1) + c2)

c(c− 1)

(
1

c

)p+1

(2.40)

Where e is the base of the natural logarithm.

Translation of Local Expansions Imagine that a local expansion is cen-
tered on Lm. We have the following equation :

φ(z) =
p∑

l=0

al(z − Lm)
l (2.41)

This expression can be transformed into a local expansion centered about
Lm+1 using Horner’s method (Beatson and Greengard, 1997) :

φ(z) =
p∑

l=0

bl(z − Lm+1)
l (2.42)

for j from 0 to p-1 do
for k from p-j-1 to p-1 do

ak := ak − (Lm − Lm+1)ak+1

end
end

Algorithm 1 : Horner’s method. The coefficients ak are then updated to bk

Algorithm

Initialisation The first step of FMM is to build a tree based on a maximum
number of points we want in the leafs of the tree. The accuracy of the solver
will depend on the number of points.

Upward pass FMM start from the leafs and compute each coefficients of
the multipole expansion (Fig.2.8, A). It is possible because the coefficients
only depend on the particles that are in the cell : the multipole point, which
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is chosen to be the centre of the cell, the location of points in the cell, and
their associated strength. Then the expansions at higher level are done by :
1) translating the multipole expansion of children to the centre of the parent
cell (Fig.2.8, B, C), 2) adding up these multipole expansions (Fig.2.8, B, C).

A

C

B

D

Fault

Fault

Fault

Fault

New multipole
Multipole of children

Translation of 
multipole

Translation of 
multipole

Translation of 
multipole

Translation of 
multipoleCalculation of

 multipole
Calculation of

 multipole

Figure 2.8 – Illustration of the upward pass of FMM

Downward pass The compute the local expansion, we start from the hi-
ghest level, and compute the local expansion at the centre of the cell i of all
cells in cell i’s interaction list (Fig.2.9, C). Obviously, for the two-first levels,
there is no cell in the interaction list (Fig.2.9, A, B). Then, this local expansion
is shifted to the children’s centre cells, and added to the local expansion of
the children’s interaction list (Fig.2.9, D). This procedure is done recursively
until the cell has no children (it is a leaf cell).
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Direct calculation Finally the interaction of near neighbours are computed
directly.

A B

C D

Fault

Fault

Fault

Fault

Multipole
Local expansion of parent
Local expansion 

Calculation of local 
expansion 

(from multipoles in interaction list)

Translation of local
expansion

Figure 2.9 – Illustration of the downward pass of FMM

Limitation and Mode II kernels

The limitation of FMM is that it requires the development of a new al-
gorithm for each different type of kernel. For mode III we showed that the
kernel has the same expression as for the gravitational kernel. Doing so,
we were able to use a preexisting FMM code from Prof. Greengard to com-
pute the shear stress on the fault. However the kernels in mode II are more
complex, because the Green’s functions do not only depend on the distance
between two points, hence the multipole expansion can be really tricky. To
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overcome this limitation of kernel dependency, new algorithms are emer-
ging, sometimes called kernel-independent FMM. Hierarchical matrices are
one of these kernel-independent Fast Multipole Method.

2.5 Hierarchical Matrices

2.5.1 Introduction

FMM shows a drastic diminution in the complexity of calculation to per-
form the matrix-vector product that appears in equation 2.25. However this
analytical development of the kernels can be tricky. For the mode II, the
development is not easy, and especially it has not been yet done for this
particular problem. In order to be able to apply the same conceptual ideas
as in FMM, for a general kernel, one can ask the following question : what is
the form of the equation 2.25 after we performed the multipole expansion ?
The assumption that we made were that the group of J source points was
far enough the evaluated point. Starting from the general equation :

φ(zi) =
J∑

j=1

(∆uj−1 −∆uj)K(zi, zj) (2.43)

We were able to write :

φ(zi) =
J∑

j=1

p∑

l=0

(∆uj−1 −∆uj)K
1
l (zi)K

2
l (zj) (2.44)

Where K1
l (zi) = (zi − Mn)−l and K2

l (zj) =
(zj −Mn)l

l
. Kernels that can

be written as a product of two functions, each of these functions depending
on only one variable are called degenerated kernels. Degenerated kernels
are very useful because they allow to simplify the calculation (Beatson and
Greengard, 1997). Indeed, a direct calculation of the sum in equation (2.43)
is of complexity O(J2). However if we use equation (2.44), we can reorder
the sum :

φ(zi) =
p∑

l=0

K2
l (zi)

J∑

j=1

(∆uj−1 −∆uj)K
1
l (zj) (2.45)

If we calculate the second sum, defining new coefficients cl

cl =
J∑

j=1

(∆uj−1 −∆uj)K
1
l (zj) (2.46)
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This calculation requiresNp operation. Then is remains to calculate the sum :

φ(zi) =
p∑

l=1

clK
2
l (zi) (2.47)

If we calculate this sum for all the value of zi this sum is again of the order
of Np. Thus the complexity is O(2Np). If p is small compared to N/2, this
calculation becomes much more efficient. If we translate that into a matrix
point of view, Ki,j ↔ K(zi, zj), according to equations (2.43) and (2.44), we
should be able to write :

Ki,j =
p∑

l=0

K2
i,lK

1
j,l (2.48)

Now if we write (K2
i,l) = ul and (K1

j,l) = vl this equation becomes :

(Ki,j) =
p∑

l=0

ulvTl (2.49)

This means that applying a multipole expansion to the kernel is equivalent to
find a representation of the (Ki,j) as a sum of the product of the two vectors
vl,ul. Such a representation can be actually obtained from rank factorisation.
Such a rank factorisation is not unique and there exist different ways to obtain
a rank factorisation. For example, the Singular Value Decomposition is a way
to obtain a rank factorisation. H-matrix can thus be viewed as the algebraic
analogue of FMM (Ohtani et al., 2011).

Definition

In this section we recall some definitions that will be useful for the des-
cription of H-matrices.

Column rank, row rank, rank The column rank of a general matrix K ∈
Ci×j is the maximum number of the linearly independent column vectors of
this matrix. Likewise, the row rank is the maximum number of the linearly
independent row vectors of this matrix (Desiderio, 2017). A fundamental re-
sult in linear algebra is that the column rank and row rank are always equal,
we define this number to be the rank of the matrix.
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Full-rank, rank deficient A matrix K ∈ Ci×j is said to be full-rank when
the rank of this matrix is equal to the minimum dimension of the matrix. On
the contrary, if the rank of a matrix is less than the minimum dimension of
the matrix, this matrix is said to be rank deficient.

Frobenius norm To measure the distance of an approximation of a matrix
to the original matrix, a norm is needed. A natural norm on the algebra of
matrices is the Frobenius norm which is defined for a matrix A ∈ Rm,n whose
coefficient are ai,j by :

∥A∥F =

√√√√
m∑

i

n∑

j

a2i,j (2.50)

Rank factorisation The rank factorisation of a matrix A ∈ Rm,n of rank k

is a decomposition of the matrix A into the product of two matrices C ∈ Rm,r

and D ∈ Rr,n.
A = CD (2.51)

This rank factorisation always exists for a matrix, but is not unique.

Low rank approximation For a given accuracy ϵ, and a given norm, we
define the low rank approximation of a matrix A ∈ Rm,n to be the minimum
rank k of the matrix Ak ∈ Rm,n such that

∥A− Ak∥ ≤ ϵ∥A∥ (2.52)

Singular value decomposition The Singular Value Decomposition (De-
siderio, 2017) (SVD) of a matrix A ∈ Rm,n is

A =
r∑

l=1

ulslvTl = UΣV T (2.53)

Where Σ ∈ Rm,n is a diagonal matrix, U and V are orthogonal matrices
(UUT = I = V V T ). ul and vl are respectively the column and row vector of
U and V . s1 > s1 > ... > sk are the square roots of the eigenvalues of ATA

organised from the biggest one to the lowest one. If A ∈ Rm,n is a matrix then
Ak ∈ Rm,n is its truncated SVD at rank k. The Eckart-Young-Mirsky theorem
states that this is the best low rank approximation that exists.



CHAPITRE 2. ACCELERATED ALGORITHMS 51

Layout

Like FMM, H-matrices require the following ingredients : 1) to separate
the space into clusters, which is done through a binary tree, 2) A block par-
titioning of the kernel matrix 3) A simple manner to check whether a block
can be correctly approximated by a lower rank matrix.

2.5.2 Construction of a binary tree

In order to organise the particles, H-matrices follow the same idea as
FMM using a cluster tree. In the specific algorithm of H-matrix that we are
using, the tree is binary. The initialisation is done by placing all the particles
in a rectangle cell (Fig. 2.10, A). Then each cells are iteratively divide into
two new cells which are called the children (Fig. 2.10, B, C, D, E, F). The
recursion for a cell stops when the number of particles in that cell is less
than Nleaf (Fig. 2.10, F).

2.5.3 Construction of the structure of the matrix

In the subdivision of space, cells containing particles where formed. To
build the H matrix, we need to define non overlapping blocks of interacting
particles. Blocks are formed recursively, by going through the binary tree. At
each level of the binary tree, two cells ω and ν are picked. If one of this cells
is a leaf of the cluster tree, the recursion stops. The recursion will also stop
if these two cells forms a matrix block suitable for a low rank approximation.
The last blocks formed in this recursion are called the leaf blocks. It does
not mean that they are formed from the leaf of the cluster tree. To know if
a matrix block formed of two cells is suitable for low rank approximation, an
admissibility condition function is introduced (Börm et al., 2003).

2.5.4 Admissibility condition

The admissibility condition is here to say if a block-cluster can be approxi-
mated by a lower rank matrix or if it needs further subdivision. The admissi-
bility condition depends on a parameter η. It we note ω and ν two cells that
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Figure 2.10 – The binary tree construction steps for the specific case where Nleaf =

2

are at the same level, then the admissibility condition is given by :

Adm(ω, ν) = true ⇔ min{diam(ω), diam(ν)} ≤ η dist(ω, ν) (2.54)

Where the diameter of the two cells are given by the length of their diago-
nal, and the distance between the two cells is the minimum distance bet-
ween their boundaries (see Fig. 2.12). This is called admissibility condition
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Figure 2.12 – Figure of the binary tree shown in real space. The definition of distance
between two cells and diameter of a cell are given.
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2.5.5 Low rank approximation

Singular Value Decomposition

The Eckartâ��Youngâ��Mirsky theorem says that the SVD provides
the best low rank approximation to a matrix A ∈ Rm,n for the Frobenius norm.
However SVD can not be used because this algorithm is really greedy in term
of calculation time O(nm2 +mn2)

Adaptive Cross Approximation

The Adaptive Cross Approximation (Bebendorf andRjasanow, 2003) (ACA)
provides a recursive procedure to decompose a matrix into a product of vec-
tors. We will first illustrate the algorithm. Imagine a matrix A ∈ R3,3 with a

being a non zero coefficient :
⎡

⎢⎣
a b c

d e f

g h i

⎤

⎥⎦

︸ ︷︷ ︸
A

→

⎡

⎢⎣
a b c

d e f

g h i

⎤

⎥⎦

︸ ︷︷ ︸
R0=A

−

⎡

⎢⎣
1

d/a

g/a

⎤

⎥⎦

︸ ︷︷ ︸
u1

[
a b c

]

︸ ︷︷ ︸
vT1

=

⎡

⎢⎣
0 0 0

0 e− bd/a f − cd/a

0 h− bh/a i− ch/a

⎤

⎥⎦

︸ ︷︷ ︸
R1

(2.55)
The aim is to minimise the matrix Rk (the residual matrix) by iteratively re-
moving a product of two vectors. By considering this procedure and saving
the vector uk and vk, the matrix A is finally decomposed into a product of
vectors :

A =
3∑

k=1

ukvTk (2.56)

The ACA algorithm uses this procedure to find a rank approximation of the
matrix A. Instead of choosing the first coefficient a in the matrix, ACA looks
for the maximum coefficient in the matrix, called the pivot, and removes the
associated column and row. This procedure is applied iteratively to obtain a
k-rank approximation Ak of the matrix A. The stop criteria is set for a given
ϵ accuracy when :

∥A− Ak∥ = ∥Rk∥ ≤ ϵ∥A∥ (2.57)
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Data : a matrix A, a given accuracy ϵACA

Result : A low rank approximation of the matrix A
S0 := 0 ;
R0 := A ;
while ∥A− Sk∥ > ϵACA∥A∥ do

γk := inverse of the maximum coefficient in Rk ;
i := row index of the maximum coefficient in Rk ;
j := column index of the maximum coefficient in Rk ;

vk+1 := γk(Rk)i,. ;
uk+1 := γk(Rk).,j ;

Rk Sk

Rk+1 := RK − uk+1vTk+1 ;
Sk+1 := SK + uk+1vTk+1 ;

end
Algorithm 2 : ACA

This algorithm can also be greedy, the number of operations needed is
O(knm) for k-rank a matrix A ∈ Rm,n (Bebendorf and Rjasanow, 2003).

Partially pivoted ACA

Another way to avoid computing the whole matrix A is to choose the
pivot differently. In the partially pivoted ACA, only one row and one column
is computed at each time.

⎡

⎢⎣
a b c

? ? ?

? ? ?

⎤

⎥⎦

︸ ︷︷ ︸
Initial matrix

→

⎡

⎢⎣
a b c

? e ?

? h ?

⎤

⎥⎦−

⎡

⎢⎣
1

e/b

h/b

⎤

⎥⎦

︸ ︷︷ ︸
u1

[
a b c

]

︸ ︷︷ ︸
vT1

=

⎡

⎢⎣
0 0 0

? 0 ?

? 0 ?

⎤

⎥⎦

︸ ︷︷ ︸
R1

(2.58)

Here we started the with the first line. We find the maximum coefficient b in
this line and this is used as a pivot. The associated column is computed. In
this column, the maximum coefficient except the pivot is found. This is e, and
the line associated to e will be used in the next recursion. The new matrix Rk

is computed.
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⎡

⎢⎣
0 0 0

d∗ 0 f ∗

? 0 ?

⎤

⎥⎦

︸ ︷︷ ︸
R1

→

⎡

⎢⎣
0 0 0

d∗ 0 f ∗

? 0 i∗

⎤

⎥⎦−

⎡

⎢⎣
0

1

i∗/f ∗

⎤

⎥⎦

︸ ︷︷ ︸
u2

[
d∗ 0 f ∗

]

︸ ︷︷ ︸
vT2

=

⎡

⎢⎣
0 0 0

0 0 0

? 0 0

⎤

⎥⎦

︸ ︷︷ ︸
R2

(2.59)

Where d∗ = d− ae/b, f ∗ = f − ce/b and d∗ = d− ae/b. The amount of work
required for this algorithm is of order O(k2(m + n)) (Bebendorf and Rjasa-
now, 2003). The complete algorithm can be find in Bebendorf and Rjasanow
(2003). The error cannot be computed like in fully pivoted ACA, because it
requires the knowledge of the full matrix. A way to overcome this issue is to
stop the recursion when the newly calculated rank k + 1, does not provide
any gain in accuracy (Bebendorf and Rjasanow, 2003) :

∥uk+1 ∥2∥vk+1 ∥2≤ ϵACA

∥∥∥∥∥

k+1∑

j=1

ujvTj

∥∥∥∥∥
F

(2.60)

Where ∥
∑k+1

j=1 ujvTj ∥F can be computed recursively :

∥∥∥∥∥

k+1∑

j=1

ujvTj

∥∥∥∥∥

2

F

=

∥∥∥∥∥

k∑

j=1

ujvTj

∥∥∥∥∥

2

F

+ 2
k∑

l=1

uT
k+1ulvTl vk+1+ ∥ uk+1 ∥2F∥ vk+1 ∥2F

(2.61)

Recompression of the blocks

After performing a low rank approximation with ACA or partially pivoted
ACA, a further compression can be obtain using SVD without any loss in
accuracy (it is the optimal low rank approximation). This SVD does not cost
a lot because it is done on a already compressed matrix.

2.5.6 Conclusion of H-matrix

Because of the degeneration of the kernel in many sub-blocks of the ma-
trix, a matrix vector product can be done more efficiently.
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2.6 Model of earthquake cycle

In order to set the model of earthquake cycle, we chose the compression
negative sign convention.

2.6.1 Rate and State Friction

We will model the strength of our fault with a rate and state friction law :

τ f = −σnf = −σn

[
f0 + a log

(
V

V0

)
+ b log

(
θV0

Dc

)]
(2.62)

With ageing state evolution law :

θ̇ = 1− θV

Dc
(2.63)

2.6.2 Loading

The loading will be done through global stress state rate.

σ̇ =

[
σ̇11 σ̇12

σ̇12 σ̇22

]
(2.64)

If we consider the particular point given by the position y on the fault, the
tangential loading traction is then given by

τ loadt (y) = t(y) · σ · n(y) (2.65)

The same manner we can defined the normal loading traction :

τ loadn (y) = n(y) · σ · n(y) (2.66)

2.6.3 Radiation damping term

The radiation damping term was first introduced by Rice (1993). It was
later shown that this term is exactly accounting for the instantaneous shear
stress drop of the fault due to sliding (Cochard and Madariaga, 1994) :

τ rad(s) = − µ

2cs
V (s) (2.67)

We use that term together with the static kernel to account for some dyna-
mics in the system. Without this term, the slip on the fault during one event
would be unbounded (Rice, 1993).
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2.6.4 Governing equations for Quasi-Dynamic earthquake
cycle models

Balance of forces requires the strength of the fault to be equal to the elas-
tic shear traction (due to slip) plus the far-field loading traction plus radiation
damping term. This is :

τ f (s) = τ elt (s) + τ load(s) + τ rad(s) (2.68)

If we differentiate this equation, it can be recast into a set of coupled ODEs.
The slip acceleration is given by :

V̇ =

shear loading︷︸︸︷

τ̇ load +

shear traction change (H-Matrix)︷ ︸︸ ︷∫

faults

Kt(s, ξ)
∂

∂ξ
V dξ +

normal stress variations︷︸︸︷

σ̇nf +

state evolution︷ ︸︸ ︷

σnb
θ̇

θ
µ

2cs︸︷︷︸
radiation damping

− aσn

V︸︷︷︸
direct effect

(2.69)
From this equation, it is easy to see that the denominator would go to zero
and hence the acceleration would go to infinity if there were no radiation
damping term. The normal stress rate due to loading and/or sliding (mode
II) :

σ̇n =

∫

faults

Kn(s, ξ)
∂

∂ξ
V dξ

︸ ︷︷ ︸
normal traction change (H-Matrix)

+ τ̇ loadn

︸︷︷︸
normal loading

(2.70)

and the state evolution law :

θ̇ = 1− V θ

Dc
(2.71)

This set of ODEs is then solved at each centre of element, using the adaptive
time step ODE solver algorithm called Bulirsch-Stoer (Bulirsch and Stoer ,
1966).
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Figure 2.13 – Speed comparison of H-matrix, FMM, and the direct calculation.

2.7 Comparison of H-matrices and Fast Multi-
pole Method

2.7.1 Speed of methods

To test the speed of the different methods, a single fault was used, a slip
distribution was provided and we calculated the time to compute equation
(2.15). The time used to compute the structure (trees, and block interac-
tion), in both FMM and H-matrix was not taken into account. This is justified
by the fact that this step is only done one time at the beginning of the si-
mulation. Figure 2.13 shows that when the fault is discretised by 100 points
to 100 000 points, H-matrix is the faster. As expected, the direct method
has a complexity that grows as O(N2). It is difficult to infer the complexity
of H-matrix and FMM from this plot, but it seems that it is a bit more than
O(N logN). FMM seems to become more efficient than H-matrix for more
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than 105 particles.

2.7.2 Accuracy

The first method to test the accuracy was to see if the result from one
time step would be accurate. To test that, a flat fault was assumed, with
an imposed slip on it. For some particular slip on the fault, it is possible to
calculate an analytical solution for the boundary integral equation (personal
communication Robert Viesca, Fig 2.14) :

g(x) =
1

2π

∫ 1

−1

f(ξ)

x− ξ
dξ (2.72)

For the particular form of f(ξ) :

f(ξ) = −3ξ
√

1− ξ2 (2.73)

Which corresponds to the following slip distribution :

∆u(ξ) = (1− ξ2)
3
2 (2.74)

The analytical solution is given by :

g(x) = −3

4

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1− 2ξ2 − 2ξ
√
ξ2 − 1, if ξ < −1

1− 2ξ2, if − 1 ≤ ξ ≤ 1, Inside the crack

1− 2ξ2 + 2ξ
√

ξ2 − 1, if ξ > 1

(2.75)

Figure 2.15 shows the distance to the analytical solution of the direct BEM,
FMM-BEM, and the H-matrix-BEM versus the number of points used to dis-
cretised the fault. This distance was measure with ∥ · ∥=

√
(
1

N

∑N
i=1(·)2).The

error of these three methods are perfectly matching for the aforementioned
analytical solution. Another test of the accuracy was to see if the error is ac-
cumulated with time. At each time step in our simulations, the ODE-solver
calls the BEM about 10 times, and the model runs for several 10000 of time
steps. For this purpose, a simulation was run for FMM-BEM, H-matrix BEM,
and direct BEM. For each of this method, and because for a flat fault mode II
and mode III are equivalent, we also test the code for these two modes. Fi-
gure 2.16, gives the maximum velocity over time of each of the above types
of simulation. On the last cycle, we checked if the earthquake was happe-
ning at the same time for each of this method. It appears that after 8 cycles
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over 160 years (∼ 5× 109s) the offset between the earthquakes was only of
the order of second. The two methods are in fact very accurate. The error
in FMM is fully controlled because of the error bounds of each step. Howe-
ver in H-matrix the error is completely controlled only in the case where fully
pivoted ACA, or SVD is used.
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2.8 Conclusion

We successfully developed a new paradigm were earthquake cycles are
no longer restricted to single planar faults, but can be run on complex geo-
metries with multiple faults. For general simulation of size N ∼ 10000, the
use of FMM or H-matrix, can increase the speed by a factor of about 100,
which makes these methods extremely efficient for large simulations compa-
red to the direct calculation. These two methods have very little drawbacks,
because for FMM the accuracy is controlled at each step and for H matrix, it
can be controlled if we use SVD or ACA to perform low rank approximation.
The accuracy is guaranteed with these two methods. It is worth mentioning
that in the elasto-static problem, the kernel does not depend on time and
hence, the H-matrix needs to be calculated only one time. That means that
all the low rank approximation has to be calculated only once, therefore it
would be possible to use more elaborate low rank approximation like ACA
or SVD. Because of the speed of these methods, a large set of parameters
can be explored, for any fault geometry. We will take advantage of the speed
gain in the following chapters, where we will use this model to explore a large
set of parameters, also compute statistics on the outcome of results.



Chapitre 3

Overlapping faults in mode III

Avant-propos

Ce chapitre est une adaptation d’un article soumis à Nature Geoscience.
Les résultats se concentrent majoritairement sur l’élasticité ”out-of-plane” (la
direction de glissement est perpendiculaire au plan considéré), parce que
les matrices hiérarchiques, qui permettent de faire aussi de l’élasticité ”in-
plane” (ou la direction du glissement est dans le plan considéré), n’ont été
implémentées dans FastCycles qu’en mai 2017. Dans ce chapitre, nous pre-
nons avantage de la rapidité de FastCycles et du fait de pouvoir modéliser
des systèmes complexes de failles pour explorer la relation entre deux failles
dont une partie se superpose. Nous avons choisi cette configuration car cela
est l’un des systèmes de failles les plus simples que l’on puisse considé-
rer. La première partie présente les résultats attendus quand le cycle d’une
unique faille est simulé. La deuxième partie présente les résultats quand
deux failles dont une partie se superpose, interagissent entre elles. Le com-
portement du système de deux failles dépend majoritairement du ratio de
la distance entre les failles par la longueur de nucléation D/Lnuc, de la pro-
portion de superposition, du ratio de la longueur des failles par la longueur
de nucléation L/Lnuc et du ratio de a/b. A partir de nos simulations, nous
avons construit plusieurs diagrammes de phase qui permettent d’identifier
les domaines où les comportements de ces deux failles diffèrent. Après une
brève description de chacun de ces domaines, nous nous concentrons plus
spécifiquement sur le domaine où des évènements de glissements lents ap-
paraissent. Dans ce domaine particulier, nous avons montré que le moment

65
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des évènements de glissement lent et des tremblements de terre suivait une
loi d’échelle qui peut se rapprocher de la loi d’échelle trouvée par Ide et al.
(2007).

3.1 Introduction

This chapter is a broader discussion of an article entitled ”Fast and slow
earthquakes emerge due to fault geometrical complexity” that was submitted
to Nature Geoscience.

Since their discovery in the late nineties, Slow-Slip Events (SSE) have
been widely observed along various subduction zones (Central Ecuador
(Vallee et al., 2013), Bungo Channel (Hirose et al., 1999), Guerrero (Lowry
et al., 2001), Cascadia (Dragert et al., 2001 ; Rogers and Dragert, 2003), Hi-
kurangi (Douglas et al., 2005), Northern Chile (Ruiz et al., 2014) and others).
The discovery of SSEs mainly came from the development and the instal-
lation of networks of permanent GPS stations around subduction zones. Al-
though GPS is still nowadays the main SSE detection tool, new observations
now allow for the detection of slow-slip, like networks of sea-bottom pressure
gauge (Ito et al., 2013 ; Wallace et al., 2016) or via the migration of micro-
seismicity, repeating earthquakes and tremors (Igarashi et al., 2003 ; Kato
et al., 2012), thus increasing significantly the probability of their detection.

SSEs, like earthquakes, correspond to an accelerating slip front propaga-
ting along a fault. However, unlike earthquakes, SSEs do not radiate any de-
tectable seismic waves and are hence sometimes nicknamed “silent events”.
Until the discovery of SSEs, it was thought that only earthquakes release
the accumulated strain energy along a fault. Since SSEs also contribute to
this release of energy, they should play an important role in estimating the
seismic hazard of subduction zones (Obara and Kato, 2016). In addition,
SSEs exhibit very specific characteristics. Their propagation speed along the
fault (about 0.5 km/h in Cascadia (Dragert et al., 2004) to about 1 km/day in
Mexico (Franco et al., 2005)) contrasts with the rupture propagation speed of
earthquakes (at about 3 km/s). The slip velocity of SSEs (from about 1mm/yr
in the Bungo Channel, Japan to about 1 m/year in Cascadia) is around one
or two orders of magnitude greater than plate convergence rates but or-
ders of magnitude smaller than earthquakes slip rates (of the order of 1m/s)
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(Schwartz and Rokosky, 2007).
Although the exact influence of SSEs in the seismic cycle is not yet fully

understood, they seem closely related to earthquakes. Several seismic and
geodetic observations suggest that SSEs may have happened just before
and in regions overlapping with earthquakes. The 2011 Mw 9.0 Tohoku-Oki
event and the 2014 Mw 8.1 Iquique event are two examples in subduction
zones were a SSE apparently occurred just before the earthquake, within a
region overlapping with the area where seismic slip nucleated (Kato et al.,
2012 ; Brodsky and Lay, 2014 ; Ruiz et al., 2014 ; Mavrommatis et al., 2015).
More recently, geodetic evidence of a large SSE triggering an earthquake
was pointed out in the Guerrero subduction zone (Radiguet et al., 2016).
There are also suggestions that SSEs may be triggered by earthquakes ei-
ther by stress-waves and/or static stress transfer (Itaba and Ando, 2011 ;
Zigone et al., 2012 ; Kato et al., 2014). On the other hand some SSEs occur
without an accompanying large earthquake as in the Cascadia subduction
zone, where SSEs occur periodically (Rogers and Dragert, 2003), or in the
Hikurangi subduction zone (Wallace et al., 2016). Yet, despite numerous ob-
servations and quantifications, the underlying physical mechanism driving
SSEs remains largely unexplained. All SSEs have the same sense of slip
as earthquakes, i.e. opposite to the plate convergence direction, and are
accompanied by a positive stress drop which corresponds to a reduction in
the accumulated strain energy. In the absence of external forcing mecha-
nism, this necessitates SSEs to occur in a strength weakening region which
is also prone to rupture as a fast dynamic event. These observations, put to-
gether, raise the first question. What physical mechanism explains slow-slip
and fast, dynamic earthquakes occurring on similar sections of active faults
under similar frictional boundary conditions ?

Furthermore, earthquakes and SSEs seem to follow different scaling laws
(Ide et al., 2007). The seismic moment of earthquakes scales with the cube
of their duration (M ∝ T 3) whereas the corresponding moment of SSEs is
proportional to their duration (M ∝ T ), raising the second question. Is such
different scaling a general feature of earthquakes and SSEs, highlighting dif-
ferent physical mechanisms? Or, is the gap in between these scaling laws
simply resulting from a lack of observation (Ide et al., 2008 ; Peng and Gom-
berg, 2010) ? We address the above questions using physics-based nume-
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rical modeling of active faults governed by rate-and-state friction (Dieterich,
1978) and develop a unified framework that addresses all the observations
about earthquakes and SSEs mentioned above.

SSEs were first discovered to emerge spontaneously from numerical mo-
dels in the rate-and-state framework for the modelling of subduction zones
(Liu and Rice, 2005, 2007). In this framework, fault areas with weakening
properties will preferentially host seismic slip (i.e. earthquakes) while streng-
thening regions will host stable continuous creep or post-seismic slip. Nu-
merical experiments and theoretical works have shown that the main phy-
sical control on the emergence of SSEs in models is how the characteristic
length of a weakening patch compares to the specific nucleation length scale
(Ruina, 1983 ; Rice, 1983 ; Dieterich, 1992 ; Rubin and Ampuero, 2005). If
the length of a fault patch is large compared to the nucleation length scale,
earthquakes have enough room to grow and become dynamic, so this fault
patch will generate only dynamic, seismic events. If the length of the fault is
small compared to this length scale, earthquakes can never grow large en-
ough to become dynamic or no events will occur at all (i.e. permanent creep).
It is therefore necessary, under this framework, to tune for the right fault
length compared to the nucleation length scale to allow modelling of both
slow and fast ruptures. Given the observed spatial size over which some
SSEs propagate i.e. on the order of tens of kilometres, this would lead to
unrealistically large nucleation sizes, preventing the occurrence of any ear-
thquakes. A possible explanation for such large nucleation lengths could
be the presence of high-pressure pore fluids released during metamorphic
dehydration reactions. However it has been shown recently that regions of
high fluid pressure and slow slip events do not necessarily overlap along all
the subduction zones (Saffer and Wallace, 2015). One solution to overcome
this issue is to appeal to other competing frictional mechanisms like dilatant-
strengthening (Segall and Rice, 1995 ; Rubin, 2008 ; Segall et al., 2010) with
or without thermal-pressurization (Segall and Bradley, 2012b). Although we
do not include these additional frictional mechanisms, we acknowledge that
it would broaden the range over which we are able to observe slow-slip.

Our work here differs from the above line of reasoning as we do not im-
pose any lateral variation in the rheological properties of the fault. Our aim
is to introduce no a priori complexity in initial and boundary conditions and
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let the variety of modes of slip emerge spontaneously. As the above mo-
dels suggest, a set of competing mechanisms are required for slow-slip and
earthquakes to coexist. We introduce this competition by appealing to the
well known fact that faults are rarely planar over length scales of tens of
kilometres. In fact, fault segmentation and geometric complexity are visible
at multiple scales (Candela et al., 2012). This non-planarity of faults intro-
duces a natural stress based interaction between faults that can encourage
or inhibit slow-slip. There are several lines of evidence that hint at geometric
complexity being a viable candidate to explain the various observed slip dy-
namics. Aseismic slip has been observed with earthquake swarms in the nor-
thern Appenines (Italy) along splay faults (Gualandi et al., 2017). It has been
seen around a step-over in Haiyuan fault (China) (Jolivet et al., 2013), along
the North Anatolian Fault (Rousset et al., 2016 ; Bilham et al., 2016) or, in
earlier publications, along the San Andreas Fault (Murray and Segall, 2005).
SSE’s have been observed in the very shallow part of subduction zones,
where faults are invariably complex, as in Hikurangi (Wallace et al., 2016),
Nankai (Araki et al., 2017) among others.

Friction on both faults is controlled by rate-and-state friction with ageing
state evolution. Frictional resistance decreases with increasing slip rate and
is spatially uniform i.e. the fault is rate-weakening. Loading is imposed using
a constant rate of shear stress increase on the fault. We model elastic inter-
actions using out-of-plane static stress interactions with radiation damping
approximation (Rice, 1993). The computation of static stress interactions is
accelerated using Fast Multipole Method (Greengard and Rokhlin, 1987 ;
Carrier et al., 1988).

To better understand the role of multi-fault interactions on slow and fast
dynamics we explored the influence of the distance between faults, D, the
length of the faults, L, and the ratio of the constitutive frictional parameters,
a/b. For rate-weakening faults, a/b ranges between 0 and 1. Because of the
importance of the nucleation length scale Lnuc in this problem, all geometrical
parameter are non-dimensionalized by Lnuc,

⎧
⎪⎨

⎪⎩

Lnuc = 2 ∗ 1.3774 ∗ Lb 0 ≤ a/b < 0.3781

Lnuc = 2 ∗ Lb

π(1− a/b)2
a/b → 1

(3.1)

where, a and b are rate-and-state constitutive friction parameters, Dc is
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the characteristic slip distance, µ is the shear modulus of the medium and
σn the normal stress acting on the fault (Rubin and Ampuero, 2005 ; Viesca,
2016). This formulation provides good insights on the nucleation phase of
earthquakes along a fault that is mildly rate-weakening (a/b → 1) or extre-
mely rate weakening (a/b → 0).

3.2 Single planar fault

a/b < 0.4 a/b = 0.7 a/b = 0.8 a/b = 0.85 a/b = 0.9 a/b = 0.95

Lnuc 83m 212m 477m 849m 1910m 7639m

Table 3.1 – Table of nucleation length scales for different value of a/b. The remaining
parameters are listed in Table 3.2.

First we show two examples of single planar fault systems for high a/b =

0.8 and low a/b = 0.2. In that particular context, the fault behavior does not
show any particular complexity. Here we chose long enough fault compared
to the nucleation length scale that we only earthquakes (Rubin, 2008 ; Veedu
and Barbot, 2016). Figure 3.1 shows in left panel the maximum slip velocity
versus time, and in right panel the slip velocity evolution along the fault. Num-
bers are associated to events. On the right panel, for the first earthquake,
the nucleation, and subsequent propagation along the fault are emphasized.
Since the early quasi-dynamic simulation of Rice (1993), it is known that a
well discretized fault with only constant friction parameters does not lead to
any complexities. The fault is periodically rupturing into earthquakes and all
the events are similar (Fig. 3.1 with a/b = 0.8 and Fig. 3.2 with a/b = 0.2),
with the nucleation occurring at the same location, the velocity being similar
and the duration of event being in the same order of magnitude. It is worth
noting that for the a/b = 0.2 case, the nucleation length predicted by Rubin
and Ampuero (2005) is perfectly matched (Fig. 3.2).
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Figure 3.1 – Single fault simulation on a fault of length greater than the nucleation
length (L = 2Lnuc). The frictional ratio is a/b = 0.8. All events look similar, they
always nucleate at the centre of the fault and rupture the entire fault. They are com-
pletely periodic (left panel), and the duration of events, when slip velocity is higher
than V > 1mm/s, is relatively constant.
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Figure 3.2 – Single fault simulation of length greater than the nucleation lengthscale
(L = 4Lnuc). The frictional ratio is a/b = 0.2. All events look similar, they always
nucleate at the right end of the fault and rupture the entire fault. They are completely
periodic (left panel), and the duration of events, when slip velocity is higher than V
> 1mm/s, is relatively constant.
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3.3 Two overlapping faults

D

L

L

Fault 1
Fault 2W

Figure 3.3 – Geometry of the system of two overlapping faults.

In the simplest “conceptual”model where the faults are geometrically com-
plex, we consider two overlapping faults of the same length L that interact
with each other (see geometry in Fig. 3.3 or in Fig. 3.9). This geometry was
chosen to illustrate the effect of complex stress interaction between neigh-
bouring faults and is in no way supposed to be interpreted as the only geo-
metrical configuration of faults in a fault network. The choice of such geo-
metry brings realistic perturbations in stress along the fault leading to the
emergence of a wide variety of modes of slip. The novelty of this work is
that slow-slip events can also emerge spontaneously on the same parts of
the fault (whose lengths are larger than the nucleation length) that hosted
dynamic earthquakes. Without the introduction of a second fault, and its as-
sociated stress perturbations, the fault behaves like a simple spring-slider
system with weakening properties, with similar earthquakes happening per-
iodically like it was shown in the previous section.

This section is mainly a presentation of the different kind of behaviors
that happen in our simulation. For all these simulations, it is possible to se-
parate different groups of behaviors, that mainly depend on the length of the
considered fault to the nucleation lengthscale, and the ratio a/b of frictional
parameters (see the phase diagram Fig 3.4). In each of the domain, one
or two simulations (represented by a blue cross) are shown to illustrate the
behavior.

The overlap will be at first considered to be half of the fault and the
two faults will have the same size (Fig. 3.3). In this section, we explore
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Name symbol Value

Reference friction coefficient f0 0.6

Reference velocity V0 10−9 m/s
Critical slip distance Dc 0.1 mm
Rate and state parameter b 0.01

Shear rate loading τ̇t 0.01 Pa/s
Normal stress σn 100 MPa
Shear modulus µ 30 GPa
Shear velocity cs 3000 m/s

Table 3.2 – Table of constant parameters among all the simulation shown in this
section.

the influence in this particular setting of the length of the fault L/Lnuc ∈
[0.1 0.5 1.0 2.0 3.0 4.0 5.0], the distance between the faults D/Lnuc ∈
[0.1 0.5 1.0 2.0 3.0 4.0 5.0], and the friction parameters on the faults
a/b ∈ [0.05 0.1 0.2 0.3 0.35 0.7 0.8 0.85 0.9 0.95] (490 simulations in total).
Parameters that does not vary among different simulations can be found in
table 3.2.

In this section, we will also explore the effect of the overlap distance.

3.3.1 Overlapping faultswith constant overlap at close dis-
tance to each other

Damped zone

When the length of the fault is smaller than 10% of the nucleation lengths-
cale, the system is not able to produce any event. It is rapidly damped from
the initial condition to a constant velocity of sliding. This behaviour is statio-
nary, or constantly creeping. Figure 3.5 shows an example of such a beha-
viour where the maximum velocity in the system reaches a constant value.
If a stationary solution exist in that system, the equation (2.69) can be sim-
plified :

0 = τ̇ load +

∫

faults

Kt(s, ξ)
∂

∂ξ
V dξ (3.2)
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Figure 3.4 – Phase diagram showing the behaviour of two overlapping faults sys-
tem. The distance between the fault is set to 10% of Lnuc. We can identify several
domains, each of these showing different behaviour of the fault network. The blue
cross are simulation that are shown in the following sections.

This equation is similar to a crack equation, where the slip on the fault gives
a constant stress drop. It is possible to integrate in time this equation, it give :

0 = τ̇ loadt+

∫

faults

Kt(s, ξ)
∂

∂ξ
∆udξ + τ t0 (3.3)

Where τ t0 is an initial shear traction on the fault at time t = 0s. Finally this is
a crack whose amplitude grows linearly with time. It is worth mentioning that
a solution of this equation is not necessary known in the case of complex
geometry and multiple faults. In the particular case of a single planar fault,
the slip has an elliptical distribution over the entire fault, and the amplitude
at each point of the fault is growing linearly with time.
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Figure 3.5 – Figure showing the maximum velocity on the fault when the system
is in the damped domain. The length of the fault here is L = 0.1 × Lnuc, the ratio
a/b = 0.95 and the distance between the faults D/Lnuc = 0.1.

Sudden Burst of slip

Burst of slip are sudden acceleration of slip velocity that is affecting the
entire fault at the same time without any apparent propagation of the rup-
ture on the fault. This behaviour appears when a/b<0.4 and when the length
of the fault is lower than, but close to the nucleation lengthscale. For extre-
mely small ratio of a/b < 0.1, this phenomena seems to emerge even for
faults whose length is half the nucleation lengthscale (Fig. 3.6). This beha-
viour was already observed in Rubin and Ampuero (2005), and it was called
the no-healing regime. These authors also showed that this behaviour only
happens for small ratio of a/b < 0.3781. Here we just confirmed what they
were observing but in the quasi-dynamic approximation. As it has been al-
ready shown in figure 1.8, the nucleation lengthscale for small ratio a/b < 0.4

seems to be a robust estimation. In this domain, the interaction between the
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faults can bring some variability in the extend, and the location of the nuclea-
tion of earthquakes (Fig. 3.7), however the behaviour remains periodic.
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Figure 3.6 – Sudden burst of slip, there is no propagation of the rupture here. The
whole fault is destabilized at the same time. This simulation is a particular case
where the system is not damped although the length of the fault is half the nucleation
lengthscale. This only happens when the ratio a/b < 0.1. Here the ratio is a/b = 0.1,
the length of the fault is L = 0.5Lnuc and the distance between the faults D/Lnuc =

0.1.

Slow and fast events, with spatiotemporal complexities

In this particular domain, it is possible to get all modes of slip, from extre-
mely slow to fast events. We see regular earthquakes with a clear nuclea-
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Figure 3.7 – Sudden burst of slip. The whole fault is destabilised at the same time.
It seems that higher ratio of a/b shows more variability. It is possible to see partial
rupture and the duration of events shows variability. Here the ratio is a/b = 0.3, the
length of the fault is L = 1Lnuc and the distance between the faults D/Lnuc = 0.1.

tion, dynamic and afterslip phases. These dynamic events happen without
any evident periodicity. This is the domain where the behavior of the fault
system is the most complex, we observe : seismic events slow-slip events,
partial ruptures, afterslip, aperiodicity of the events. The figure 3.8 shows an
example of such a complexity for a/b = 0.8. In this domain all events show
a propagation along the fault, contrary to the burst of slip domain.

This complexity of behavior seems to increase with increasing ratio a/b

(see the evolution for a/b = 0.8, Fig 3.8 and for a/b = 0.9, Fig. 3.9).
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Figure 3.8 – Slow and fast events, with spatiotemporal complexities. We observe
aperiodicity, with both slow and fast dynamics on the faults. Here the ratio is a/b =

0.8, the length of the fault isL = 2Lnuc and the distance between the faultsD/Lnuc =

0.1.

Periodic earthquakes

For extremely small ratio of a/b, and faults greater than the nucleation
lengthscale, the two fault network only shows simultaneous earthquakes on
both faults. These earthquakes are extremely periodic (see Fig. 3.10). In this
domain the only complexity comes from the nucleation area and shape of the
events.
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Figure 3.9 – Example of a calculation that gives rise to complex slip behaviour on
faults. Here L/Lnuc = 2, D/Lnuc = 0.1 and a/b = 0.9. To avoid any artefact from
initial conditions, the first 10 events of the simulation shown were removed. Left
panel shows the maximum slip velocity for fault 1 (blue) and fault 2 (red). Right panel
represents the space-time evolution of slip velocity on the faults. The highlighted
duration of events corresponds to the time when the slip velocity exceeds 1µs for
the first time to the time when it decelerates below 1µs. Bottom panel gives the
geometry used for this example. Events 2,3 and 6 are slow-slip events. Events 1,
4, 5, 7 and 8 are earthquakes. Event 5 and 7 are small earthquakes that did not
rupture the entire fault. Event 1 and 7 clearly show afterslip contrary to events 4
and 8.
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Figure 3.10 – Periodic earthquakes. Here the ratio is a/b = 0.2, the length of the
fault is L = 4Lnuc and the distance between the fault D/Lnuc = 0.1.

Earthquakes, with some spatial complexities

In this domain, the fault is too long to be able to host any slow events.
It seems that this domains shows two different effects : with increasing ratio
of a/b, the aperiodicity and complexity of events increase and the contrary
effect holds for the increase in fault length. Actually, the distinction of this
domain with the ”Slow and fast events, with spatiotemporal complexities”
domain is not obvious, and shows rather a continuum.
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Figure 3.11 – Earthquakes, with some spatial complexities. Here the ratio is a/b =

0.9, the length of the fault is L = 4Lnuc and the distance between the fault D/Lnuc =

0.1.

3.3.2 Overlapping faults with constant overlap at far dis-
tance to each other

In this section, the influence of distance between the two fault is explored.
Basically, the effect of distance between the fault is the one that is expected :
further the faults are from each other, less they interact and finally they look
like a single faults behavior. To illustrate the effect of distance, the simulation
where a/b = 0.8 and L = 2Lnuc is used. The behavior of this simulation
when the fault is alone (Fig. 3.1) and when two close overlapping faults are
consideredD/Lnuc = 0.1 (Fig. 3.8) have already been shown. In the following
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cross are simulation that are shown in the following sections.

figure the distance is progressively increased to D/Lnuc = 0.5 (Fig. 3.14),
D/Lnuc = 1 (Fig. 3.15) and finally D/Lnuc = 5 (Fig. 3.16). Although the first
event was artificially nucleated on fault 1, the faults are synchronized after a
few cycles. It seems that they tend to rupture closely in time. This effect was
observed in paleoseismic studies in Eastern California shear zone where the
1992 Mw 7.3 Landers earthquake occurred (Rockwell et al., 2000 ; Ganev
et al., 2010). On figures 3.12 and 3.13 the evolution of the phase diagram
can be followed when the distance between the faults is increased. Basically,
the domain of coexistence of slow and fast events shrinks for D/Lnuc = 0.5

and disappear for larger distance D/Lnuc.
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3.3.3 Variation around the geometry

Here we explored variation around the geometry of two overlapping faults.
The distance between the faults is D/Lnuc = 0.1. The two parallel faults net-
work (Fig. 3.17) and no overlap fault network (Fig. 3.20) do not show any slow
events and all earthquake are extremely periodic. It seems that in a simple
configuration like this one, a non zero overlap is necessary in order to get
aperiodicity and complex nucleation and propagation of earthquakes. The
two parallel fault network is the only configuration where earthquake seem
not to synchronize but rather be well separated in time. In intermediate over-
lap (25% and 75%) a natural complexity arise, with slow slip events, afterslip
and some small aperiodicity. Partial ruptures are only happening in the 75%
overlap simulation (Fig. 3.18).
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3.4 Statistics of slow and fast events

To study systematically the statistic of slow and fast events, a smaller
subset of the simulation is taken where slow events are happening : L/Lnuc ∈
{1, 2, 3, 4}, D/Lnuc ∈ {0.1, 0.5, 1, 2, 3, 4}, a/b ∈ {0.7, 0.8, 0.85, 0.90, 0.95}.

For each of the parameters identified above we spin up the model, allo-
wing the faults to undergo multiple earthquake cycles before measuring the
slip and rupture velocity of each slow and dynamic event. We identify SSEs
and earthquakes based on their slip and rupture velocity. SSEs are events
with a slip velocity V in the range of 1µm/s to 1 mm/s and a rupture velo-
city Vrup lower than 0.01cs, where cs is the shear wave speed. Earthquakes
are events with a slip velocity greater than 1 mm/s and a rupture velocity
greater than 0.01cs. We purposefully chose a relatively small threshold value
for rupture velocity, because quasi-dynamic simulations lead to much slo-
wer rupture velocity than dynamic simulations (Thomas et al., 2009). As our
faults are one dimensional, we define the equivalent moment for a seismic
or aseismic event as M = µD̄Lrup × 1km, where Lrup is the total length of
the fault that slipped during an event (SSE or earthquake) and D̄ is the slip
averaged over the length Lrup. For earthquakes, we compute separately the
seismic moment during the nucleation phase and the dynamic phase. For
SSEs, moment accounts for the entire duration when the slip velocity ex-
ceeds 1 µm/s. We obtained about 3000 individual earthquakes and about
500 SSEs in our calculations when the faults hosted both earthquakes and
SSEs. We find that the moment of both seismic and aseismic events model-
led by rate and state friction law follows the same scaling as for events in
nature from observational data (Ide et al., 2007 ; Peng and Gomberg, 2010)
(Fig. 3.22). Because we conducted our calculations in 2D, the moment of
a dynamic event scales with its duration squared : M ∝ T 2. Moment of our
simulated events clearly depends on the ratio of constitutive parameters a/b.
Since the nucleation length Lnuc increases with a/b and since we compare
models with non-dimensionalised fault length, the real length of the fault, L,
also increases when a/b→1, leading to bigger moment release and longer
duration for events. To verify the robustness of this scaling law, we changed
the maximum slip velocity criteria used to distinguish SSEs and earthquakes
by one order of magnitude. This did not change the observed scaling.

The scaling emerges naturally from our conceptual model of fault geo-
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metric complexity, without imposing any complexity in the spatial variation of
frictional properties. However, we do not preclude the possibility that other
models that have produced SSE’s and earthquakes also reproduce such
scaling laws. Another interesting feature that emerges from our calculations
is that the moment of the nucleation phase of earthquakes also follows the
same linear scaling with duration as slow-slip events. However, this similarity
in scaling may disappear in 3D. We also notice that by adding the nucleation
and after-slip moment’s of earthquake, the clear scaling distinction between
earthquakes and SSEs start vanishing and a continuum between the two
modes of slip can be seen (Fig. 3.23).
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Figure 3.23 – Same as Fig. 3.22 but the moment of the earthquakes includes the
nucleation and afterslip phases.

The temporal evolution of rupture length and slip for each event provides
hints about the relative scaling between SSEs and earthquakes (Fig. 3.24).
For earthquakes, the average growth of both rupture length and slip are li-
near with event duration, independent of a/b, hence independent of the ac-
tual length of the fault as we non-dimensionalised length scales by Lnuc. As
a consequence, seismic moment grows quadratically with event duration. In
other words, earthquakes propagate as an expanding crack : slip and rup-
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ture length are proportional to each other. For SSEs, however, the temporal
evolution of slip and rupture length show a clear dependence on the fault
length. For a given a/b, final rupture length is constant i.e. its independent
of event duration. However, slip grows linearly with duration. If we now in-
crease the fault length (i.e. increase a/b), the accumulated slip decreases
(compared to the low a/b case) while the final rupture length increases (see
arrows in slow-slip panel in Fig. 3.24). These two effects exactly counter-
balance each other, such that the final moment scales linearly with duration
and is independent of fault length (i.e. for different a/b). This highlights an
interesting fact that SSEs are not necessarily self-similar at least in our cal-
culations.Another interesting scaling that emerges is in the evolution of the
moment of the nucleation phase with duration. It is also linear as for SSEs.
The evolution of slip and rupture length for the nucleation phase is scale
independent contrary to SSEs. Slip and final rupture length for nucleation
phases evolve, individually, with the square root of the event duration.

Another interesting feature that emerges from our simulations lies in the
static stress drop of both types of slip events i.e. SSEs and earthquakes
(Fig. 3.25). We evaluated this parameter in three different ways (Noda et al.,
2013) : Seismological stress-drop is related to the seismic moment, M0 and
the length of the rupture, Lrup, as

∆σM =
4

π

M0

L2
rup

(3.4)

Spatial average of the stress-drop is evaluated using,

∆σA =

∫
Lrup

∆σ(l) dl

Lrup
(3.5)

And finally, the slip average stress drop is evaluated using the slip distribu-
tion, ∆u(x), as

∆σE =

∫
Lrup

∆σ(l)∆u(l) dl
∫
Lrup

∆u(l) dl
(3.6)

Regardless of the method, the stress drops of SSEs and earthquakes are
of similar order of magnitude. Earthquake stress drops are, on an average,
about twice as large as those for SSEs. Also, as expected, the stress drop
scales with the moment of individual earthquakes and SSEs. Such observa-
tion emphasises the relative importance of slow events in the stress/energy
budget of active faults.
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3.5 Conclusion

Our work here suggests that slow-slip event dynamics may be control-
led by fault geometrical complexities just as it has been shown to control the
dynamics of ordinary earthquakes (Lay and Kanamori, 1981). Unlike the cur-
rent planar fault asperity based rate-and-state models (with rate-strengthening
and rate-weakening patches), the faults in our model are uniformly rate-
weakening. Thus, the same segment of a fault can host both slow-slip events
and earthquakes (events 5,6 and 8 in Fig. 3.9). This is not possible in the
asperity based models since a large rate-weakening asperity (L > Lnuc) will
always rupture seismically and a small rate-weakening asperity (L ∼ Lnuc)
will sometimes lead to aborted nucleation of dynamic events (Veedu and
Barbot, 2016). However, as we have shown in Fig. 3.24, the rupture length
and slip during the nucleation phase follow different scaling behaviour as
opposed to slow-slip events.

Numerous natural observations like occurrences of unexpected sponta-
neous slow-slip events (Rousset et al., 2016 ;Wallace et al., 2016), and more
generally all SSEs, cannot be explained by the current asperity-based rate-
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and-state models without appealing to competing mechanisms. Within our
framework, there is no need to exclusively invoke more complex weakening
processes in rate-strengthening zones, like thermal pressurization, to ex-
plain shallow slip or to ad-hoc tuning of parameters. The greatest strength
of the asperity based model is to explain the occurrence of afterslip by the
relaxation of a large stress perturbation in a rate-strengthening region of a
fault (Perfettini et al., 2010). Our model shows that a fault segment next to a
rupture zone can undergo aseismic slip as it would do in the case of afterslip
(Fig. 3.9). Now that we have shown that complex stress perturbations, like
those induced by complex fault geometry, lead to the emergence of a whole
complexity of modes of slip, it would not be unsafe to imagine active faults
with only weakening properties, either spatially homogeneous or heteroge-
neous. However, it is quite possible that natural faults do obey an asperity
based model but a unified model that explains all the observations has to
invariably account for geometric segmentation and/or the non-planar nature
of the subduction zone faults that results in a spatio-temporally inhomoge-
nous stress accumulation rate (Mitsui and Hirahara, 2006 ;Matsuzawa et al.,
2013 ; Li and Liu, 2016).

We showed that a simple, conceptual, physics based mechanical mo-
del (two interacting faults with an overlap) can produce slow-slip events and
earthquakes on the same rate-weakening segment of a fault whose length
is much larger than the nucleation length. We also reproduce the observed
scaling law of moment with the duration of an event. This is, to the authors
knowledge, the first time that the scaling law for slow and fast events is re-
produced in the rate and state framework with uniform frictional properties.
The only key ingredient needed in our model is continuous, aperiodic, stress
perturbations from nearby faults. This is quite easily testable, as a ‘single
fault’ inferred from seismology or geodesy is in fact a network of faults at
various length scales (Candela et al., 2012).



Chapitre 4

Perspectives

Avant-propos

Cette section présente des résultats récents et qui mériteraient d’être ap-
profondis. C’est le seul chapitre où l’on utilise véritablement les simulations
d’élasticité dans le plan (in-plane). Cela est dû au fait que l’implémentation
des matrices hiérarchiques, qui permet de simuler le mode II, est relative-
ment récente : c’est le fruit d’une collaboration avec Stéphanie Chaillat, qui
travaille à l’ENSTA, en avril 2017. Dans ce chapitre nous présentons trois
problèmes que notre modèle permet d’explorer. Ceci est une présentation
préliminaire des premiers résultats obtenus en élasticité ”in-plane”. Dans un
premier temps nous explorons la rugosité des failles et montrons qu’une
complexité emerge naturellement en élasticité ”in-plane”, mais pas en élas-
ticité ”out-of-plane”. Le deuxième problème est une injection de fluide sur
une faille, pour ce faire, nous avons modélisé la diffusion de pression de
pore. Nous regardons l’effet de la diffusivité ainsi que de la localisation du
puit d’injection. Le troisième problème est un problème de cycle sismique
dans une géométrie complexe de faille. Nous avons choisi la géométrie de
l’Eastern California Shear Zone, où a eu lieu le séisme de Landers.

100
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4.1 Fault roughness

4.1.1 Introduction

Natural faults show geometrical roughness at all scales (Power et al.,
1987 ; Schmittbuhl et al., 1993 ; Lee and Bruhn, 1996 ; Renard et al., 2006 ;
Candela et al., 2009, 2012). However, this problem of fault geometrical rough-
ness has been poorly addressed in the earthquake source community. Par-
ticularly, the effect of fault roughness on the seismic cycle remains poorly
understood. We still do not know what is the mechanical effect of rough-
ness on the rupture propagation. How does the roughness of the fault affect
the long term behavior of faults ? Will some parts of the fault be completely
blocked after a few cycles due to the roughness ? Does this make parts of
the faults more eligible for sliding ? Does this emphasize slow-slip events ?
Can the roughness itself stop a rupture ? Do scaling laws emerge from this
kind of complexity ? In this work, we took advantage of the new method we
developed, to try to answer some of these questions.

We generated self-similar profiles of fault following Dunham et al. (2011).
We considered 1D profiles that have the form :

y = h(x) (4.1)

Given such a profile, a measure of the roughness is the root mean square
height of a given length of the fault L (Dunham et al., 2011) :

hrms(L) =

√
1

L

∫ L/2

−L/1

h2(x)dx (4.2)

In the particular case of self similar profile, the hrms is proportional to the
length of the fault (Dunham et al., 2011) :

hrms(L) = αL (4.3)

Where α is the amplitude to wavelength ratio. This parameter is being used
to define the roughness of our faults. Usually real faults shows amplitude to
wavelength ratio of order 10−2 − 10−3 (Power and Tullis, 1991).

4.1.2 Rough fault in out-of-plane configuration

Figure 4.1 and figure 4.2 show two examples of seismic cycles on a rough
fault. The faults are in out-of plane geometry, the direction of slip is perpen-
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Name symbol Value

Reference friction coefficient f0 0.6

Reference velocity V0 10−9 m/s
Critical slip distance Dc 0.1 mm
Rate and state parameter a 0.008

Rate and state parameter b 0.01

Shear rate loading σ̇23 0.001 Pa/s
Normal stress σn 10 MPa
Shear modulus µ 30GPa
Shear velocity cs 3000 m/s
Dilatational velocity cp 5000 m/s
Resulting nucleation length scale (out-of-plane) Lnuc 477 m
Resulting nucleation length scale (in-plane) Lnuc 611 m

Table 4.1 – Table of constant parameters among all the simulation shown in this
section.

dicular to the propagation of rupture. For a normal range of roughness of
the fault α = 0.001 (Fig. 4.1), the behavior of the seismic cycle is close to
the behavior of a single fault system : earthquakes are rupturing periodically,
and they all look similar. However, the only specificity of this simulation of a
rough fault is the location of the nucleation that is not at the center of the fault.
The nucleation happens in an area where the normal stress is globally de-
creasing. If we now consider the upper range of roughness of natural faults
α = 0.01 (Fig. 4.2), the only difference with the first simulation is that the size
of the nucleation is slightly increasing. This is an hint that in out-of-plane si-
mulations, the roughness of the fault does not lead to natural complexity of
the seismic cycle.

4.1.3 Rough fault in in-plane configuration

What is changing?

The previous section was realised using exclusively out-of-plane geome-
try. In this particular setting, the rupture propagation is perpendicular to the
slip direction on the fault. If we considered some roughness of the fault, it
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Figure 4.1 – Example of a rough fault geometry in out-of-plane configuration. Here
the amplitude to wavelength ratio is α = 0.001.

means that the slip direction is not forced to change its direction to follow
the geometry of the fault (Fig. 4.1 and Fig. 4.2). Moreover, there is no nor-
mal stress change due to slip distribution on the fault. This is changing when
considering in-plane elasticity. Here the slip direction is changing direction
with the fault geometry, and the normal stress is changing when the fault
is sliding. This raises different questions to understand in what extend this
affects the behavior of the fault system. Because normal stress is changing,
and the nucleation length scale is inversely proportional to the normal stress,
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Figure 4.2 – Example of a rough fault geometry in out-of-plane configuration. Here
the amplitude to wavelength ratio is α = 0.01.

the nucleation length scale will change in time and space in the in-plane si-
mulations. It can be expected that some part of the fault, with decreasing
normal stress, will experience more slow-slip events than other part where
the normal stress increases. It is really the case ? The long term loading will
also affect differently the fault at each location. In the next sections, we will
try to answer these questions.
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Limitation of mode II

One limitation of the model described here is that while it is possible to
release the shear stress on the fault by sliding, there is not way to release
the normal stress that accumulate on the fault (Fig. 4.3). This normal stress
keeps increasing (or decreasing) because the slip keeps accumulating. This
affects the calculation when running simulation over long time, because of
the lack of way to release this normal stress, it can sometimes reverse and
become extensional. To avoid this behavior, a new criteria for normal stress is
set. If the normal stress at a given point is less than 1MPa, the normal stress
at that particular point does not evolve anymore. This is done by modifying
the equation (4.5) at this particular point to :

σ̇n = 0 (4.4)

This also has a strong influence on the accuracy of the calculation. Indeed,
the accuracy in our simulation is set such that the length scale Lb = µDc/σnb

is well discretized. Most of the time in our simulations, the grid size is set
to be 10% of Lb. The problems is that in some part of the fault, the nor-
mal stress keeps increasing. Hence Lb, that is inversely proportional to the
normal stress, keeps decreasing and the accuracy gets loss. This effect de-
pends on the geometry of the fault and the loading rate.

Effect of roughness in in-plane configuration

Figure 4.4 shows the effect of roughness for a alpha ratio α = 0.001.
Here the seismic cycle is periodic, and all the events are dynamic. However,
contrary to the simulation in out-of-plane configuration, here the nucleation
phase gets more complex with every seismic cycle run ; it takes more time
and it shows acceleration and deceleration of the rupture. This is maybe
an explanation for the foreshocks happening sometime before earthquakes.
This is an effect of the normal stress on the fault, that keeps increasing or
decreasing on some part, and finally brings strong heterogeneity on normal
stress for this fault. When the amplitude to wavelength ratio is increased by
one order of magnitude α = 0.01, the effect of normal stress appears only af-
ter one or two cycles (Fig. 4.5). This figure shows extremely complex events,
slow and fast event, with partial ruptures and aperiodicity. Slow events are
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Figure 4.3 – Figure showing one drawback of this model, there is no way to release
normal stress on the fault, so that the stress just builds up indefinitely, until the
normal stress becomes extensional. The simulation are stopped if it happens. A
rough geometry is used, and the normal stress variation from the initial at three
different points is computed. A pure shear loading is applied so that some part of
the fault will experience increase or decrease in normal stress. A In this simulation :
a = 0.008, b = 0.01, initial normal stress σn = 107Pa.

present in figure 4.5, despite the fact that the fault is unique and much larger
than the nucleation length scale (L = 5Lnuc).

The problem of accuracy loss because of increasing normal stress is vi-
sible by comparing figure 4.5 and 4.6. In figure 4.6 the grid size was divide
by 2, hence making the simulation more accurate. Very quickly the two simu-
lations are diverging, making the problems of rough fault difficult computa-
tionally. As previously mentioned, this is probably an effect of the increasing
of normal stress on a specific part of the fault, that reduces locally the Lb

length scale.

4.1.4 Discussion and conclusion

In this section, we showed that behaviors of seismic cycles differs dras-
tically considering either in-plane or out-of plane elasticity. In out-of-plane
simulation, the roughness play a small role, there is no accumulation of nor-
mal stress on the fault. Hence the behavior is classic to a single straight fault
system except that the nucleation location is determined by the roughness
and probably the loading. However in in-plane simulation, roughness of the
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Figure 4.4 – Example of a rough fault in in-plane configuration. Here the amplitude to
wavelength ratio is α = 0.001. Notice that after a few cycles, the nucleation becomes
very complex.

fault has a strong influence of the seismic cycle : normal stress keeps accu-
mulating over cycles making parts of the faults blocked. A diversity of size
and type of events emerge from these simulations, hence making the rough-
ness a plausible candidate to : 1) provoke arrest of ruptures, especially at
kinks, 2) Enhance the presence of slow phenomenas 3) prone complex nu-
cleation phase of earthquake. An interesting feature that appears with rough
fault is the size distribution that is created despite a length greater than the
nucleation length scale (L = 5Lnuc). Hence it would not be unsafe to consider
the nucleation length scale to be extremely small, allowing for small earth-
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Figure 4.5 – Example of a rough fault in in-plane configuration. Here the amplitude
to wavelength ratio is α = 0.01.

quakes, that would be limited to grow only by the roughness of the fault.
This may resolve one of the actual paradox, where the size distribution of
events that one can get in simulations, is really restricted by the size of the
fault and the nucleation length scale. An other complementary effect is that
this small nucleation length scale will naturally vary. The limitation that in
in-plane, there is no mechanism to release the normal stress accumulated
over cycles is an hint that other mechanisms should be considered. 3D si-
mulations could resolve some of these limitations by allowing for different
direction of slip. An other explanation would be to appeal to micro damage
to release the accumulated normal stress close or on the fault (Thomas et al.,
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Figure 4.6 – Example of a rough fault in in-plane configuration. Here the amplitude
to wavelength ratio is α = 0.01. Compare to figure 4.5, the number of point used to
discretized the fault was doubled.

2017).
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4.2 Induced seismicity

4.2.1 Introduction

Induced seismicity due to waste water injection have drawn the attention
since the huge rise in the number of earthquakes in mid USA (Ellsworth,
2013 ; Ellsworth et al., 2015). The cumulative number of earthquakes in Ok-
lahoma correlates with the increase in injection flow (Ellsworth, 2013). In
2014, the number of cumulated earthquake in Oklahoma outpass the cumu-
lated number of earthquakes in California (Hand, 2014). This is of particular
importance because Oklahoma, a state that was not known to be particularly
seismically active, has experienced the two biggest earthquakes, most likely
linked with fluid injection, ever recorded in the last decade, the 2011 Mw5.7

Prague earthquake (Keranen et al., 2013 ; Sun and Hartzell, 2014), and the
2016 Mw5.8 Pawnee earthquake (Barbour et al., 2017 ; Yeck et al., 2017).
However, extensive studies have shown that waste water injection does not
always correlate with earthquake association (Weingarten et al., 2015). The-
refore understanding what are the condition under which the probability of
an earthquake increase due to waste water injection is a key point in hazard
management.

4.2.2 Model

Several causes have been suggested for the triggering of earthquake
due to fluid injection. Fluid injection is suspected to provoke high pressure
fluid migration, that reduces the effective stress on the fault. For long range
interaction, poroelastically induced coulomb stress change can surpass high
pore pressure diffusion transfer (Goebel et al., 2017 ; Barbour et al., 2017).
In this model it is no possible to incorporate these effects, hence we will only
model the pore pressure diffusion. In order to incorporate fluid diffusion in
our model, equation 2.70 is modified :

σ̇n =

∫

faults

Kn(s, ξ)
∂

∂ξ
V dξ

︸ ︷︷ ︸
normal traction

+ τ̇ loadn

︸︷︷︸
normal loading

+ Ṗ

︸︷︷︸
pressure rate

(4.5)

The conservation of fluid mass is
∂m

∂t
+∇qf = 0 (4.6)



CHAPITRE 4. PERSPECTIVES 111

Where m is the mass of fluid, and qf if the fluid flux. The fluid flux follows
Darcy’s law :

qf = −ρk

η
∇P (4.7)

Where k is the permeability of the medium, η is the viscosity of the fluid and
ρ is the fluid density. Here the permeability is assumed to be constant and
isotropic. The rate of change of mass is :

∂m

∂t
=

∂ρφ

∂t

= φ
∂ρ

∂t
+ ρ

∂φ

∂t

= ρφ

(
1

ρ

∂ρ

∂P
+

1

φ

∂φ

∂P

)
∂P

∂t

= ρφ (βf + βφ)
∂P

∂t

(4.8)

Where φ is the porosity of the rock. βf and βφ are respectively the fluid com-
pressibility and the pore space pressure expansivity. Using equation 4.6 to-
gether with equation 4.8 we get (Bodvarsson, 1970 ; Segall and Rice, 1995) :

∂P

∂t
− k

ηφ(βf + βφ)
∇2P = 0 (4.9)

This is a diffusion equation without any source term. If we considered a conti-
nuous point source solution, we can obtain an analytical solution (Carslaw
and Jaeger , 1959, p 261) :

P =
Ṗwell

4πDr
erfc

(
r

2
√
Dt

)
(4.10)

Where Ṗwell is the pressure rate at the injection well and D is the diffusion
coefficient.

D =
k

ηφ(βf + βφ)
(4.11)

erfc is the complementary error function given by :

erfc(x) =
2√
π

∫ ∞

x

e−t2dt (4.12)

The derivative gives the pressure rate in equation (4.5) :

Ṗ =
Ṗwell

(4πDr)
3
2

exp
(
− r2

4Dt

)
(4.13)



CHAPITRE 4. PERSPECTIVES 112

Name symbol Value

Pore space pressure expansivity1 βφ 10−9 Pa−1

Fluid compressibility1 βf 10−9 Pa−1

Porosity1 φ 10−2

Dynamic viscosity η 10−3 Pa.s
Permeability k 2× 10−16 − 2× 10−17 m2

Resulting diffusivity2,3 D 0.01− 0.001 m2/s
Injection rate2,3 Q 1000 m3/month
Injection duration ∆t 1 year

Table 4.2 – Parameters of the fluid injection simulation. The values are order of
magnitude that are extracted from 1 Rice (2006), 2 Keranen et al. (2013) and 3
Goebel et al. (2017). The diffusion coefficient is closer from the laboratory derived
than from the seismicity migration (Shapiro et al., 1997 ; Goebel et al., 2017).

Using equation 4.8, it is possible to link the injection rate with the pressure
rate at the well :

Ṗwell =
Q

φ(βf + βφ)
(4.14)

Where Q is the injection rate in m3/s at the well. Finally equation (4.10) can
be written :

P =
Qη

4πkr
erfc

(
r

2
√
Dt

)
(4.15)

To model the shut-in of a well, we can use the linearity of the solution of
the diffusion equation and finally add a well at the same location but with a
negative injection rate −Q :

P =
Qη

4πkr

[
erfc

(
r

2
√

D(t− tbeg)

)
H(t− tbeg)−

erfc

(
r

2
√

D(t− tend)

)
H(t− tend)

]
(4.16)

Where tbeg and tend are respectively the beginning and the end of the injec-
tion. H is the Heaviside function.
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4.2.3 Fluid injection during earthquake cycle

In this section, we ran 3 simulations with different position of the injection
well. In each of the simulation, the parameters used can be found in table
4.2. The injection starts when the seismic cycle is stable over two cycles,
and lasts only one year. Figures 4.7, 4.8 and 4.9 are done with a diffusi-
vity of D = 0.01 m2/s and figures 4.10, 4.11 and 4.12 with a diffusivity of
D = 0.001 m2/s. Somehow counterintuitive, in all these simulations, the next
earthquake after injection is postponed. For all these simulations, after the
shut in, the periodicity is recovered after some cycles. For lower diffusivity
(Fig. 4.10, 4.11 and 4.12), it takes more time for the seismic cycle to recover
the classic single fault seismic cycles.

4.2.4 Conclusion

From this small subset of simulation, it is not possible to draw general
conclusions about fluid injection. However, this already allows us to answer
partially some questions : in this restricted parameter space the next ear-
thquake directly following injection was always postponed (except maybe
in Fig. 4.10, but it was a slow event), making possible that in some specific
areas injection of fluid would delay instead of advancing the next earthquake.
The injection can in some case lead to emergence of slow events (Fig. 4.11
and Fig. 4.10). This effect was already observed in an experiment in south
east France, where aseismic slip was triggered on a fault by injection of fluid
(Guglielmi et al., 2015). This is probably an effect of reduce effective normal
stress that increase the nucleation lenghscale and hence prone slow events.
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Figure 4.7 – Example of a fluid injection modeled by pore pressure diffusion, with a
diffusivity D = 0.01 m2/s.
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Figure 4.8 – Example of a fluid injection modeled by pore pressure diffusion, with a
diffusivity D = 0.01 m2/s.
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Figure 4.9 – Example of a fluid injection modeled by pore pressure diffusion, with a
diffusivity D = 0.01 m2/s.
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Figure 4.10 – Example of a fluid injection modeled by pore pressure diffusion, with
a diffusivity D = 0.001 m2/s.
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Figure 4.11 – Example of a fluid injection modeled by pore pressure diffusion, with
a diffusivity D = 0.001 m2/s.
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Figure 4.12 – Example of a fluid injection modeled by pore pressure diffusion, with
a diffusivity D = 0.001 m2/s.
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4.3 Real geometry of fault network

5 km Kickapoo 
fault

Johnson Valley fault

Hom
estead Valley fault

Emerson fault
Camp Rock fault

Figure 4.13 – Landers fault surface map of the geometry used for the simulation.

In this section, the Landers geometry fault surface map is used to run si-
mulations of earthquake cycle. We will considered three different scenarios,
where the initial nucleation will happen on the different faults. For these si-
mulations, the constant parameters are given in table 4.3. This section aims
at demonstrating that complexities of fault systems can simply emerge from
geometrical consideration without tuning any rheological parameters. The
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Name symbol Value

Reference friction coefficient f0 0.6

Reference velocity V0 10−9 m/s
Critical slip distance Dc 5 mm
Rate and state parameter a 0.008

Rate and state parameter b 0.01

Shear rate loading τ̇t 0.01 Pa/s
Normal stress σn 100 MPa
Shear modulus µ 30GPa
Shear velocity cs 3000 m/s
Dilatational velocity cp 5000 m/s
Resulting nucleation length scale Lnuc 3.183km

Table 4.3 – Table of constant parameters among all the simulation shown in this
section.

nucleation length scale here is chosen such that most of the fault (except
Kickapoo fault) must be able to rupture dynamically.

4.3.1 Scenario 1 : initial nucleation on Camp Rock fault

In this scenario the first earthquake is artificially nucleated on Camp Rock
fault by increasing the velocity on a small portion of the fault. We then leave
the simulation run for 800 years. The fact that the geometry is fixed, inevitably
leads to a accumulation or a reduction on some parts of the fault of normal
stress (Fig. 4.14). This makes some parts of the fault completely blocked
after a few seismic cycles. Particularly at kinks (see the kink on Camp Rock
fault in figure 4.14). Figure 4.16 and 4.17 show a sequence of event that be-
gins in year 406 after the beginning of the simulation. This sequence initiated
on Camp rock Fault with a slow event, and then rupture Johnson valley and
Kickapoo fault two years later. Emerson fault ruptures in year 414, and fi-
nally one half of the Johnson Valley fault is ruptured in year 418. The other
half of the Johnson valley fault ruptured 9 years after. Although the timing of
events is difficult to interpret because we are doing an oversimplified model
(2D quasidynamic model), the sequence of events is particularly interesting.
The sequence involves all the faults, and shows partial rupture on the fault
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Figure 4.14 – Landers fault surface map with the evolution of normal stress at time =

411 years

at location of geometrical complexities (kink on Camp Rock fault, branch of
Kickapoo fault and Johnson Valley fault). The fact that it is not rupturing in
only one time may be due to the resolution of our branch. Indeed, the dif-
ferent branch are well separated from each other. Another explanation, or
a complementary phenomenon is that these simulations are quasi dynamic
simulation. It was shown that for quasi dynamic simulation, it is harder for a
rupture to go through an asperity of rate strengthening than for a fully dyna-
mic rupture (Thomas et al., 2014). This is probably also the case here though
the velocity strengthening is infinitely rate strengthening (because our faults
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are finite).
Something that is also obvious from this sequence is that most of the

slow events initiate close to geometrical complexities. This is maybe an hint
that the creep burst observed by Jolivet et al. (2013) on Haiyuan fault close
to a fault overlap was not a coincidence. If we now look at the cumulative
number of earthquake, it is surprising that all the events are clustered in time
(Fig. 4.15).

Figure 4.15 – Scenario 1 : moment and moment rate versus time. Events are clus-
tering in time.
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Figure 4.16 – Scenario 1 : sequence of clustered events.
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Figure 4.17 – Scenario 1 : sequel of figure 4.16, sequence of clustered events.
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4.3.2 Scenario 2 : initial nucleation on Homestead Valley
Fault

In this scenario the first initial event was artificially triggered on Homes-
tead valley fault by introducing a perturbation in sliding velocity on the fault.
The sequence shown here begins 675 years after the beginning of the si-
mulation by a dynamic rupture on Emerson fault (Fig. 4.19 and 4.20). One
month later a subsequent partial rupture happen on Camp Rock Fault. The
same remarks as for the scenario 1 holds here : it seems that slow events
are emerging close to geometrical asperities, and that earthquakes are clus-
tering, although it happens that some fault ruptures alone (Johnson Valley
Fault at year 500, Fig. 4.18).

Figure 4.18 – Scenario 2 : moment and moment rate versus time. Events are clus-
tering in time.
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Figure 4.19 – Scenario 2 : sequence of clustered events.
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Figure 4.20 – Scenario 2 : sequel of figure 4.19, sequence of clustered events.
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4.3.3 Scenario 3 : initial nucleation on JohnsonValley Fault

In the last scenario the first initial event is again artificially triggered on
Johnson valley fault by introducing a perturbation in sliding velocity on the
fault. Like the two other scenarios, events are clustering in time (Fig. 4.21).
In this last scenario, we show a sequence that begins with a slow rupture on
Camp Rock fault 420 years after the beginning of the simulation (Fig. 4.22
and 4.23).

Figure 4.21 – Scenario 3 : moment and moment rate versus time. Events are clus-
tering in time.
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Figure 4.22 – Scenario 3 : sequence of clustered events.
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Figure 4.23 – Scenario 3 : sequel of figure 4.22, sequence of clustered events.
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4.3.4 Discussion and conclusion

In this section, we showed three different simulations of the seismic cycle
of Eastern California Shear Zone. The geometry of faults used here is smooth
and not rough. However we tried to take into account the true geometry of
these faults, based on fault mapping. In this system, despite the fact that
most of the faults are longer than the nucleation length scale, complex dyna-
mics including slow and fast events emerge. We saw that these slow events
seem to emerge close to geometrical complexities for all the three different
simulations. An other general comment is the apparent clustering of all the
events in the three simulations. This clustering of event, the trend of fault to
synchronise themselves was already observed in mode III for the two over-
lapping fault system in Chapter 3, even when the distance between them
was twice as large than the length of the faults. The clustering of big ear-
thquakes is supported by paleoseismological studies in this area (Rockwell
et al., 2000 ; Ganev et al., 2010). The rupture pattern of these different clus-
ters is not identical and varies in time. This state was already identified by
Scholz (2010) and named by him, fuzzy synchrony. This is only preliminary
work (mainly to demonstrate the power of the new algorithms developed in
this thesis), but in the future this kind of model can be used to build statistics
of potential rupture of faults. It would be interesting to know for example, in a
given system of faults, which faults are more likely to rupture together ? What
is the fault that is rupturing the most ? Is the clustering of events a reality ?
For large number of cycles, is there one pattern of rupture that is repeating ?
These are the kind of questions that can now be addressed with full physics
based models and will be in explored in the future.



Chapitre 5

Conclusion

5.1 Conclusion

Dans cette thèse nous avons exploré ce que pouvait donner l’introduc-
tion de complexités géométriques (réseau de faille, géométrie non-plane,
rugosité) dans un modèle quasi-dynamic du cycle sismique, avec une loi
de friction de type ”rate-and-state”. Cela n’avait que peu été exploré jusqu’à
maintenant, principalement à cause du temps de calcul de la réponse sta-
tique d’une faille dû au glissement sur celle-ci. Pour surmonter ce problème
du temps de calcul, nous avons fait appel à deux méthodes développées ré-
cemment : la méthode multipolaire rapide et les matrices hiérarchiques. Ces
deux méthodes accélèrent le temps de calcul du produit matrice-vecteur qui
apparait lorsque l’on discrétise l’équation intégrale de frontière (cette équa-
tion donne la solution analytique des contraintes sur une faille dues au glis-
sement, voir chapitre II). La méthode multipolaire rapide présente l’avantage
d’avoir un contrôle facile et totale de l’erreur. Cependant elle nécessite le dé-
veloppement du noyau de l’équation intégrale de frontière, ce qui la rend dé-
pendante de ce même noyau et difficile à mettre en oeuvre lorsque ce noyau
ne présente pas une forme simple à développer en série de Taylor. C’est
pourquoi dans cette thèse, l’utilisation de la méthode multipolaire rapide est
restée limitée au cas ”out-of-plane”, où le noyau avait déjà développé dans le
contexte du champ électrostatique créé par des charges ponctuelles (Green-
gard and Rokhlin, 1987 ; Carrier et al., 1988). Les matrices hiérarchiques
ne nécessitent pas de développer le noyau et sont donc utilisables dans
un plus large contexte. Une collaboration avec Stéphanie Chaillat (ENSTA)
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en avril 2017, nous a permis de mettre rapidement en place les matrices
hiérarchiques dans notre modèle (Desiderio, 2017). Nous avons pu aussi
généraliser notre code FastCycles au mode II (”in-plane”). La généralisation
au mode I et aux modes mixtes est aussi possible avec les matrices hie-
rarchiques. Nous avons donc développé un code d’éléments aux frontières
quasi-dynamique, nommé FastCycles, qui permet de modéliser n’importe
quelle géométrie et réseau de failles, avec une loi de friction de type rate
and state, et ce, de manière particulièrement rapide par rapport aux codes
existants non parallèles.

Prenant avantage de la rapidité du code, nous avons pu étudier un large
ensemble de variables pour deux failles en superposition qui interagissent
en mode III (”out-of-plane”) . Ce qui ressort de cette étude est que même une
des plus simples complexités géométriques (deux failles en superposition)
peut donner lieu à un large éventail de comportements du cycle sismique,
incluant des ruptures partielles, des évènements de glissement lent et des
tremblements de terre, et un comportement apériodique sans pour autant
devoir faire appel à des variations de la rhéologie des failles (en faisant va-
rier les paramètres de friction). Dans cette configuration géométrique, nous
avons montré que les principaux paramètres contrôlant la dynamique du
système étaient le ratio de la longueur de la faille sur la longueur caracté-
ristique de nucléation, la distance entre les failles, et le ratio a/b des para-
mètres de friction. Nous avons aussi pu montrer que dans le cas particulier
du domaine où évènements de glissement lent et tremblements de terre co-
existent, leur moment suit une loi d’échelle qui semble différente pour les
deux types d’évènements à savoir : M0 ∝ T pour les glissements lents et
M0 ∝ T 2 pour les tremblements de terre. Cela est a rapproché des deux lois
d’échelle observées par Ide et al. (2007) : M0 ∝ T pour les glissements lents
et M0 ∝ T 3 pour les tremblements de terre. La différence de puissance pour
les tremblements de terre pourrait être due au fait que notre modèle est en
2 dimensions seulement.

Dans la dernière partie de cette thèse nous avons pu montrer des résul-
tats préliminaires pour diverses configurations utilisant cette fois le mode II
(”in-plane”). Nous avons montré que l’existence d’une variation de pression
de pore pouvait perturber le cycle sismique des failles et en particulier faire
apparaître du glissement lent, chose qui a déjà été observée lors d’une ex-
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périence grandeur nature d’injection d’eau le long d’une faille dans le sud-est
de la France (Guglielmi et al., 2015).

Nous nous sommes aussi intéressés à la rugosité et aux réseaux de
faille. Nous avons montré que la rugosité, avait une forte influence sur le
cycle sismique lorsque le mode II (in-plane) était considéré. En particulier,
nous avons obtenu une distribution en taille des évènements, des ruptures
lentes et rapides et de l’apériodicité. Un résultat très intéressant de cette
étude est qu’il semble que l’on puisse s’affranchir du contrôle de la longueur
de nucléation en prenant en compte des failles rugueuses. En effet les failles
testées étant plus grandes que la longueur de nucléation d’un facteur 5, il
semble que la distribution en taille des évènements obtenus ne soit due qu’à
la rugosité. Si c’est vraiment le cas, la longueur de nucléation ne contraindrait
plus que la taille du plus petit évènement possible dans le modèle, et non
plus la dynamique du modèle lui même.

5.2 Perspectives futures

5.2.1 Rugosité et réseau de failles

Dans la dernière section de cette thèse, nous avons obtenu des résul-
tats intéressants mais préliminaires provenant de modélisation du cycle sis-
mique sur des réseaux de failles, et des failles rugueuses. Il conviendrait
de faire une étude plus précise des paramètres qui contrôlent le compor-
tement de ces failles. En particulier, a quelle condition sur le réseau ou la
rugosité des lois d’échelle apparaissent t’elles ? Pourrait-on reproduire la loi
de Gutenberg Richter juste en utilisant la rugosité sur une faille ? Pourrait-
on vraiment démontrer que la rugosité des failles permet de s’affranchir du
contrôle de la longueur de nucléation dans les modèles ? Dans les configu-
rations que nous avons testé sur une faille unique rugueuse, il semble que
non, cependant nous n’avons testé qu’un nombre extrêmement restreint de
paramètres. La rapidité de cette méthode permet justement d’explorer un
grand nombre de paramètres. Une autre question intéressante qui semble
émerger de ces simulations est la possible synchronisation des réseaux de
faille par transfert de contraintes. Plusieurs études semblent pointer dans
ce sens, à savoir des études paleosismologiques (Rockwell et al., 2000 ;
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Ganev et al., 2010), à une échelle locale (Scholz, 2010) ou régionale Do-
lan et al. (2007), et même à l’échelle mondiale (Bendick and Bilham, 2017).
Bien que les mécanismes diffèrent ici, nous pourrions tester si le transfert
de contraintes de Coulomb peut, à l’échelle locale, synchroniser les failles.

5.2.2 Simulation complètement dynamique en 3D

Un objectif à moyen terme pourrait être de généraliser ce code, en in-
cluant complètement la partie dynamique de la rupture en 3 dimensions
(FastCycles est un modèle quasi-dynamique, 2D). Ando (2016) a trouvé une
manière originale de décomposer le calcul en élément frontière globale en
séparant : (1) la partie statique, (2) le domaine entre les ondes P et les ondes
S, (3) la partie relative aux ondes P et (4) la partie relative aux ondes S du
noyau. Dans l’annexe C de son article, il y discute la possibilité d’utiliser
les matrices hiérarchiques pour encore plus accélérer le calcul. Passer de 2
dimensions à 3 dimensions pourrait aider à résoudre certain problème, no-
tamment le problème d’accumulation de contrainte normale sur la faille en
mode 2 et en deux dimensions. Si nous souhaitons passer à la 3D , il faudra
sans aucun doute paralléliser le code. Les matrices hiérarchiques à cause
de leur structure, se prètent plutôt bien à la parallélisation.

5.2.3 Atténuation des risques liés aux tremblements de
terre

Finalement une autre perspective intéressante, pourrait être la création
de banque de scénarios pour un système de failles donné. En effet, notre
code FastCycles inclut la partie statique de l’interaction des failles, se fai-
sant il pourrait se poser en complément pour aider à mieux contraindre les
modèles probabilistes actuels de rupture des failles, en prennant en compte
de possibles scénarios de ruptures sur plusieurs failles. C’est quelque chose
que nous comptons explorer dans un future proche.
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5.3 Conclusions générales

Cette thèse a aussi été l’occasion d’en apprendre plus sur les possibi-
lités offertes par les matrices hiérarchiques et la méthode multipolaire ra-
pide. La méthode multipolaire rapide est adaptée à des cas particuliers, et
est assez longue à mettre en place à cause du dévelopement nécessaire
des noyaux. En revanche, les matrices hiérarchiques sont particulièrement
simples à mettre en place et pourraient permettre d’accélérer de nombreux
codes éxistants. De nombreux problèmes en géophysique comportent des
noyaux adaptés aux matrices hiérarchiques. D’une manière générale, il res-
sort de cette thèse que toute perturbation de contrainte, que ce soit à cause
de la rugosité, de l’interaction d’autres failles, ou de l’injection d’eau usée,
peut créer les conditions favorables à l’apparition d’évènements de glisse-
ment lent. La détection de plus en plus importante d’évènements lents le
long des failles, nous pousse à penser que cela n’est pas qu’une propriété
de ce modèle, mais bien un comportement général. Nous avons montré dans
cette thèse que la prise en compte de la géométrie dans les simulations du
cycle sismique était une manière élégante de reproduire des comportements
sismiques observés. Bien sûr, la rhéologie a aussi probablement un rôle im-
portant, et seulement la prise en compte de ces deux effets pourra nous
permettre de réellement comprendre le cycle sismique.
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earthquake cycles in complex fault networks
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Résumé
Les failles sont rarement uniques et planes, le plus souvent elles agissent en réseau et présentent des complexités
géométriques (rugosité, branches...) à toutes les échelles. Cependant, la majorité des modèles de cycles sismique
jusqu’à ce jour, ne prennent pas en compte ces complexités géométriques. Cela est principalement dû aux limites
des ressources informatiques, et au temps de calcul qui ne peut être accéléré simplement qu’en géométrie plane.

Dans cette thèse, nous avons développé un nouveau modèle quasi-dynamic du cycle sismique, avec une loi
de friction de type ”rate and state” et une loi d’évolution de la variable d’état ”aging”. Pour surmonter le problème du
temps de calcul, sans pour autant se restreindre à une géométrie plane, nous avons fait appel à deux méthodes :
la méthode multipolaire rapide et les matrices hiérarchiques. Ces deux méthodes permettent des gains de temps
significatifs en réduisant la complexité du temps de calcul de l’ordre de O(N2) à O(N logN), N étant le nombre
d’éléments utilisés pour discrétiser la faille.

En utilisant ce modèle, nous avons pu explorer le comportement de deux failles dont une partie se super-
pose en mode III. Alors qu’une faille unique donne lieu à un comportement périodique, avec toujours le même
tremblement de terre se répétant, l’introduction d’une seconde faille interagissant avec la première fait apparaître
une grande complexité dans le cycle sismique : comportement apériodique, ruptures partielles, ”afterslip”, coexis-
tance des évènements lents et rapides. Dans le domaine particulier ou évènements de glissement lent et rapide
coexistent, nous avons montré que le moment des ces deux types d’événement suivaient des lois d’échelle qui
s’apparentent aux lois observées dans la nature par Ide et al. (2007). Nous avons aussi montré que la rugosité et
les réseaux de failles en mode II (”in-plane”), provoquaient le même genre de complexités dans le cycle sismique.
Cycle sismique, rate and state, complexité géometrique, rugosité, matrices hiérarchiques, méthode mul-
tipolaire rapide

Abstract
In nature, faults are rarely planar and isolated, but rather act in networks of geometrically complex faults with
roughness, kinks, jogs etc. at all scales. However, the majority of models of seismic cycles so far, do not take into
account these geometrical complexities. This is mainly because of the limitation of computational resources. In this
thesis, we developed a new model of quasi-dynamic seismic cycle, using a rate-and-state friction law with aging
state evolution. To overcome the problem of calculation time, we appeal to two recent methods : fast multipole
method and hierarchical matrices that accelerate matrix-vector products. These two methods do not add any
restriction on the geometry and number of the faults and decrease the complexity of calculation time from O(N2)
to O(N logN), N being the number of elements used to discretized the fault. Taking advantage of this model,
we explore the problem of two overlapping faults that are interacting with each other in mode III. Knowing that a
single straight fault system with constant rheological parameters gives rise to a characteristic periodic event that
ruptures the entire fault, the add of another fault makes the seismic cycle much more complex with : aperiodic
behavior, partial ruptures, afterslip, coexistence of slow and fast events. In the particular domain where both slow
and fast events coexist, we show that the moment of these events follow two observed scaling laws (Ide et al.,
2007). We also showed that roughness and fault networks in in-plane stress and strain, quickly bring complexities
when accounted for in the seismic cycle.
Seismic cycle, rate and state, geometrical complexity, roughness, hierarchical matrices, fast multipole
method
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