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Key Points:

• New brittle constitutive law describes the onset of faulting in tectonic simulations.

• Model is based on sub-critical growth and interaction of micro-cracks.

• Laboratory-derived model parameters can be used to model crustal-scale faulting.

Abstract

Adequate representations of brittle deformation (fracturing and faulting) are essential ingredients

of long-term tectonic simulations. Such models commonly rely on Mohr-Coulomb plasticity cou-

pled with prescribed softening of cohesion and/or friction with accumulated plastic strain. This

approach captures fundamental properties of brittle failure, but is overly sensitive to empirical soft-

ening parameters that cannot be determined experimentally. Here we design a brittle constitutive

law that captures key processes of brittle deformation, and can be straightforwardly implemented

in standard geodynamic models. In our Sub-Critically-Altered Maxwell (SCAM) flow law, brittle

failure begins with the accumulation of distributed brittle damage, which represents the sub-critical

lengthening of tensile micro-cracks prompted by slip on pre-existing shear defects. Damage pro-

gressively and permanently weakens the rock’s elastic moduli, until cracks catastrophically interact

and coalesce up to macroscopic failure. The model’s micromechanical parameters can be fully cali-

brated against rock deformation experiments, alleviating the need for ad-hoc softening parameters.

Upon implementing the SCAM flow law in 2-D plane strain simulations of rock deformation ex-

periments, we find that it can produce Coulomb-oriented shear bands which originate as damage

bands. SCAM models can also be used to extrapolate rock strength from laboratory to tectonic

strain rates, and nuance the use of Byerlee’s law as an upper bound on lithosphere stresses. We

further show that SCAM models can be upscaled to simulate tectonic deformation of a 10-km thick

brittle plate over millions of years. These features make the SCAM rheology a promising tool to

further investigate the complexity of brittle behavior across scales.
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1 Introduction

Tectonic plates tend to be almost rigid and primarily deform within narrow boundary zones. In the

upper crust (above ∼ 15 km depth), deformation occurs in the brittle regime through nucleation

and growth of fractures and faults, which profoundly affect the shape of geological structures and

planetary topography. Accurate descriptions of brittle deformation processes are therefore key to

answer fundamental questions such as: How and when does a new fault break? How long can

it stay active and under what conditions can tectonic stresses reactivate previously active faults?

Which mechanisms promote brittle strain localization and modulate off-fault deformation?

Laboratory experiments have long been used to learn about rock deformation mechanisms in the

brittle regime (Paterson & Wong, 2005). The brittle behavior of low-porosity crustal rocks (Figure

1) has some defining characteristics. First and foremost, the differential stress that must be applied

to break a rock (the rock’s strength) increases with pressure (Byerlee, 1967) (Figure 1A, squares

and circles). The stress required to slip on a pre-existing discontinuity is also pressure dependent,

and both stresses weakly depend on lithology (Byerlee, 1978). The contrast between these two

stresses (intact vs. pre-cut) is typically on the order of hundreds of MPas (Figure 1A). Experiments

further reveal a number of phenomena that precede macroscopic failure of a rock sample, such as:

a reduction of effective elastic moduli, volume expansion, and acoustic emissions (Figure 1B-D).

Failure is a catastrophic phenomenon that occurs when stresses reach a peak strength which is

greater when the imposed strain rate is faster (e.g., Lockner, 1998; Paterson & Wong, 2005).

Failure manifests as a transition from distributed to localized strain along macroscopic fractures

oriented in a systematic manner with respect to the stress field. It is also well documented that

rocks can creep when subjected to a constant stress below their peak strength (e.g., Kranz, 1979;

Carter et al., 1981; Baud & Meredith, 1997; Heap et al., 2009; Brantut et al., 2013, Figure1D).

Such brittle creep is typically described as involving three phases: A first phase (primary creep)

where strain rate decelerates, a prolonged second phase (secondary creep), during which creep

rate remains nearly steady, and a final stage (tertiary creep) when deformation accelerates until

macroscopic failure (Figure 1E, note that the log time representation does not convey the long

duration of the secondary phase).

This seemingly complex phenomenology is reasonably well understood as the macroscopic man-

ifestation of the growth and interaction of microcracks that nucleated on pre-existing defects

(Tapponnier & Brace, 1976). Crack growth first occurs in a distributed fashion across the sample

(Figure 1B). Macroscopic failure then results from the sudden coalescence of interacting microc-

racks (Figure 1B), whose growth is enabled by differential stress (e.g., Lockner et al., 1991; Lockner,

1998; McBeck et al., 2019). Sample dilatancy points to the tensile nature (mode-I) of some of these

cracks, which are susceptible to radiate acoustic energy as they grow (Figure 1D). The time and

strain rate dependence of these phenomena further suggests that the speed of crack propagation

in the bulk rock depends on the forces acting at crack tips, which is typical of sub-critical crack

growth processes. The main underlying mechanism in the brittle regime is known as stress corro-

sion (Atkinson, 1984). It refers to reactions occurring between a chemically active fluid and the

strained atomic bonds at the tip of microcracks, which induce stress-dependent kinetics of bond

breaking (Eppes & Keanini, 2017). While other mechanisms such as pressure-solution (e.g., Gratier

et al., 2013), can also contribute to rate-dependent deformation as pressure increases, sub-critical

crack growth has been identified as a key contributor to the strain rate (i.e., time-) dependent

behavior of brittle rocks in the brittle regime that is particularly well highlighted by brittle creep
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Figure 1: A. Experimental constraints on brittle rock strength as a function of increasing pressure

for intact (squares and circles) and pre-cut (crosses) samples. B–D.Schematic illustration of axial

stress, volumetric strain and acoustic energy vs. axial strain, in triaxial experiments performed

at a constant strain rate. Point C ′ marks the onset of dilatancy. Sample cross sections showing

the spatial pattern of acoustic emissions are reproduced from Lockner et al. (1991). E. Typical

pattern of axial strain vs. time in a brittle creep experiment in which the differential stress ∆σ

is imposed and maintained. Colors correspond to values of ∆σ close to (red) or far from (yellow)

the rock’s peak strength. Here compressive axial strains, strain rates and stresses are plotted as

positive numbers for clarity.

experiments (Brantut et al., 2013).

Though the phenomenology of brittle failure was well known long before geodynamicists harnessed

the power of microprocessors, most tectonic simulations currently rely on a simplified treatment

that consists in capping stresses at a rate-independent Mohr-Coulomb yield envelope (e.g., Poli-

akov & Buck, 1998; Gerya, 2010). This has the advantage of being numerically efficient, adequately

capturing the pressure-dependent frictional strength of pre-cut rocks, and spontaneously localiz-

ing plastic strain through the bifurcative properties of the Mohr-Coulomb plastic flow rule (e.g.,

Rudnicki & Rice, 1975; Vermeer & De Borst, 1984; Lemiale et al., 2008; Kaus, 2010). In this

framework, strain localization is typically accompanied by a rotation of the principal stresses in-

side the incipient shear band, which leads to a reduction of the remote stresses (Le Pourhiet, 2013).
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Figure 2: A. Schematic representation of an elastic-plastic rheology with strain weakening, under

constant applied strain rate. The difference between initial (σ
(MAX)
y ) and final (σ

(MIN)
y ) yield

stresses are caused by a prescribed decrease of frictional properties µ and C over a specified

amount of plastic strain ∆ePII . B–C. Example simulation of extension in a 10 km-thick elastic-

plastic upper crust overlying an inviscid medium (Lavier et al., 2000). The only difference between

the two panels is the choice of ∆ePII , which is small in B, producing a large-offset normal fault

(detachment), and large in C, producing two conjugate faults that outline a graben structure. In

this example the difference between σ
(MAX)
y and σ

(MIN)
y is caused by a drop in material cohesion

while friction is kept constant.

By itself, this rotation-induced ”structural” softening does not account for the 100s of MPas that

separate the strength of intact rocks from their residual strength once faulted (Figure 1A). An

approach commonly used to promote sustained strain localization in tectonic simulations (Figure

2) is to weaken the material friction µ and cohesion C, from {µmax, Cmax} to {µmin, Cmin} over

a certain amount of non-recoverable (plastic) strain ∆epII (e.g., Poliakov & Buck, 1998; Lavier

et al., 2000, Figure 2A). This amounts to enforcing a contrast between intact and broken rocks

reminiscent of the strength contrast observed experimentally.

Strain-weakened Mohr-Coulomb plasticity however presents several drawbacks. This parameteri-

zation typically ignores the strain rate dependence of rocks’ intact strength, and relies on a single

value of intact friction and cohesion to determine the intact yield strength. Further, the critical

plastic strain ∆epII is meant to represent a wide range of possible weakening mechanisms, and is

therefore not easily quantified through laboratory experiments. These limitations can be problem-

atic since the choice of weakening parameters can have major consequences on the outcome of a

tectonic simulation. Lavier et al. (2000) for example pointed out the spectacular effect of ∆epII on

tectonic styles produced in a rifting simulation (Figure 2B vs. 2C). While some recent studies have

investigated the effects of various weakening parameterizations (e.g., Duretz et al. (2021); Meyer et

al. (2017); Naliboff et al. (2020); Pan et al. (2023)), it remains common practice to rely on ad-hoc

softening rules in geodynamic simulations without assessing their impact on model behavior.

One path toward remedying this issue is to improve the way geodynamic simulations parameterize

the transition from intact to broken rock, in a manner that allows more direct comparison with

experimental data and can be interpreted in terms of underlying deformation mechanisms. An

adequate parameterization of progressive brittle failure should indeed account for standard obser-

vations such as the pre-peak reduction in elastic moduli, the evolving spatial pattern of acoustic
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emissions, or sample dilatancy which ceases upon failure (Figure 1B–D). It should also account for

the strain rate dependence of brittle yielding and the occurrence of brittle creep. Finally, it should

include a representation of the ever-evolving internal state of the rock to include a memory of past

deformation events. A promising alternative is to turn to models that describe brittle yielding as

the accumulation of damage which ultimately leads to macroscopic failure.

A first family of such models are Continuum Damage Mechanics models. They treat failure as

a progressive phenomenon indexed on the alteration of a rock’s internal state (damage), and can

produce strain rate-dependent brittle strengths, as well as pre-peak softening. Some are built on

thermodynamic descriptions of energy dissipation during inelastic deformation (e.g., Lyakhovsky

et al., 1997; Hamiel et al., 2004; Karrech et al., 2011a), others simply index damage growth on

excess stresses above a yield stress, and strain (e.g., Manaker et al., 2006). They do not assume a

specific microstructure, which makes them flexible but also not directly interpretable in terms of

deformation processes.

In that regard, micromechanics-based models have been particularly successful at capturing the

broad range of behaviors associated with brittle deformation (Paterson & Wong, 2005). In this

family of damage models, assumptions about the distribution and geometry of pre-existing defects

in the material allow the analytical determination of stress concentrations around them, using linear

elastic fracture mechanics. Motion along defects cause the stress intensity factors (i.e., a measure of

the stress state at the edge of discontinuities) at their tips to increase up to the fracture toughness

of the rock, allowing tensile crack propagation. Drivers of such stress heterogeneities can be planar

flaws such as grain boundaries, pre-existing microcracks (e.g., Kachanov, 1982a, 1982c; Nemat-

Nasser & Horii, 1982; Ashby & Sammis, 1990), pores (Sammis & Ashby, 1986), moduli contrasts

across grains in contact (Dey & Wang, 1981), or can even be left undetermined (e.g., Costin,

1985). Tensile cracks, in turn, alter the effective elastic properties of the rock as they lengthen,

in an anisotropic fashion (Walsh, 1965a, 1965b; Budiansky & O’connell, 1976; Kachanov, 1993;

Deshpande & Evans, 2008). This framework has been used to model high strain rate deformation

(e.g., during seismic rupture, Bhat et al., 2012; Thomas et al., 2017) assuming critical fracture

propagation, as well as slow deformation assuming sub-critical crack growth (Kachanov, 1982b).

The latter class of models has also been used to describe brittle creep, assuming pre-existing planar

defects (Brantut et al., 2012), successfully accounting for the multi-phased dynamics of brittle creep

(Figure 1E).

One drawback of this approach is its computational cost, because it requires to accurately resolve

the kinetics of fracture lengthening, which crack interactions ultimately render unstable close to

macroscopic failure. This may explain why it has not yet been implemented in long-term, large scale

tectonic simulations, even though the processes it describes are clearly central to the initiation and

evolution of crustal faults. By representing specific deformation mechanisms that can be studied in

the laboratory, these models can indeed be calibrated against experiments and need not resort to

ad-hoc macroscopic parameters (e.g., Costin, 1983, 1985; Bhat et al., 2011; Brantut et al., 2012).

As a first step in this direction, this study aims at constructing a constitutive brittle rheology rooted

in the subcritical growth of microcracks from pre-existing rock defects. We seek a formulation that

(1) captures the essence of brittle rock behavior at the expense of a few simplifications, (2) has a

straigthforward micromechanical interpretation, (3) can be calibrated against experimental data,

and (4) is usable in standard 2-D plane strain numerical geodynamic models. We propose such

a constitutive law in Section 2, and describe its fundamental behavior in terms of stress-strain
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curves in Section 3. This allows us to calibrate its parameters using experimental data from both

constant strain rate and brittle creep tests. We then implement our constitutive law in 2-D plane

strain numerical simulations that reproduce experimental conditions (Section 4), and discuss the

model’s key features in Section 5. Finally, we implement our constitutive law in a crustal-scale

tectonic simulator and compare it to the standard elasto-plastic approach (Section 6).

2 A Sub-Critically Altered Maxwell (SCAM) constitutive

law for brittle deformation

Notation

Mohr-Coulomb plasticity

µ friction coefficient

ϕ (= arctanµ) friction angle on shear defects (ϕm at macroscopic scale)

Cm (macroscopic) cohesion

σy yield stress

σ(max)
y intact plastic yield stress (determined by µmax and Cmax)

µmax initial friction coefficient (in strain weakened Mohr-Coulomb plasticity)

Cmax initial cohesion (in strain weakened Mohr-Coulomb plasticity)

σ(min)
y fully weakened plastic yield stress (determined by µmin and Cmin)

µmin fully weakened friction coefficient

Cmin fully weakened cohesion

∆epII accumulated plastic strain needed to fully weaken the frictional properties

Damage mechanics

D ∈ [D0, 1] damage internal state variable

D0 ∈ [0, 1] damage value corresponding to no tensile defect in the rock

Di initial damage

Dc critical damage at the transition between the isolated crack regime and the interacting crack

regime

γ = f(D = 1) ratio of residual over reference shear modulus

Nv number of shear defects per unit volume

Vc characteristic volume per crack (1/Nv)

Ac characteristic area per crack
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Ab average area that separates neighboring cracks (bulk area in the (σ1, σ2) plane)

ψ shear defect angle with respect to σ1

α cosψ

a shear defect radius

l tensile ”wing” crack length

KI mode I stress intensity factor

K
(w)
I mode I stress intensity factor due to the wedging force Fw

K
(σ3)
I mode I stress intensity factor due to σ3

K
(i)
I mode I stress intensity factor due to interactions between cracks

σi
3 internal stress acting in the direction of σ3 resulting from cracks interaction

KIC mode I fracture toughness

l̇0 characteristic crack growth rate

n Charles law exponent (corrosion index)

β geometric regularization factor

A1, A3 constants that depend on friction and the orientation of shear defects

Stresses and strains

εij strain tensor

σ1 most compressive principal stress

σ3 least compressive principal stress

∆σ = σ3 − σ1, differential stress

∆σc differential stress at KI = 0 and D = D0

∆σbc Minimum brittle strength

P = −σkk/3 pressure

pc = −σ3 confining pressure in experiments

eij deviatoric strain tensor

sij deviatoric stress tensor

eax deviatoric axial strain

sax deviatoric axial stress

J2(X) = (dev(Xij)dev(Xij))/2 second invariant of the deviator of second order tensor X

sII =
√
J2(σij) scalar shear stress magnitude
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syij deviatoric stress tensor satisfying the Mohr-Coulomb yield criterion

eII =
√
J2(εij) scalar shear strain magnitude

εpij plastic strain tensor

Additional notations

G effective shear modulus

G0 = G(D = D0) reference shear modulus corresponding to the lowest damage state (no tensile

defect)

f(D) weakening function

ν Poisson’s ratio

ηD damage viscosity

ηp plastic viscosity (2-D SCAM simulations)

ηeff effective viscosity (2-D SCAM simulations)

ηmin minimum viscosity (2-D SCAM simulations)

ηmax maximum viscosity (2-D SCAM simulations)

vi Components of the velocity field

ρ density

gi Components of the gravity field

∆t time step

2.1 Generic stress-strain relation

Our constitutive model builds upon an isotropic, incompressible elastic stress-strain relationship :

eij =
sij
2G

, (1)

linking the deviatoric strain and stress tensors, eij and sij , through shear modulus G. In the

following, we adopt the convention of summed repeated indices. Our fundamental assumption is

that the shear modulus is altered as a function of the internal state of the material, which leads to

path-dependent behavior. Specifically, we assume that G decreases as a function of a scalar state

variable D, a measure of rock damage, to be defined in section 2.2:

G = G0f(D) . (2)

In equation (2), G0 denotes the shear modulus of the material in its least damaged state, and

f(D) a decreasing scalar function of D, hereafter referred to as “weakening function”, satisfying
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f(D) ∈ ]0, 1] and f ′(D) < 0. The incompressible elastic relationship (1) can be recast as a damaged-

elastic constitutive law

eij =
sij

2G0f(D)
, (3)

which takes the form of a Maxwell visco-elastic constitutive law upon time differentiation:

ėij =
ṡij

2G0f(D)
+

sij
2ηD

. (4)

In equation (4) ηD is a viscosity associated with damage growth:

ηD =
f2(D) G0

|f′(D)| Ḋ
. (5)

The damage state variable is related to the lengthening of mode-I microfractures, an intrinsically

dilatant process. Throughout this study, inelastic dilatancy is neglected in favor of a purely devia-

toric description of the damaged rheology, focusing on the role of microcracking on shear modulus

alteration, and on fault nucleation. A strategy to account for damage-induced dilatancy within

the SCAM framework will nonetheless be outlined in Section 7. In the following, we detail the

micromechanical interpretation of the damage variable, the model governing its growth rate, as

well as the weakening function.

2.2 Micromechanical representation of rock damage

Our goal is to model the accumulation of damage in the upper crust, which is primarily composed

of low-porosity (< 1%) magmatic and metamorphic silicate rocks. These units lie in an overall

compressive stress state, with pressures up to hundreds of MPas. Yet, distributed brittle deforma-

tion typically involves the opening of mode-I microcracks (Figure 1), which is made possible by

stress concentrations around defects or grain boundaries. To describe these processes, we adopt

the damage framework developed by Ashby and Sammis (1990) which has been used successfully

to predict the brittle strength of several rocks (e.g., Baud et al., 2000; X. Wu et al., 2000; Bhat et

al., 2011) at low confining pressure, and the dynamics of fracturing during seismic ruptures (Bhat

et al., 2012; Thomas et al., 2017). This model considers the growth of tensile “wing”-cracks from

the tips of penny-shaped shear defects distributed within the rock (Figure 3A-D).

The damage variable represents the relative volume occupied by cracks as the wings lengthen in

the direction of the most compressive stress (Figure 3D). It is defined as

D =
4

3
πNv(αa+ l)3 , (6)

where Nv is the number of shear defects per unit volume, a and l are the radius of the shear defects

and the length of the wing cracks, respectively. α = cosψ is the cosine of the angle ψ between

the shear defects and the most compressive stress (Figure 3D). The least damaged state (D = D0)

corresponds to the state of a rock containing only shear defects, where no wing crack has nucleated

(i.e., l = 0). The most damaged state occurs at D = 1 when the volume of the spheres enclosing
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Figure 3: A–C. Cross-sections in the (σ1, σ3) plane showing the array of cracks growing in a rock,

in the model of Ashby and Sammis (1990). These cracks initially grow from a shear defect of radius

a, oriented at an angle ψ to σ1. At its tips, ”wing” tensile cracks of length l (D) may preexist.

Under differential stresses unable to overcome the frictional resistance along shear defects (A),

the stress concentration (KI) at their edges is negative (E) and the material deforms elastically.

Once stresses overcome the frictional resistance, the sliding shear defects exert a wedging force Fw

increasing KI (F). Positive KI promotes stable tensile cracks growth (B). As cracks lengthen, they

begin to interact (C). At this point damage growth enters an unstable, accelerating regime (G).

H. Alteration of the shear modulus as a function of damage.

each wing crack has grown to match the characteristic volume defined by the spacing of defects

(Vc = 1/Nv). This upper bound is the result of the formulation of the interaction between cracks,

detailed in Section 2.3. It represents a stage at which coalescence of cracks becomes unavoidable.

For simplicity, we only consider shear defects with normal vectors lying in the plane of the two

extreme principal stresses σ1 and σ3. This allows us to index their activity on a 2-D Mohr-Coulomb

yield criterion.

2.3 Damage growth

We assume that under low strain rates and on long time scales, wing cracks lengthen in a sub-

critical manner, i.e., with stress intensity factors (KI) lower than the fracture toughness (KIC) of

the material (Atkinson, 1984). To capture this process in our constitutive law, we adopt the stress

corrosion law introduced by Charles (1958), which has proven successful at explaining experimental

data (e.g., Kachanov, 1982c; Atkinson, 1984; Deshpande & Evans, 2008; Brantut et al., 2012).

Specifically, the crack growth rate writes
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l̇ = l̇0

(
KI

KIC

)n

, (7)

where l̇0 is a characteristic crack growth rate and n the Charles law exponent. The damage growth

rate is then retrieved from the wing-crack tip speed

Ḋ =
∂D

∂l
l̇ =

3D
2
3D

1
3
0 l̇0

αa

(
KI

KIC

)n

. (8)

This equation applies only when KI > 0, otherwise Ḋ = 0. Using equation (7) requires an

expression for KI , the stress intensity factor at the tip of the wing cracks. Following Ashby and

Sammis (1990), we assemble KI as the sum of three terms :

KI = K
(w)
I +K

(σ3)
I +K

(i)
I . (9)

The first term (K
(w)
I ) represents the stress concentration due to frictional slip on the shear defects

wedging open the wing cracks. Following Tada et al. (1973), it can be expressed as the action of

a tensile wedging force Fw at the center of an equivalent penny-shaped crack. The radius of this

circular crack is that of the sphere enclosing one entire wing crack (shear defect + tensile wings,

Figure 3D). However, instead of writing it l+αa, as in equation (6), we write it l+ βa, where β is

a regularization factor. This approach was adopted by Ashby and Sammis (1990) to ensure that

in the absence of wing cracks (l = 0, D = D0), KI matches the stress intensity factor at the tip of

shear defects as derived by Ashby and Hallam (1986). This yields β = 1/π (Bhat et al., 2011) and

the following expression for K
(w)
I :

K
(w)
I =

Fw

[π(l + βa)]3/2
. (10)

The wedging force relates to the excess shear stress acting on the defects (of area πa2) relative to

their frictional resistance. Following Ashby and Sammis (1990), we write :

Fw = (σ3A3 − σ1A1) a
2 . (11)

A1 and A3 are constants that depend on the friction and orientation of the shear defects. In the

following, we assume ψ = 45◦ as Ashby and Hallam (1986) showed that this orientation maximizes

the wedging force over a wide range of wing crack lengths. This yields :

A1 = π

√
β

3

[√
1 + µ2 − µ

]
(12)

A3 = A1

[√
1 + µ2 + µ√
1 + µ2 − µ

]
. (13)

Overall, K
(w)
I strongly depends on the differential stress ∆σ = σ3 − σ1 that develops in the rock,

as it allows frictional slip on the defects and wedging of the wings. By contrast, the second term
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in equation 9 (K
(σ3)
I ) represents remote wing-normal compression σ3 acting to close tensile cracks.

Bhat et al. (2011) estimated it based on results from Tada et al. (1973) as:

K
(σ3)
I =

2

π
(σ3)

√
πl . (14)

Finally, the third term (K
(i)
I ) serves to describe the interaction between cracks as they lengthen,

and is a core feature of this micromechanical model. Ashby and Sammis (1990) required that the

wedging forces applied to cracks be compensated by an internal stress (σ(i) in Figure 3) to satisfy

mechanical equilibrium. The internal stress is applied on an effective area perpendicular to σ3 that

separates neighboring cracks (Ab). The sum of this area with the characteristic area of each wing

crack (π(l + αa)2) amounts to the area Ac that is obtained by projecting the spherical volume

Vc = 1/Nv along σ3. Therefore, Ab = Ac − π(l + αa)2, with

Ac = π1/3

(
3

4Nv

)2/3

. (15)

This leads to the following expression for the internal stress acting in the direction of least com-

pression, σi
3 :

σi
3 =

Fw

Ab
. (16)

Internal stress σi
3 increases dramatically as wings lengthen (D approaches 1) and the areas between

fractures (Ab) shrink. This is when crack interactions become dominant. K
(i)
I is readily obtained

from σi
3 by analogy with (14) :

K
(i)
I =

2

π

(
σi
3

)√
πl . (17)

The full expression of KI then reads

KI =
Fw

[π(l + βa)]3/2
+

2

π

(
σ3 + σi

3

)√
πl . (18)

It can be recast as a function of damage rather than crack length, following Bhat et al. (2011),

yielding

KI =
√
πa [(σ3A3 − σ1A1) (c1 + c2) + σ3c3] , (19)

where c1, c2 and c3 are functions of the damage state that write

c1 =
1

π2α3/2
[
(D/D0)

1/3 − 1 + β/α
]3/2 (20)

c2 =
2

π2α3/2

[
(D/D0)

1/3 − 1
]1/2 [ D

2/3
0

1−D2/3

]
(21)

c3 =
2
√
α

π

[
(D/D0)

1/3 − 1
]1/2

. (22)
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2.4 Weakening function

We next turn to the formulation of the function f(D) used to weaken the shear modulus as damage

accumulates. The simplest effective medium representation of a cracked isotropic material assumes

non-interacting cracks (Kachanov, 1993). Within this approximation, the change in elastic strain

energy due to a population of cracks can be inferred by summing their individual contribution.

This amounts to elastic compliances scaling linearly with damage. Elastic stiffnesses therefore scale

as (1 + CD)−1, where C is a constant that depends on the orientation distribution and geometry

of cracks. Linearization of this form provides a reasonable estimate of elastic stiffnesses at low

damage values. Because the damage framework of Ashby and Sammis (1990) sets an upper bound

on damage at 1, we use this approximation and postulate a linear weakening of G with respect to

damage D :

f(D) =
γ − 1

1−D0
D +

1− γD0

1−D0
, (23)

such that G(D0) = G0 and G(D = 1) = γG0. The weakening parameter γ ∈ ]0, 1] can be thought

of as a property of the material representing the stiffness of a fully damaged rock (e.g., a fault

zone) normalized by its maximum possible stiffness in a low-damage state. The derivative of our

weakening function with respect to D is :

f ′ =
γ − 1

1−D0
. (24)

It should be noted that for simplicity our model weakens the shear modulus isotropically, even

though damage grows in a highly anisotropic fashion.

To recap, equations 4 and 5, combined with equations 8, 19 and 23 make up the complete SCAM

constitutive law, which is akin to Maxwell visco-elasticity with a strongly non linear dependence

of viscosity on stress, and progressive alteration of the elastic modulus with increasing damage.

These equations are reiterated below:

ėij =
ṡij

2G0f(D)
+

sij
2ηD

ηD =
f2(D) G0

|f′(D)| Ḋ

Ḋ =
3D

2
3D

1
3
0 l̇0

αa

(
KI

KIC

)n

KI =
√
πa [(σ3A3 − σ1A1) (c1 + c2) + σ3c3]

f(D) =
γ − 1

1−D0
D +

1− γD0

1−D0

.
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3 Application to a 0-D triaxial loading setup

3.1 Constitutive SCAM equations in a triaxial setup

To illustrate the behavior of the SCAM flow law, we implement it in a geometry typical of rock

deformation experiments (Figure 4A) : Compression along the axis of a cylindrical sample (σ1,

along direction x1) subjected to axially symmetric confining stress (σ3, along directions x2 and

x3). The corresponding stress tensor writes

σ =

σax 0 0

0 −pc 0

0 0 −pc

 , (25)

where σax is the axial stress and pc the confining pressure surrounding the curved surface of the

sample. We use a simplified point-wise formulation of our differential constitutive relationship (4)

assuming homogeneous deformation within the sample. As stated previously, we ignore volumetric

strain and focus solely on the relationship between the deviatoric axial strain rate ėax and the

deviatoric axial stress sax. The constitutive equations reduce to the following ordinary differential

equation (ODE) :

ėax =
ṡax

2G0f(D)
+
sax
2ηD

, (26)

to be solved jointly with the damage evolution equation (8).

A first type of experiment consists of applying a constant axial strain rate and measuring the axial

stress. In our framework, sax verifies :

ṡax = 2G0f(D)

(
ėax − sax

2ηD

)
, (27)

with sax(t = 0) = 0 and D(t = 0) = Di ≥ D0.

Another class of experiments (brittle creep tests) consists of applying a constant axial stress and

measuring the axial strain. In our model, the latter is given by

ėax =
sax
2ηD

, (28)

In this case, the initial value of D cannot be chosen arbitrarily and must be consistent with the

imposed stress. To ensure this, we first integrate the constant strain rate and damage growth ODEs

(equations 27 and 8) up to the desired value of axial deviatoric stress sax assuming a known strain

rate. The damage value reached at the end of this preliminary step is used as initial condition for

equations 28 and 8, along with eax(t = 0) = 0. These equations are integrated up to D close – but

not equal – to 1, due to the singular behavior at this limit, coming from the c2 term in equation

21.

The above ODEs are integrated numerically using a 5/4th order Runge-Kutta method (Tsitouras et

al., 2009). This is done within the DifferentialEquations.jl Julia package (Rackauckas & Nie, 2017)
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using adaptive time-stepping with absolute and relative tolerance of 10−6 and 10−4 respectively.

3.2 Stress-strain curves and creep regimes

We illustrate the fundamental behavior of the SCAM model in triaxial experiments using reference

micromechanical parameters appropriate for Westerly granite (Table 1), which will be rigorously

determined in Section 3.3. Constitutive equations are integrated up to D = 0.95.

Figure 4A, B correspond to a constant strain rate setup at 10−5 s−1, under 150 MPa of confining

pressure. The axial stress-strain curve displays an initial elastic phase followed by visible weakening

of the effective modulus when differential stress exceeds ∼ 700 MPa. This is accompanied by

damage growth (Figure 4B) which accelerates catastrophically as the sample reaches its peak

stress. The post-peak stress drop is similarly abrupt as damage approaches 1.

Figure 4C, D correspond to a constant stress simulation starting at the yellow star shown in panels

A and B. Strain rate first decelerates, then remains steady for hours, and ultimately accelerates up

to the macroscopic failure of the material, consistent with the subsequent phases of brittle creep

observed experimentally (Figure 1E). What is usually referred to as secondary creep would here

be associated to the transition between decelerating and accelerating creep, and was not depicted

in Figure 4C, D because of the clear bimodal dynamics of brittle creep expressed by the SCAM

model. This strain rate behavior is associated with dynamics similar to those of the damage growth

rate, visible through the slope of damage evolution with respect to time in Figure 4D.

The effect of various model parameters and experimental conditions on the behavior of the SCAM

model under constant strain rate is shown in Figure 5. The black curves correspond to a strain rate

of 10−5 s−1, a confining pressure of 150 MPa and the reference set of micromechanical parameters

for Westerly granite (Table 1). Figure 5A,B shows that a reduction of the imposed axial strain

rate leads to a lower peak stress due to damage having more time to accumulate under lower axial

stress, precipitating failure (Figure 5B). Increasing the radius of the shear defects (Panel E) while

keeping D0 constant leads to a decrease of the peak stress. This is because the stress intensity

factor at the wing crack tips increases with increasing shear defect size, prompting faster crack

growth. Thus, significant damage can build under lower stresses, and the peak stress is reached

sooner. Increasing D0 while keeping the shear defect size constant (Panel F) also leads to a lower

peak stress, but limits the amount of softening that takes place pre-peak. This is because cracks

arranged in a denser array will interact and coalesce sooner. The stress decrease additionally does

not display the abrupt drop seen with the reference case, which we attribute to the larger reduction

of shear modulus per damage increment. A decrease of the Charles law exponent n (Panel G) or

friction coefficient (Panel D) similarly lowers the peak stress, by enabling damage build-up under

lower stress intensity factors (7) and under lower differential stress, respectively. Finally, a greater

degree of modulus weakening (via a reduced γ parameter) leads to more pre-peak softening but

has a limited impact on the peak stress (Panel H). It also stabilizes the stress drop by limiting the

unstable growth of damage as it gets close to 1. In this case of extreme loss of elastic stiffness, the

larger negative stress increment associated with damage increment post-peak tends to reduce the

catastrophic increase in damage growth.

To better visualize the dynamics of damage growth in the SCAM model, we represent constant

strain rate experiments in a plot of differential stress vs. damage (Figure 6A). This representation

allows us to map the stress intensity factor at the wing-crack tip (colors and contours in panel A),
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Figure 4: 0-D simulations based on the SCAM model in a typical triaxial setup with a confining

pressure of 150 MPa (stress state shown in Panel A). A-B. Differential stress and damage vs.

strain in a constant strain rate experiment (10−5 s−1). C-D. Deviatoric axial strain rate and

damage vs. time in an experiment where stress is kept constant after reaching the stress and

damage state pictured by the stars in panels A and B. Here strains and stresses are represented

positive in compression for clarity.

which gives us a proxy for damage growth rate. We specifically highlight two sets of experiments.

The first set is performed at a laboratory strain rate ε̇ax = 10−5 s−1, and the second at a tectonic

strain rate of 10−15 s−1, both under a confining pressure pc = 150 MPa. In each set, we vary the

initial damage Di, using values of 0.136 (D0), 0.227, 0.318, 0.409 and 0.5.

Each experiment follows a specific trajectory in differential stress vs. damage space. For example,

in the case of no initial tensile cracks (Di = D0), differential stress first increases while damage

remains constant. This is because in the initial elastic regime, KI <= 0 and wing cracks cannot

grow. Once the system reaches the domain of positive KI , damage can start growing, and increases

with stress. The system appears to follow a contour of constant KI up to the peak differential

stress (∼ 1140 MPa). Past this point, the differential stress starts to decrease while damage keeps

increasing at an accelerating pace. This is due to the fact that KI , which sets the rate of damage

growth, now increases with increasing damage. This final phase of rapid failure manifests as an

abrupt post-peak stress drop in the stress-strain curve (Panel B).

These three regimes, characterized by the absence of growth, the stable and then the unstable

growth of damage is illustrated in Figure 3 with the three numbered stars respectively. Simulations
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Figure 5: Effect of strain rate (A,B), confining pressure pc (C), friction coefficient µ (D), shear

defect radius a (E), shear crack density D0 (F), corrosion index n (G) and residual shear modulus

γ (H) on differential stress with respect to deviatoric axial strain for 0-D SCAM simulations. Black

lines correspond to the best fitting parameters for Westerly granite detailed in Section (3.3). Here

strains and stresses are represented positive in compression for clarity.

carried out under the same strain rate, but with greater initial damage show the same behavior,

and their trajectories tend to align along the same iso-KI (∼ 0.3KIC) path as followed by the

Di = D0 case. This forms an envelope that materializes an upper bound of the differential stress

value with respect to damage. This envelope corresponds to (KI ∼ 0.05KIC) for tectonic strain

rates, and therefore lies at lower stress values. If, however, a simulation is initiated with damage

in excess of ∼ 0.45 (e.g., orange paths in panel A), damage will immediately start growing in the

unstable regime, where ∂KI/∂D > 0. In this case, the system reaches a peak stress which is lower

than that of the other simulations.
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Figure 6: A. Trajectories of differential stress with respect to damage at ε̇ax = −10−5 s−1 and

ε̇ax = −10−15 s−1 for various initial damages (color code) and at constant confining pressure

pc = 150MPa. The background is colored according to KI/KIC , with the two iso-values pictured

with black dashed contours representing KI = 0 and KI = KIC respectively. The near-vertical

dashed black line highlights damage values where ∂KI/∂D = 0 under constant ∆σ. B. Same

trajectories plotted as standard deviatoric axial strain vs. differential stress, along with the color

code for initial damage state. Strains and stresses are represented positive in compression for

clarity.

3.3 Calibration of SCAM parameters with laboratory experiments

The ability of the SCAM model to reproduce both constant strain rate and constant stress ex-

periments suggests that laboratory data can be used to constrain its micromechanical parameters

(Table 1). Specifically, stress-strain curves from constant strain rate experiments under various

confining pressures can help constrain elastic and frictional properties, while strain rates and time

to failure in brittle creep tests contain information about the kinetics of damage build-up.

To leverage this information, we use the 0-D ”forward” models presented in the previous section in

a Bayesian inversion framework (Tarantola, 2005, see A for details). We expect 0-D models to be

representative of the homogeneous deformation stage up to the peak stress (prior to localization),

as micro-cracking is known to first develop in a distributed fashion (Figure 1).

3.3.1 Experimental data

We apply the Bayesian inversion method to experimental data corresponding to two lithologies.

The first is Westerly granite, a rock type widely used in experiments that is representative of the
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Table 1: Inverted parameters

symbol description Westerly granite Darley Dale sandstone

G0 shear modulus at D = D0 (GPa) 28.72± 0.02 5.202± 3

γ residual ratio G/G0 at D = 1 0.432± 0.004 0.281± 0.003

µ friction coefficient of the shear flaws 0.703± 0.001 0.5093± 0.0003

a shear flaws radius (µm) 6.66± 0.16 656.8± 4.3

n Charles law exponent 11.82± 0.03 24.96± 0.07

l̇0 Charles law reference crack growth rate (mm s−1) 16.44± 0.19 0.0029± 0.0001

KIC fracture toughness (MPa m1/2) 1.29± 0.01 1.412± 0.004

D0 D associated to the shear flaws only 0.1358± 0.0003 0.3724± 0.0008

Di initial value of D 0.1361± 0.0003 0.27± 0.05

continental upper crust in term of mineralogy and low porosity. This rock has been shown to

experience the type of diffuse cracking and catastrophic fracture coalescence that our model seeks

to capture (e.g., Tapponnier & Brace, 1976; Lockner et al., 1991). We specifically use constant

strain rate (ε̇ax = 10−5s−1) experiments under confining pressures of 20, 30, 80 and 150 MPa

in dry conditions from Wawersik and Brace (1971) (Figure 7A). We complement these data with

minimum brittle (secondary) creep strain rates measured under seven imposed differential stresses

ranging from 77% to 93% of the short-term strength (meaning the peak strength at a laboratory

strain rate) of the rock subjected to an effective confining pressure of 30 MPa in water-saturated

samples by Brantut et al. (2012) (Figure 7B).

The second rock type we consider is Darley Dale feldspar-rich sandstone, another widely studied

lithology. While its properties are likely less representative of the upper crust than that of Westerly

granite, inferring its micro-mechanical parameters can provide helpful comparisons to assess the

validity of our model. One caveat of this choice is that porous sandstone may deform according

to mechanisms other than the growth of tensile cracks from shear defects, such as Hertz-contact

driven microfracturing (e.g., Zhang et al., 1990), tensile cracks nucleating from pores (e.g., Sammis

& Ashby, 1986), or distributed cataclastic flow where microcracking grows along grain boundaries

(e.g., Menéndez et al., 1996). Heap et al. (2009) however report that for confining pressures up to

their maximum of 50 MPa, stress-induced damage grows predominantly in a direction subparallel

to the axis of compression. Additionally, dilatancy patterns at constant strain rate are very similar

to what is observed in low-porosity rocks such as Westerly granite (e.g., Zoback & Byerlee, 1975;

X. Wu et al., 2000). These observations suggest that the wing-crack model remains a relevant

conceptual framework for the brittle deformation of Darley Dale sandstone, at least below 50 MPa

of effective confining pressure.

Friction coefficient µ, fracture toughness KIC and pre-existing crack length a were previously

estimated for Darley-Dale by X. Wu et al. (2000) within the Ashby and Sammis (1990) wing-crack

framework, but assuming critical crack growth (i.e., at KI = KIC). Here, we additionally use

entire time series of brittle creep strain rates from Heap et al. (2009) to provide strong constraints

on the kinetics of crack growth. We specifically use experimental results performed under constant

stresses of 80, 85 and 90% of the short-term strength from Heap et al. (2009) (Figure 8B). We

combine these time series with stress-strain curves determined under a constant strain rate of

10−5s−1 and confining pressures of 10 and 50 MPa in water-saturated samples from the same

authors (Figure 8A). While data was also available for a confining pressure of 30 MPa, it displayed

a significantly different shear modulus compared to the other two. We thus decided to exclude it
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from the joint inversion procedure.

It should be noted that because our constitutive law is based on incompressible elasticity, we

remove the volumetric component of elastic deformation (i.e., the Poisson effect) from constant

strain rate experimental data. In practice, this means that the reported strain rate is converted

to a deviatoric axial strain rate ε̇′ax = 2
3 (1 + ν)ε̇ax, with ν the Poisson’s ratio, in order to compare

our simulations with laboratory results.

3.3.2 A-priori parameters

The a-priori value of G is chosen based on the initial slope of the elastic (linear) portion of available

stress-strain curves. The initial value of the friction coefficient µ is set to the standard value of

0.65 (Byerlee, 1978). We initially assume KIC to fall between values determined experimentally in

quartz (1 MPa ·m1/2) and wet Westerly granite (1.74 MPa ·m1/2) from the compilation of Atkinson

(1984). We initialize γ at an intermediate value of 0.5, and a at the mean grain size of Westerly

granite: 0.5 mm. We also set D0 = Di at 0.2, n = 12 (Atkinson, 1979), and l̇0 = 10−2 m s−1.

This set of a-priori guesses on the parameter values is first used to invert only the data from

constant strain rate experiments. The results of this step are used to construct new priors on

the model parameters, shown as gray shadings in the right columns of Figures 7 and 8. These

priors are then used for a combined inversion of constant strain rate and brittle creep experiments,

using a step multiplier κ = 0.1 (See A for details). A hundred steps were typically sufficient to

reach convergence, yielding the posterior model parameter distributions shown in black in the right

column of Figures 7 and 8.

3.3.3 Results

Figure 7 shows the results of our joint inversion of constant strain rate and brittle creep data in

Westerly granite. Panel A compares the SCAM-simulated stress-strain curves (plain lines) and the

experimental data points. The agreement is good at confining pressures of 30, 80 and 150 MPa.

At 20 MPa, however, the model slightly over-estimates the peak stress. The Wawersik and Brace

(1971) study also contains data at atmospheric, 3.5 and 10 MPa confining pressures, but under

these conditions our model was not able to accurately represent the pressure dependence of the

peak stress. Figure 7B also shows secondary creep strain rates as a function of imposed differential

stress from our simulations (red line), which are in good agreement with experimental data (black

dots). The relationship between brittle creep strain rate and stress is effectively a power law with

a stress exponent of ∼ 18.

The best fitting parameter values as well as their log-normal standard deviations are listed in Table

1, and shown as probability distributions (in black) in Figure 7. Because the prior distributions (in

gray) were determined by fitting only constant strain rate data, the differences between prior and

posterior distributions highlight the information provided by brittle creep data. This information

specifically constrains the initial damage state, as well as parameters related to the kinetics of

damage growth such as l̇0 or n. It also strongly constrains the size of shear defects (to ∼ 7µm),

which influences KI and therefore the damage growth rate. Parameters such as KIC , µ and γ are

also slightly re-evaluated.

Best-fitting stress-strain curves for Darley Dale sandstone are shown in Figure 8A for 10 and 50
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Figure 7: SCAM model fit to experimental data on Westerly granite. A. Constant strain rate

experiments with ε̇ax = −10−5 s−1 and confining pressures of 20 (orange), 30 (red), 80 (blue) and

150 MPa (black). Dots show the data and lines the best fitting models. B. Dataset of minimum

brittle creep strain rate as a function of imposed differential stress (black dots), with relationship

derived from best fitting model (red line). C. Prior (grey) and posterior (black) distributions of

inverted micromechanical parameters.

MPa of confining pressure as plain lines, along with experimental data (points). Larger markers

mark the peak stress of simulations (squares) and experiments (circles). The red dashed line shows

an additional simulated curve at an intermediate pressure of 30 MPa. This pressure corresponds

to that of the brittle creep tests (Figure 8B), which were conducted under three axial stresses

indicated as dashed lines in Figure 8A. It can be seen that the greatest applied differential stress

(141 MPa) is very close to the inferred peak stress at 30 MPa of confining pressure. Figure 8B

compares simulated and measured strain rates in the brittle creep experiments. Our best fitting

parameters do a good job at reproducing the shape of the strain rate curves as well as the time to

macroscopic failure (the final, near-vertical portion of the curves).
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Figure 8: SCAM model fit to experimental data on Darley Dale sandstone. A. Constant strain

rate experiments with ε̇ax = −10−5 s−1 and confining pressures of 10 (orange) and 50 MPa

(blue). Dots show the data and lines the best fitting models. Larger circles and squares indicate

experimentally determined and modeled peak stress, respectively. Horizontal dashed lines show

the imposed stress levels for the experiments shown in Panel B. B. Brittle creep tests shown as

time series of axial strain rate under imposed differential stress and confining pressure pc = 30 MPa

(dots and lines correspond to data and models, respectively). A simulated constant strain rate

curve at this confining pressure is included in Panel A (red dashed curve with red square marking

the peak stress). C. Prior (grey) and posterior (black) distributions of inverted parameters. The

posterior distribution of the initial damage state Di is the same as its prior because the inversion

kept lowering the Di value to below D0, which was not permitted. This resulted in a null gradient

of the log-likelihood with respect to Di and thus no change of the parameter nor of its posterior

distribution relative to the prior.

Similarly to our results in Westerly granite, joint inversions of brittle creep tests and constant strain

rate experiments provide strong constraints on parameters such as shear defect size, initial damage,
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Charles law exponent, and l̇0. Our inversions yield a significantly greater defect size (∼ 700µm

vs. ∼ 7µm) and Charles law exponent (∼ 25 vs. ∼ 12) in sandstone compared to granite, as well

as a lower shear modulus and greater degree of elastic weakening (lower γ). The initial damage

state of sandstone also appears greater. We however find comparable fracture toughness in both

lithologies, and a slightly greater coefficient of (defect-scale) friction in granite (0.7 vs. 0.5).

4 Application to a 2-D plane-strain numerical press

4.1 Conservation equations and numerical methodology

In order to perform 2-D simulations of material deformation governed by the SCAM constitutive

equations, we adapt the long-term tectonic modeling code SiStER (Simple Stokes solver with

Exotic Rheologies, Olive et al. (2016)), which solves for conservation of mass, momentum (and

energy if needed), in a 2-D continuum assuming elastic incompressibility and planar deformation.

Conservation of mass and momentum write:

∂vi
∂xi

= 0, (29)

and
∂sij
∂xj

− ∂P

∂xi
+ ρgi = 0, (30)

where vi are velocities, P = −1/3 σkk is pressure, ρ is density and gi the gravitational accelera-

tion. Deviatoric stresses sij are related to velocities in equation (30) using a Maxwell visco-elastic

constitutive relationship between deviatoric stresses and strain rates (e.g., Gerya, 2010; Moresi et

al., 2003) :

ėij =
1

2G
ṡij +

1

2η
sij (31)

where ṡij is discretized using a first-order backward finite difference scheme with time step ∆t, so

that the deviatoric stress at time t becomes

stij = 2Zηėtij + (1− Z)st−∆t
ij , (32)

with ėij = (∂vi/∂xj + ∂vj/∂xi)/2 and

Z =
G∆t

η +G∆t
. (33)

The effective viscosity in equation 31 can represent a range of rheologies. A very high value sets

a very long Maxwell time, which effectively renders the material elastic. In the viscous regime, η

can represent brittle plasticity (e.g., as detailed in Section 4.2.2), or a specific creep mechanism of

known flow law. In practice, η is constructed as the harmonic average of several viscosities, each

representing individual flow mechanisms.
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The mass (29) and momentum (30) conservation equations, expressed in terms of velocities (32) and

pressure, are discretized with a conservative finite difference scheme formulated on a staggered grid

(e.g., Gerya & Yuen, 2003). This leads to a linear system that is solved for velocities and pressure

over the entire domain using a direct solver. Retroactions between the viscosity and velocity fields

require the use of non-linear iterations (here approximate-Newton, described as Algorithm 2 in

Spiegelman et al. (2016)) to reach convergence, which is assessed by comparing the L2 norm of

the residual vector to a specified tolerance (relative tolerance between 10−7 and 10−2, see readme

documentation in the code repository linked in the Acknowledgements section).

Once a reasonably converged solution is found, the time evolution is performed explicitly using the

time step ∆t introduced in equation (32). This is specifically done by advecting Lagrangian markers

which carry material properties such as density, viscosity and friction. Markers are advected within

the velocity field interpolated from the nodes. Marker properties are then passed back to the nodes

to prepare the next solve of the conservation equations at the next time step. Markers also carry

material stresses in order to solve equation (32). In addition to being advected, these stress

components are also rotated according to the local rotation rate determined from the velocity field

at each timestep (Gerya, 2010).

4.2 Numerical implementation of the SCAM rheology

The implementation of the SCAM model in the 2-D code was performed as described in the

following subsections. First, a damage property and its evolution rules are implemented, along

with the shear modulus dependence on damage. Then, a smooth transition to long term plastic

behavior in fully damaged parts of the material is introduced.

4.2.1 Damage growth and viscosity

The damage state D is added as an additional variable discretized on both markers and nodes.

Its evolution equation (8) is solved with a finite difference method. The damage rate Ḋ and its

associated viscosity ηD (equation 5) are evaluated on nodes at each non-linear iteration using

previous stresses and interpolated damage values from markers. The shear modulus is also altered

according to the damage state.

When stepping through time, marker damage is incremented by interpolating the damage rate

from nodes to markers. Due to the non-linearity of equation 8, damage is prone to catastrophic

growth, which can be challenging for a numerical solver. We therefore adapt the time step to the

dynamics of damage growth by limiting the maximum increment of damage on a node at each time

iteration by an amount ∆Dmax.

4.2.2 Switching from damaged to plastic rheology after crack coalescence

D values approaching 1 can be thought of as a state when the rock looses its macroscopic cohesion

through crack coalescence. Our damage rheology is not well suited to represent large strains that

may develop beyond this point, for example within localized fault zones. Mohr-Coulomb plasticity,

on the other hand, is perfectly relevant to model the frictional rheology of such fault gouges. Crack

coalescence is however a necessary condition to the formation of macroscopic fault zones, such

24



that damage growth up to 1 has to precede Mohr-Coulomb plastic deformation. Our damage

model being formulated as an effective Maxwell rheology, we choose to retain this framework in

our implementation of plasticity. We therefore implement a continuous effective viscosity that

smoothly switches from our damage viscosity ηD to the standard plastic viscosity ηp (Duretz et

al., 2021) as D approaches 1.

Because in our micromechanical model crack normals lie in the {σ1, σ3} plane, plastic deformation

beyond coalescence should be confined to that same plane, and can therefore be modeled with a

Mohr-Coulomb yield criterion ensuring that

sII ≤ σy , (34)

where sII =
√
J2(σ), with J2(σ) = 1/2 sijsij the second invariant of the deviatoric stress tensor.

sII is also the radius of Mohr’s circle in 2-D incompressible plane strain :

sII =
1

2
(σ3 − σ1) . (35)

In equation (34), the plastic yield stress σy writes :

σy = sinϕm P + cosϕm Cm . (36)

The yield stress is a function of the macroscopic friction angle ϕm = arctanµm and cohesion Cm,

as well as of the in-plane pressure P :

P = −1

2
(σ1 + σ3) , (37)

which in elastically incompressible 2-D plane strain is also equal to total pressure. Satisfying the

Mohr-Coulomb yield criterion within a Maxwell visco-elastic framework can be done through an

effective “plastic viscosity” approach (e.g., Gerya (2010); Duretz et al. (2021)). As fully-damaged

areas become incompressible elastic-plastic zones, equation (4) becomes :

ėij =
ṡij

2G0f(D)
+
sij
2ηp

. (38)

The plastic viscosity ηp is set to guarantee that stresses satisfy the Mohr-Coulomb criterion (34)

once ”broken” material starts behaving as a plastic fault zone. If sII lies below σy, ηp is effectively

infinite (plasticity is not activate), otherwise ηp reads (see B) :

ηp =
sII

2
(
ėII − σy−sII

2G0f(D)∆t )
) , (39)

where ėII =
√
J2(ε̇) is the second invariant of the strain rate tensor. A smooth transition from

damage to plastic viscosity is implemented using a hyperbolic tangent function S(x) that goes from

0 to 1 as its argument goes from negative to positive. We set the lowest viscosity to the plastic

viscosity and thus write the continuously differentiable effective viscosity :
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ηeff = S(ηD − ηp)ηD + (1− S(ηD − ηp)) ηp . (40)

To ensure that the effective viscosity remains plastic when material is fully damaged, we set

ηD(D = 1) to the smallest viscosity that can be resolved by our numerical solver (see Section 4.3).

Including the transition to large-strain plasticity, the complete set of differential equations that

constitute the SCAM model can be summarized as

ėij =
ṡij

2G0f(D)
+

sij
2ηeff

. (41)

When subjected to loading, the material first responds elastically with D = Di (its initial damage

state ≥ D0), until KI becomes positive and damage starts growing (Figure 3). At that moment

damage-driven alteration of the shear modulus generates an effective damage viscosity which affects

the material behavior. Up to peak stress, the damage viscosity is greater than the plastic viscosity

since it allows stress build-up, therefore ηeff ∼ ηD. During the post-peak stress drop, ηD quickly

drops below the plastic viscosity which then becomes the effective viscosity. This allows the

accumulation of large strains under stresses capped by the Mohr-Coulomb yield stress. Said yield

stress is computed according to equation (36). In the following, we adopt a macroscopic friction

angle that matches the frictional properties of the shear defects, i.e., ϕm = tan−1 µ. We also

assume that the fully damaged material is cohesionless, i.e., Cm = 0. It should be noted that a

fully damaged material may also return to an elastic behavior if sII happens to drop below σy.

However, its shear modulus will have been permanently reduced by damage (G = γG0).

4.3 2-D setup: the numerical press

We construct a 2-D plane-strain analog to the triaxial experimental setup described in Section

3, following the geometry shown in Figure 9. This allows us to simulate constant strain rate

deformation of a Westerly granite sample, with micromechanical properties determined in Section

3.3 (Table 1), up to large strains and including localization. The axial symmetry of triaxial tests

allows us to only consider half of the sample’s cross-section. Our geometry thus consists of a half-

sample 10 cm tall and 2 cm wide on the right side of a wider box (10.5×6 cm) that includes confining

fluid left of the sample, and a 0.5 mm-thick ”piston” above the sample (Figure 9). Constant strain

rate conditions are enforced by pushing material inward from the top of the domain at a constant

velocity. The piston is here to ensure that new material flowing in during deformation is not of

sample type. Outward velocities are prescribed along the left boundary to preserve a constant

volume in the computational domain. The confining fluid is modeled as a low-viscosity Newtonian

medium, with pressure imposed at the lower left corner of the domain. Gravity is ignored. The

initial sample damage fluctuates spatially between Di = 0.136 and 0.236 with an isotropic Perlin

noise structure that represents material heterogeneities. The spatial domain is discretized using

cell sizes of 2 × 0.5 mm within 3 cm of the left wall, and 0.5 × 0.5 mm within 3 cm of the right

wall, i.e., the part of the domain containing the sample.

The convergence of Stokes solvers being very sensitive to viscosity contrasts, we restrict the max-

imum variation in viscosity across the domain to five orders of magnitude. We do so by setting

an upper bound on viscosity ηmax such that its associated Maxwell time ηmax/G is 50 times
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longer than the time required to elastically reach the peak stress at the imposed axial strain rate.

This large viscosity is initially assigned to the sample, rendering it effectively elastic at the begin-

ning of the simulation. A lower bound on viscosity in the numerical domain is obtained through

ηmin = 10−5 × ηmax. This low viscosity is assigned to the confining fluid, ensuring that it be-

haves viscously throughout the simulation. Because the damage viscosity ηD drops significantly as

damage accumulates, the effective viscosity of the sample will decrease as it begins to fail. As ηD

approaches ηp, a smooth transition towards plastic viscosity is performed over a viscosity range

|ηD−ηp| ≈ ηmin/50. Regardless of the viscosity transition, damage keeps increasing until reaching

1. At this point, it stops evolving and ηD is fixed at ηmin. Once parts of the sample are fully

damaged, they effectively behave as a Mohr-Coulomb plastic solid with no cohesion and the same

(macroscopic) friction coefficient as that determined to act on the microscopic shear defects (0.7).

Finally, the comparisons of simulated constant strain rate experiments with laboratory data re-

quires the evaluation of macroscopic axial strains and deviatoric stresses. The axial strains are

measured by tracking the displacement of the top boundary of the sample through time, and nor-

malizing it by the initial size of the sample. Axial deviatoric stresses are obtained by averaging

the vertical deviatoric stress sax in a horizontal “stress gauge”, i.e., a 0.5 cm thick band at the

bottom of the numerical sample (Figure 9), excluding a cell size length near the left boundary, to

avoid any influence from interpolations at the interface between sample and fluid.

4.4 Results

Figure 10 shows results from the numerical press performed under a constant axial strain rate of

10−5 s−1 (Panels A and B) and 10−15 s−1 (Panel B), and confining pressures of 30, 80 and 150

MPa. Figure 10C illustrates the patterns of damage growth and plastic strain for the simulation

performed under 150 MPa of confining pressure (black lines in Panels A and B), on the left and

right halves of each snapshot, respectively. The timing of each snapshot is indicated by the numbers

on the stress-strain curve in Panel B. Up to snapshot 3, damage grows in a distributed fashion,

which smoothes the initial heterogeneities. Damage increases homogeneously up to ∼ 0.45 during

that stage. Just prior to the peak stress, damage growth starts to localize close to the sample

border, forming fast-growing damage bands at angles of ∼ 30◦ with respect to the compression

direction. They develop within a strain range of less than 0.01 % (snapshots 5,6,7). Plastic strain is

estimated by integrating the second invariant of the inelastic deviatoric strain rate tensor through

time (once Mohr-Coulomb plasticity has been activated), and accumulates within fully damaged

bands. Plastic shear banding first lags behind damage banding. Once a sample-scale damage band

has grown, it effectively becomes a plastic shear band. This process begins as the axial stress drops

abruptly (snapshots 6-7). Interestingly, off-band distributed damage does not evolve significantly

during shear band development.

Figure 10A compares the stress-strain curves produced in our 2-D simulations to the experiments

of Wawersik and Brace (1971) described in Section 3.3, performed under the same conditions. To

facilitate comparisons between a 2-D plane strain and an axisymmetric setup, we normalize the

differential stress ∆σ = σ3 − σ1 by its value at KI = 0 and D = D0, which is the criterion for the

onset of tensile crack growth (even though the crack growth rate is infinitely slow at KI = O+) :

∆σc = pc(1−
√
1 + µ2 + µ√
1 + µ2 − µ

) (42)
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Figure 9: Geometric setup used to simulate experimental deformation in 2D plane-strain. Ex-

ploiting the axial symmetry of triaxial experiments, we only model the left-half of a cross section

containing the sample axis. The half-sample has a length of 10 cm and a width of 2 cm. It is

initially seeded with a noisy damage field. A small piston one cell tall (with the same mechanical

properties as the sample) is pushed in above the sample. Left of this assemblage lies the confining

fluid kept at a constant pressure. Top and left borders are associated with Dirichlet boundary

conditions on the velocity component normal to the borders, while the tangential components are

left free. The right and bottom borders are free slip. Axial stress is evaluated by averaging vertical

stresses in a 0.5 cm thick slice at the bottom of the sample.

The above expression is obtained by applying the Mohr-Coulomb criterion to optimally-oriented

planes in a principal stress field. The axial deviatoric strain is then normalized by the deviatoric

strain needed to reach ∆σc elastically with the reference shear modulus G0 that corresponds to

D = D0 :

ecax =
1

2G0
scax. (43)

In equation 43, scax is the deviatoric axial stress at the onset of microcraking, and is equal to

∆σc/2 in a 2-D plane strain configuration, and to (2/3)∆σc for a triaxial configuration. This

non-dimensionalization of stresses and strains accounts for the fact that the mean stress, which

impacts damage growth and the position of the peak stress, has a different expression in a triaxial

vs. plane-strain geometry. It ensures that experiments conducted with the same parameters in

either geometry will show the same non-dimensional tangent modulus and peak differential stress.
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Figure 10: Results of the SCAM model simulations in a 2-D plane-strain setup using Westerly

granite parameters under constant strain rate. The numerical samples are initialized with a noisy

Di field. A. Simulated stress-strain curves at ε̇ax = −10−5 s−1 and confining pressures of 30 (red),

80 (blue) and 150 MPa (black curve), to be compared with the corresponding experimental data

(dots). B. Simulation performed at pc = 150 MPa described above compared to a simulation at a

“tectonic” strain rate of 10−15 s−1. Differential stresses and deviatoric axial strains are normalized

by their value when KI = 0 at D = D0 to allow comparison between triaxial experimental data and

2-D plane strain deformation (see Text). The red numbers in Panel B correspond to the damage

(left) and plastic strain (right) snapshots shown in Panel C.

Our 2-D simulations are in good agreement with the experimental data from Wawersik and Brace

(1971) (Figure 10A) at all three confining pressures. This shows that the parameters determined by

fitting 0-D (point-wise) simulations to triaxial data produce sensible behavior when implemented

in a 2-D “spatialized” geometry. Figure 10B shows our reference simulation at ε̇ = 10−5 s−1

and pc = 150 MPa in black, compared to a simulation performed at a “tectonic” strain rate of

10−15 s−1. The peak stress of the slower simulation is significantly lower than that of the reference

simulation, with a loss of strength during macroscopic failure that is approximately divided by 2.
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5 Discussion: A brittle constitutive law rooted in microme-

chanics

5.1 Features of brittle deformation captured by the SCAM model

As illustrated in Sections 3 and 4, the SCAM model captures a range of features typical of brittle

deformation revealed by laboratory experiments (Figure 1). These include: (1) the co-existence

of several measures of rock strength, such as the intact strength and the residual (i.e., “pre-

cut”) frictional strength, all of which depend on confining pressure (e.g., Byerlee (1978)); (2) the

permanent weakening of elastic properties occurring prior to the peak stress; (3) the strain rate-

dependence of brittle strength, which enables (4) the occurrence of brittle creep under constant

imposed stress. Here we discuss the parameters of the SCAM framework that control these various

macroscopic properties.

5.1.1 Microscopic vs. macroscopic strength, elastic weakening, and strain rate de-

pendence

The SCAM framework involves several thresholds of inelastic deformation. The first is when slip

on pre-existing, small-scale shear defects becomes able to wedge open tensile wing cracks. It

corresponds to KI = 0 (Figures 3 and 6), and is closely related to the Mohr-Coulomb criterion,

in the sense that opening wing cracks requires a greater differential stress under greater confining

pressure (Costin, 1985). The second threshold is when cracks have sufficiently lengthened to

transition from a non-interacting to an interacting regime. This aspect will be further detailed

in Section 5.1.2. The third threshold is when D reaches its maximum value ∼ 1, at which point

cracks coalesce into a macroscopic fault, which is modeled as a shear band with a macroscopic

“bulk” friction equal to that acting on the microscopic shear defects, and no cohesion. In practice,

the second and third thresholds occur in very close succession because the damage growth rate

accelerates catastrophically as soon as cracks enter the interacting regime, especially under constant

axial strain rate. Some amount of deformation is still required for the shear band to reach its

steady-state stress after the third threshold (e.g., after snapshot 7 in Figure 10). After that, the

macroscopically broken rock has a “residual” strength that is entirely set by its friction coefficient.

The material’s elastic properties are altered by damage, causing pre-peak softening of the rock and

permanent weakening of the shear modulus. The ratio of the fully-damaged (V D
s = Vs(D = 1))

over the reference (V 0
s = Vs(D = D0)) shear-wave velocity can be related to the shear modulus

weakening ratio γ, assuming small density variations, as: V D
s /V 0

s ≈ √
γ. Using γ values inverted

from Westerly granite and Darley Dale sandstone (Table 1) we obtain shear-wave velocity reduc-

tions of 34% and 47%, consistent with values measured in the damage zone of natural faults, which

range from 20 to 50% (e.g., Karabulut & Bouchon, 2007; C. Wu et al., 2009), as well as laboratory

tomography on granite showing a reduction in P-wave velocity of around 50% (Aben et al., 2019).

The SCAM model accounts for the temporal dependence of brittle deformation via a sub-critical

crack growth law, which allows cracks to grow below the fracture toughness of the material (Costin,

1983, 1985). This assumption introduces a characteristic crack growth time a/l̇0 that is modulated

by the stress intensity factor (KI) and the Charles law exponent n (equation 7). These parame-

ters themselves depend on ambient conditions such as moisture levels (Atkinson, 1979; Eppes &
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Keanini, 2017) or temperature (Heap et al., 2009). To first order, the strain rate dependence of

the SCAM flow law reflects the ratio of the characteristic duration of the deformation of interest to

the characteristic crack growth time. A very slow (“tectonic”) experiment will for example leave

ample time for cracks to grow, weaken the material and cause macroscopic failure, preventing the

build-up of very large stresses (Figure 10B). Conversely, experiments conducted under laboratory

strain rates will reveal greater peak stress (e.g., Figure 7 of Costin (1983)). Interestingly, the strain

rate dependence of brittle deformation implies that wide portions of the upper crust should behave

in an effectively viscous fashion (with viscosity ηD) when undergoing progressive failure (i.e., prior

to localization). This behavior must however be inherently transient because the amount of dam-

age a rock can withstand before macroscopic failure is necessarily finite. A competition between

crack growth and crack healing processes may prolong this distributed viscous deformation phase,

but is beyond the scope of the present study.

5.1.2 Retroactions between damage and damage growth rate

The transition between a regime of lengthening but non-interacting wing cracks, and one of

catastrophically-interacting long cracks (Figure 3) is at the heart of many macroscopic behav-

iors manifested by the SCAM model. As detailed in Section 2.3, the stress intensity factor (KI) at

the tip of wing cracks is constructed as the sum of three terms (equation 9). The first two terms

lead to a decrease in KI as wing cracks lengthen, i.e., as D increases. This corresponds to the

isolated crack regime. The third term has the opposite effect: increasing D increases KI , and thus

the damage growth rate through Charles’ law (equation 7). This last term becomes dominant at

larger values of D and describes the interacting crack regime. The transition between successive

regimes is closely related to the convexity of KI as a function of D, and its dependence on the

evolving differential stress, as illustrated in Figure 3E–G.

In constant strain rate experiments, damage starts to grow whenKI becomes positive. This is made

possible by elastic loading raising the differential stress at constant initial damage state Di (vertical

trajectories in Figure 6). When an experiment is started with a low Di, damage growth first occurs

in the non-interacting regime, where ∂KI/∂D < 0 (e.g., purple trajectory in Figure 6). Damage

growth rates are initially very slow, because KI/KIC raised to a large exponent (n in equation 7)

gives an extremely slow crack growth speed when KI barely exceeds 0. The damage viscosity is

initially very high, and the material continues to behave elastically. As damage increases, both the

shear modulus and the damage viscosity decrease because of the decreasing f(D) and f2(D) terms

in equations 2 and 5. This leads to pre-peak softening of the stress-strain curve. The crack growth

rate –strongly controlled by KI– is the sole mechanism that can lead to a stress rate decrease. It

thus competes with the elastic stress rate increase imparted by far-field loading, controlling the

stress level at which material softening occurs. In Figure 6, this manifests as trajectories aligning

on a contour of constant KI , which is greater for a greater imposed strain rate.

Then, the system transitions to the interacting regime where ∂KI/∂D > 0. The regime transition

as illustrated in Figure 6A connects all the differential stress maxima spanning all values of KI

between 0 and KIC . We write Dc the “critical” damage value that marks this regime transition.

Dc decreases with increasing differential stress (vertical black dashed curve in Figure 6A), and

verifies:
∂KI(D)

∂D

∣∣∣∣
D=Dc(∆σ)

= 0 . (44)
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Because prior to crossing the regime transition stress trajectories align close to an iso-KI contour

(which depends on strain rate), the value of Dc can be thought of as a decreasing function of strain

rate. Dc is bounded by the value of damage that maximizes the differential stress at KI = KIC

(here ∼ 0.42), and the value that maximizes stress at KI = 0 (here ∼ 0.5). These end-member

cases respectively represent a very fast strain rate experiment, in which cracks would grow critically

(at elastic wave speeds), and an extremely long and slow experiment in which cracks can grow sub-

critically at KI ∼ 0. The upper and lower bound on Dc happen to be close to each other, yielding

a narrow range of critical damage values (∼ 0.42 − 0.5 in Figure 6A). When damage exceeds Dc,

the system enters the interacting regime, in which an increase in D increases Ḋ at constant stress,

thereby accelerating the reduction of the shear modulus (equation 2) and damage viscosity ηD

(equation 5). The material can no longer accumulate stress, and stresses decrease below their peak

value. At this point the stress trajectories in Figure 6A begin to deviate from an iso-KI . For our

best-fitting set of parameters, KI increases drastically as D exceeds Dc, which manifests as a sharp

stress drop as D approches 1 (Figure 6).

An interesting consequence of the fact that pre-peak stress trajectories tend to first align on the

same iso-KI contour regardless of initial damage state is that they all experience a regime transition

at the same Dc and at the same peak differential stress (for a given imposed strain rate). In Figure

6B, this manifests as peak stress magnitudes that are largely insensitive to any value of initial

damage lower than Dc. This feature of the model is consistent with experimental results from

Wang et al. (2013), who found similar peak strength in samples initially subjected to varying

degrees of thermal cracking, which we interpret to represent varying Di (i.e., varying wing crack

lengths at fixed shear defect size and density). On the other hand, if an experiment is started with

a damage state that exceeds Dc, the system will entirely bypass the non-interacting regime and

will display very little post-peak softening (e.g., light orange trajectories in Figure 6A). In this

case, the degree of initial damage affects the position of the peak stress.

We note that in a few instances, large values of damage do not lead to a catastrophic stress drop.

This occurs for example for low values of γ (Figure 5H), or a high value of D0 (Figure 5F), where

stresses slowly decay over a few percent of axial strain. The only way to prevent a catastrophic

stress decrease is for KI to decrease as D approaches 1. In Figure 6A, this would manifest as

a steeply decreasing stress trajectory that crosses iso-KI contours for D > Dc. The slope of a

stress trajectory in (D, ∆σ) space is equal to ∂∆σ
∂D = 3

2
ṡax

Ḋ
. Post peak, the deviatoric axial stress

rate (equation 27) is increasingly dominated by the viscous term, as Ḋ accelerates. Neglecting the

elastic term in equation 27 yields :

∂∆σ

∂D
= −3

2

|f ′(D)|
f(D)

sax . (45)

Using the equations for f ′(D) (24) and f(D) (23), it can be seen that a low value of γ leads to

a very steep ∂∆σ
∂D . This likely explains the gentler stress drops shown in Figure 5H. We suspect

that a large D0 leads to a similar effect on ∂∆σ
∂D and accounts for the progressive stress drop in

Figure 5F. It is noteworthy that our inversion for Westerly granite predicts a sharp stress drop,

even though it relies on data that does not span the interacting crack regime (D > Dc, i.e., only

pre-peak data is used in Figure 7A, and minimum creep strain rates in Figure 7B).

Our 2-D simulations help us assess how the change of crack growth regime affects the spatial

pattern of damage as it transitions from distributed to localized (Figure 10C). In particular, the
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initial phase of distributed damage growth appears to coincide with the non-interacting regime.

Damage increases uniformly, smoothing any pre-existing initial damage heterogeneity, and reaches

a near constant value (∼ 0.45) in the bulk rock when damage bands begin forming. We interpret

this uniform value as related to Dc. Specifically, the distributed build-up of damage (snapshots

1, 2 and 3 in Figure 10C) proceeds in the non-interacting regime, in which damage is uniformly

capped at ∼ Dc. Stress concentrations due to numerical noise or prescribed heterogeneities can

however trigger the switch to the interacting regime in some portions of the sample (along the

sides in snapshot 5 of Figure 10), leading to the localization of damage bands. Interestingly, the

stable, uniform growth of damage when D < Dc is probably the reason for the good agreement

between our 2-D simulations and our 0-D models, which are by definition “homogeneous” (Figure

10A). The post-peak behavior predicted by the SCAM model is however significantly different in

2-D vs. 0-D simulations. This is because it is driven by retro-actions between damage localization

within a band and the stress field of the surrounding rock that cannot be captured in a pointwise

model.

The distinct regimes of crack growth are also responsible for the two stages of creep observed in our

constant stress simulations (Figure 4C, D, see Section 3), as well as in brittle creep experiments

(Figure 1). In the representation of Figure 6A, a constant stress experiment simply maps as a

horizontal line starting from any point of the constant strain rate trajectories prior to the peak

stress. In order to break the material under constant stress, the KI trajectory has to remain in the

domain KI > 0 up to D = 1. There thus exists a threshold in differential stress ∆σbc that must be

met for the sample to fail macroscopically. Otherwise, the accumulation of damage under constant

stress will decreaseKI all the way to negative values, inhibiting the growth of further damage. This

threshold corresponds to the largest differential stress able to produce a stress concentration factor

equal to zero. It is represented in Figure 6A by the summit of the dashed contour of KI = 0, and

corresponds to a value of around 720 MPa for a confining pressure of 150 MPa with our inverted

Westerly granite parameters. Overall, ∆σbc can be thought of as a theoretical minimum strength

of the rock, which is a function of confining pressure only (continuous blue line in Figure 11).

If a brittle creep test is carried out under a constant differential stress above ∆σbc, the damage

state will eventually reach Dc in a finite amount of time, then transition to the interacting regime

that allows failure. In this case, the creep test will begin by a decrease in KI that manifests as a

decrease in the macroscopic strain rate referred to as decelerating or primary creep (Figure 4C). We

note that the minimum brittle creep strain rate should be captured accurately in 0-D simulations,

since it corresponds to the strain rate at D ∼ Dc, the extreme value of damage at which damage

can grow in a distributed fashion. Finally, as the system switches to the interacting regime, KI

and the macroscopic strain rate both increase, first slowly then catastrophically, accounting for

tertiary creep and failure of the sample. The idea that the transition to an accelerating regime

of crack interaction up to failure corresponds to crossing a threshold in damage Dc explains the

observations of Baud and Meredith (1997), who noted that the transition to tertiary brittle creep

coincided with a critical extent of microcracking.

5.2 Revisiting the Byerlee limit

Figure 11 shows failure envelopes for Westerly granite as determined with intact samples (peak

stresses at laboratory strain rate, e.g., Byerlee (1967), Wawersik and Brace (1971), black circles

and squares), as well as pre-cut samples (the “maximum friction” point from Byerlee (1978), black
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Figure 11: Brittle yield envelopes of the SCAM model calibrated against Westerly granite data

(lines), compared to the experimentally-determined strength of intact samples (Wawersik & Brace,

1971; Byerlee, 1967) (squares and circles) and pre-cut samples (Byerlee, 1978) (crosses). Red and

orange plain lines correspond to peak strengths at ε̇ax = −10−5 s−1 and −10−15 s−1, respectively.

The plain blue line corresponds to the minimum failure strength near the limit of infinitely slow

strain rates. Modeled failure envelopes exhibit a constant effective friction coefficient of ∼ 0.96 and

strain rate-dependent cohesion. The dashed blue line represents the Mohr-Coulomb yield envelope

associated with no cohesion and a friction coefficient µ = 0.7, which corresponds to the friction

used on shear defects and on macroscopic shear bands in the SCAM simulations.

crosses). Both are on the order of hundreds of MPa, and increase linearly with confining pressures

in the 20 to 200 MPa range. The intact envelope has a steeper slope and lies ∼ 400 − 500 MPa

above the pre-cut strength. Both our 0-D and 2-D models reproduce the intact envelope under

the same laboratory strain rate of 10−5 s−1 (red line). The simulated envelopes are linear in

confining pressure and display an effective cohesion of 94 MPa (inferred by linear regression of

the red curve). On the other hand, the standard Mohr-Coulomb plasticity framework, with no

cohesion and a friction coefficient of 0.7 provides a good fit to the strength of pre-cut samples

(dashed blue line).

If one was to model the transition from intact to broken through strain-softened plasticity (Figure

2A), the friction should drop from ∼ 0.96 to ∼ 0.7, and the cohesion from 94 to 0 MPa. This should

occur over a very small amount of plastic strain ∆epII to produce a sharp stress drop. It should

be noted that a high ”intact” friction coefficient, such as ∼ 0.96, would produce unrealistic shear

band orientations (e.g., Coulomb angles of ∼ 23◦ between the band and σ1). Within this model,

friction is a property of the bulk material that must evolve as deformation accrues. By contrast,

within the SCAM framework, friction is an intrinsic property of planar discontinuities in the rock

that manifests at two scales. Friction first conditions slip on small-scale discontinuities (shear

defects) whose interaction leads to the formation of larger-scale frictional interfaces (macroscopic

shear bands). Those two frictional scales are characterized by the same friction coefficient and

no cohesion. Until cracks coalesce, frictional sliding only occurs at the scale of shear defects, and

its effect on the material is resolved through its induced stress concentration leading to tensile
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cracking. After coalescence, the broken material acts as a new frictional zone that generates its

own stress perturbations on the surrounding “unbroken” material. It leads, in 2-D setups, to a

shear band growing along a direction in which macroscopic stress concentrations amplify damage

growth, yielding a large differential stress drop of hundreds of MPas , which takes place over a very

small range of axial strain (Figure 10A, B).

It is remarkable that our best fitting coefficient of friction for Westerly granite data (0.7) –which is

constrained by data up to the peak strength– also fits the strength of pre-cut samples (dashed blue

line in Figure 11). This supports our approach of switching from a damage model to cohesionless

Mohr-Coulomb plasticity while retaining a constant coefficient of friction. This approach has the

advantage of producing consistent shear band angles of around 30◦ to the most compressive stress

(Figure 10C).

The SCAM framework also allows us to investigate failure at much slower deformation rates because

brittle creep data contributes strong constraints on the rate dependence of the pre-peak behavior

(Figures 5A and 10B), which is rooted in sub-critical crack growth. As an example, the 0-D failure

envelope at a tectonic strain rate of 10−15 s−1 is shown by the orange line in Figure 11, and

represents a constant strength contrast of ∼ 300 MPa relative to laboratory strain rates (red line).

Compared to the laboratory strain rate simulations, the tectonic strain rate envelope amounts to

lower effective cohesion (∼ 15 MPa) and a similar effective friction. To investigate the model’s

behavior in the limit of extremely slow strain rates, we construct an estimate of minimum intact

strength using the 0-D SCAM model (solid blue line). We calculate it as the differential stress

value at D = Dc that would drive a damage growth rate arbitrarily set to 0.1 per billion year. This

yields a line with an intercept that is still significantly greater than zero (C ∼ 6.4 MPa). Overall,

the effective cohesion of the brittle failure envelope can be thought of as a strain rate dependent

term that does not entirely vanish in the limit of long loading times (e.g., planetary lifetime). The

effective friction coefficient however remains invariant with respect to strain rate.

In summary, while standard strain-softened plasticity treats the brittle limit as an envelope that

can move with accumulated plastic strain, the SCAM model treats it as a tenuous failure domain

(red area in Figure 11) whose upper boundary depends on strain rate. Specifically, the maximum

stress that must be attained for the rock to fail macroscopically can vary by ∼ 400 MPa between

tectonic and laboratory conditions (ten orders of magnitude in strain rate). This effect is, by

definition, not captured by rate-independent elasto-plastic models. On the other hand, the onset

of damage growth is not sufficient to define the lower boundary of the failure domain. In order to

activate inelastic strain, stresses must exceed a threshold that corresponds to KI(D0) = 0, i.e., the

activation of tensile cracking through frictional sliding on small defects. Because frictional sliding

is indexed on meeting a cohesionless Mohr-Coulomb criterion with a friction of 0.7, this threshold

is closely related to the dashed blue line in Figure 11. Exceeding this threshold however does not

guarantee macroscopic failure. If differential stress remains between the dashed and solid blue lines

(orange area in Figure 11), damage can be generated in the isolated crack regime, but will never

reach Dc in a reasonable amount of time. The rock will thus never fail.

5.3 On the meaning of the SCAM micromechanical parameters

Modeling progressive brittle failure with the SCAM model involves a number of parameters that

lend themselves to micro-mechanical interpretations. However, the numerous simplifications made
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by the wing crack model (Ashby & Sammis, 1990), and the use of empirical rules for shear mod-

ulus weakening and sub-critical crack growth warrant some caution in doing so. Here we discuss

the extent to which parameter values determined by calibrating SCAM against laboratory data

provides meaningful information on a rock’s microstructure.

Previous studies applying the wing crack micromechanical framework (Ashby & Sammis, 1990),

such as Bhat et al. (2011) and Brantut et al. (2012), made the assumption that wing crack initiation

happens at KI = KIC . In that case, the analytical expression for KI (equation (3) in Ashby and

Hallam (1986)) can be used to constrain µ, a and KIC given prior knowledge of a or KIC , and of

the axial stress of a sample at the onset of microcracking σ1c, for various confining pressures. The

onset of microcracking is typically indexed on the onset of dilatancy or acoustic emissions (Brace

et al., 1966; Ashby & Sammis, 1990) (Figure 1). Applying this method to a linear fit of the Brace

et al. (1966) data (σ1c = 3.6σ3 + 100 MPa) yields µ = 0.69, a = 0.58 mm, assuming the fracture

toughness KIC = 1.29 MPa·m1/2 determined by our joint inversions in Section 3.3. This coefficient

of friction is very close to our estimate, but the crack radius is two orders of magnitude larger than

our value of 6.66 µm, closer to the rock’s grain size: the length scale considered susceptible to

drive wing-cracking. For Darley Dale sandstone, X. Wu et al. (2000) used the same methodology

and obtained µ = 0.69 as well as KIC ≤ 0.1 MPa·m1/2, assuming a = 0.11 mm. These values

differ from our inversion results of µ = 0.51, KIC = 1.4 MPa·m1/2 and a = 0.65 mm, especially

for KIC . These differences may be attributed to our use of a sub-critical crack growth law as

opposed to KI = KIC . We also note that because KI scales as
√
a, our inversions do a better job

at constraining a ratio of KIC/
√
a rather than KI or a individually. Some trade-off is therefore

expected between these values. It is noteworthy that the data against which the SCAM model

parameters were inverted are much more complete than the data used in the studies discussed

above. Specifically, our data includes stress-strain curves up to the peak stress (as opposed to

a single point: the onset of dilatancy). We however acknowledge that at the peak stress, the

discrepancy between the wing-crack model and the real rock microstructure may become large,

introducing some bias in our parameter estimate.

Inspecting Figure 12 of Ashby and Sammis (1990) also reveals that wing-crack based damage

mechanics can fit the very first portion of the experimental failure envelope of Westerly granite (i.e,

at confining pressures between 0 and a few 100s of MPas), but fail to predict peak stresses at greater

pressures due to the non-linear dependence of intact rock strength with respect to confining pressure

(visible in Figure 11: squares and circles). Ashby and Sammis (1990) suggested that the curvature

of the experimental failure envelope of Westerly granite might result from low temperature ductile

flow occurring within weak granite minerals. This hypothesis was tested by Bhat et al. (2011)

by modeling a bi-mineralic quartz-feldspar assemblage with a dislocation glide flow law. It was

found consistent with the experimental failure envelope at greater confining pressures. Broadly

speaking, inverting experimental data over a large range of pressures using a model based only on

fracture growth likely neglects processes that can significantly affect the mechanical response, such

as intra-grain dislocation glide. This leads to inverted fracture parameters whose value can deviate

from their expected range, since they are forced to explain behaviors caused by other deformation

mechanisms. The exact value of the parameters should therefore not be over-interpreted. The value

of the SCAM model lies more in its ability to extrapolate micromechanics-based rock behavior to

larger scales, rather than in its informative power about rocks’ intrinsic parameters.
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6 Towards an application to tectonic problems

In Section 3, we introduced and calibrated the 0-D SCAM micro-mechanical model against exper-

imental data to capture the mechanical behaviors of Westerly granite and Darley Dale sandstone

in the brittle regime. Section 4 was dedicated to the implementation of this model in a 2-D plane

strain tectonic solver to investigate the behavior of the calibrated model when strain localization

is made possible. We validated the model by showing that it still accurately predicts experimental

data in 2-D. Next, we turn to the end-goal of the SCAM framework by showcasing initial attempts

at using it to model tectonic deformation.

6.1 Crustal-scale numerical setup

As a first step toward using the SCAM model for long-term tectonic problems, we focus on the

initial stages of faulting of a 10-km thick brittle plate overlying a 40-km wide and 10-km thick

low-viscosity Newtonian medium subjected to gravity (9.8 m s−2) and to a constant horizontal

extension rate (Figure 12). An additional upper layer of low-viscosity “sticky air” ensures the

brittle plate has a traction-free top boundary (Gerya, 2010). The plate is notched at the center

of its lower edge by a 1 km long and 0.75 km thick protrusion of the underlying viscous layer to

promote strain localization in the middle of the domain. The latter is discretized using a cell size

of 100 × 250 m within 8 km of the top and bottom walls, and an greater resolution, with a cell size

of 100 × 100 m in the remainder of the domain containing the brittle plate. The plate and the fluid

layer underneath it are assigned a density of 2700 kg m−3, while the uppermost fluid layer’s density

is 0.01 kg m−3, to ensure negligible pressures at the top of the plate. The left and right sides are

prescribed a fixed outward horizontal velocity amounting to a constant extension rate of 10 cm/yr

(strain rate of ∼ 10−13 s−1). The velocities of the top and bottom boundaries are set to satisfy

volume conservation within the domain and to preserve the height of the brittle plate’s top surface.

All boundaries are free slip. As in simulated experiments, the maximum viscosity ηmax allowed

in the domain is chosen such that its Maxwell time (η/G) is 50 times longer than the longest

simulation time. This guarantees that the brittle plate –whose viscosity is set to ηmax– retains

an elastic response throughout the entire simulation. The exact value of ηmax will therefore not

matter as long as it is large enough. To avoid large, computationally challenging viscosity contrasts

within the model domain, the lower bound on viscosity is set to 6 orders of magnitude below the

brittle plate’s viscosity, and is assigned to the air and viscous lower layer. This guarantees that

they behave as low-viscosity fluids during each simulation. This setup resembles that used by

Lavier et al. (2000) and Olive et al. (2016) to investigate the effect of brittle strain softening and

elasticity on extensional tectonic styles, within the standard elasto-plastic framework. One notable

difference is that here the base of the brittle plate is a lithological boundary that gets advected as

the plate thins (unlike, e.g., a thermal boundary that may experience diffusion).

We run two suites of simulations, one with the SCAM parameterization of brittle failure in Westerly

granite (Table 1), and one with the standard strain weakened elasto-plastic (EP) approach, similar

to the runs of Olive et al. (2016). Tectonic simulations using the SCAM model, like those presented

in Section 4, include a switch to standard elasto-plasticity in fully damaged areas. Specifically, the

damage viscosity is set to smoothly transition to a plastic viscosity as ηD approaches ηp over a

viscosity range of |ηD − ηp| equal to ηmin/50. The locally broken material (i.e., D = 1) behaves

as a Mohr-Coulomb plastic solid, with no cohesion and the same friction coefficient as that of the
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Figure 12: Numerical setup used to simulate the stretching of a rigid crustal unit in 2-D plane

strain. The domain is 40 km long and 30 km thick and contains two 10-km thick low-viscosity

layers at the top and bottom of a brittle plate of the same thickness. The brittle plate is notched

by a 1 × 0.75 km protrusion of the underlying viscous fluid. Constant outward velocities at the

left and right boundaries apply a constant stretching rate on the brittle plate, while the top and

bottom boundaries are also assigned constant inward velocities to satisfy volume conservation. All

boundaries are free of shear tractions.

shear defects.

Standard elasto-plastic simulations, on the other hand, are parameterized to match the intact

strength of the SCAM model calibrated on Westerly granite (Figure 11) under a laboratory strain

rate (10−5 s−1, red curve) and under a tectonic strain rate (10−15 s−1, orange curve). These

envelopes correspond to a similar friction coefficient µ = 0.96 and cohesions C of 94 MPa and

15 MPa, respectively (see Section 5.2). For concision, these simulations will be referred to as

EP-lab and EP-tecto. In both cases the frictional parameters are linearly weakened over a critical

amount of accumulated plastic strain ∆εpII = 0.1 down to µ = 0.7 and C = 0 MPa, the frictional

properties of the shear defects.

6.2 Development of fault networks

We first compare the faulting patterns produced by an elasto-plastic rheology (EP-tecto) vs. the

SCAM rheology during early rifting (up to ∼ 180 m of total extension). Figure 13 shows successive
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Figure 13: Snapshots of an early rifting simulation (10 cm/yr) in a 10-km thick brittle plate

using the elasto-plastic EP-tecto parameterization (A–C.) vs. the SCAM model (D–F.) Each row

corresponds to a specific time (i.e., amount of finite extension) in the simulation. The first column

shows the accumulated plastic strain for EP-tecto, and the damage field for the SCAM model.

The second column shows the second invariant of the deviatoric strain rate tensor, and the third

column displays the viscosity field within the brittle plate.

snapshots of accumulated plastic strain epII (A1 to A3), second invariant of strain rate ėII (B1 to

B3), and viscosity (C1 to C3), as extension of the EP-tecto plate progresses. Plastic yielding starts

from the surface of the plate, where pressure, and therefore yield stress, is lowest. It progressively

deepens as the yield criterion is met deeper and deeper due to elastic loading of the plate (Panels

A1 and A2). Plastic yielding initially mostly develops in a distributed fashion (second row), with

plastic strain localization occurring once almost half of the plate has reached yielding. The zone of

distributed yielding closer to the viscous protrusion, then transforms into an area densely populated

with shear bands, of dip angle near 55◦, each accommodating a very small fraction of the total

extension rate (second row). Stress concentrations around the basal notch eventually lead to the

formation of a pair of shear bands symmetrically cutting across the brittle plate, following the

path of pre-existing superficial shear bands. Plastic strain accordingly localizes along two major

antithetic shear bands (third row). The formation of these faults relax the elastic stresses within

the plate and inhibit plastic yielding in the remainder of the plate (Panels B3 and C3).

The same setup using the SCAM flow law (Figure 13D–F) shows a different story. Damage first

increases uniformly within ∼ 1 km below the surface of the brittle plate (Panel D1, blue arrow 1).

After shallow damage exceeds values of 0.4-0.5 (∼ Dc), damage localization proceeds through the

downward propagation of damage bands which promptly turn into plastic shear bands (first row).

This occurs when the isolated crack regime transitions to the interacting cracks regime (see Section

5.1.2). The thickness of the shallow distributed damage zone (∼ 1 km) is set by a competition
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between damage growth being activated deeper and deeper as KI turns positive with loading, and

the unstable growth of damage bands (which soon turns plastic) once D exceeds Dc. Damage

banding unloads the surrounding material by releasing elastic stress through inelastic flow. The

growth of these shear bands is self-promoted as the result of stress concentrations at their lower

tips, which locally accelerate crack growth and coalescence. This dynamic is clearly visible on the

viscosity snapshots, for example Panel F1, where each fault has its own associated lobe of low

viscosity (blue arrow 2), driven by damage growth. These lobes are accompanied by a front of low

(damage) viscosity which deepens through time (Panel F2, blue arrow 3). This reflects the fact

that with continued far-field loading, the depth at which KI turns positive increases.

Growing faults tend to shield each other and alter the stress field in their vicinity, which leads

to the development of complex networks shaped in a tree-like fashion (e.g., the imbricated fault

structure that forms on the left side of the plate in Panels D3–F3). After about 50 m of stretching,

the concentration of tensile stresses around the viscous protrusion promotes the growth of a major

fault, which first grows upward with a downward convex shape (Figure 13D2–F2), connecting with

one of the deepening faults (Panel D2, blue arrow 4), before a more favorably oriented branch

eventually grows and bypasses the less favorably oriented pre-existing segment of the fault. This

master-fault’s dip angle increases from ∼ 60◦ at the bottom of the plate, to almost 90◦ close to

the surface. As extension progresses, the uppermost part of the fault (Panel D3, blue arrow 5)

rotates towards gentler dips, which progressively widens the thickness of the damage band near

the surface, as shown in the last row of snapshots (blue arrow 5 in Panel D3). The dip angle of

secondary faults is variable and ranges from 60◦ to 75◦ with segments locally close to vertical,

reflecting the spatially variable distribution of stresses induced by the complex array of faults.

The fault angles with respect to σ1 (here vertical) are overall smaller in the SCAM tectonic simu-

lations (15-30◦) than what was observed in our 2-D simulations of triaxial experiments (∼ 30◦, see

Section 4.4). These faults are closer to the Coulomb angle (23◦) associated with the effective intact

strength coefficient of internal friction of Westerly Granite (µ = 0.96), than with the coefficient of

friction at the micro-crack scale (µ = 0.7). Some deviation from the theoretical value likely stems

from heterogeneities in the stress field that develop through stress concentrations and complex

interactions between growing shear bands. In simulation EP-tecto, the master fault orientations of

around 33◦, correspond to the Arthur angle θA = 45◦ − (ϕ+ψ)/4 (Arthur & Dunstan, 1977) asso-

ciated with the prescribed initial internal friction coefficient of 0.96 without any plastic dilatancy

(ψ = 0), which is a typical shear band angle found (along with the Coulomb angle) in numerical

elasto-plastic simulations (Kaus, 2010).

Contrary to the EP-tecto simulation, the initiation of a fault cutting across the plate does not

inhibit the activity on secondary faults, which continue to accommodate a significant amount of

extension in the SCAM run (Figure 13, Panel B3 vs. E3). We note that EP simulations can

produce such behavior, but it generally requires a small strength contrast between the fault zone

and surrounding lithosphere (Lavier et al., 2000). To further characterize the partitioning of strain

in the SCAM runs, Figure 14A represents the distribution of slip rates on the population of faults,

sampled at different depths in the plate after ∼ 180 m of extension (Figure 13A3–C3 and D3–F3).

We identify normal faults by locating positive peaks along a profile of horizontal strain rate ėxx

along a line of constant depth. To mitigate resolution issues when two neighboring peaks are found,

we only retain the larger of any two peaks distant by less than 4 cell sizes. We focus on peaks where

strain rate exceeds 4 ·10−13 s−1, which amounts to five times the background horizontal strain rate

imposed by boundary conditions. The slip rate on each fault is then calculated assuming that the
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Figure 14: A. Distribution of slip rates on fault populations sampled along different depths in

a SCAM-based simulation (grey lines) vs. simulation EP-tecto (yellow-to-red lines). Faults are

measured after 180 m of total stretching, corresponding to Panels A3–C3 and D3–F3 of Figure 13.

B. Differential stress averaged across a 1 km-wide vertical band along the left side of the extended

brittle plate, plotted as a function of total extensional strain. The black curve corresponds to the

SCAM simulation, whereas the red and orange curves are associated to elasto-plastic simulations

parameterized with short (EP-lab) and long-term (EP-tecto) intact strengths. Stars mark the

timing of the snapshots displayed in Figure 13.

thickness of the faults is one cell length (100 m in these simulations).

Lastly, we find that the slip rates of the incipient fault population produced by the SCAM model

follows a power law distribution of exponent close to 1 (grey lines in Figure 14A). This distribution

likely originates in the tree-like, near-fractal nature of the fault network that emerges within the

brittle plate. Simulation EP-tecto, on the other hand, rapidly produces two dominant faults with

very similar slip rates, and virtually no smaller fault with slower slip rates. The distribution of

fault slip rates produced by the SCAM run evokes the power law distributions exhibited by natural

populations of normal faults. For example, the lengths and offsets of Basin and Range normal faults

have been shown to follow a power law distribution with exponent close to unity (e.g., Scholz et

al., 1993; Marrett et al., 1999). Natural rift systems are also known to partition extension onto

multiple faults of varying sizes, such that all minor intrabasinal faults typically accommodate as

much strain as a single half-graben border fault (Morley, 1996). Standard elasto-plastic models

tend to localize deformation onto a small number of lithosphere-scale faults (Olive et al., 2016),

but can also produce a wide range of fault sizes in the early stages of rifting, provided sufficient

resolution is used (Naliboff et al., 2020; Pan et al., 2022). In this case, the distribution of fault

sizes and offsets appears to depend on the amount and rate of strain softening, as well as on the

overall extension rate (Naliboff et al., 2020). The SCAM model provides a novel framework to

further explore this dependence without resorting to ad-hoc softening rules.
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6.3 Strength of the brittle lithosphere

Figure 14B shows the differential stress averaged along the left side of the model domain throughout

our early rifting simulations. All show an initial elastic increase, followed by a peak and a softening

phase. The average peak stress reached in the SCAM simulation is ∼ 100 MPa. The softening

phase is much less acute than in our simulations of triaxial experiments (Figure 10). This possibly

reflects the progressive nature of the development of the fault network (Figure 13). The peak stress

roughly coincides with the moment when a fault first connects the top to the bottom of the plate,

shortly after snapshots D2–F2 in Figure 13. The steady, long-term stress (∼ 90 MPa in Figure

14B) is attained when one of the throughcutting faults has clearly developed into the dominant

one accommodating the largest extension rate (Figure 13E3).

On the other hand, simulation EP-lab illustrates what happens when one models rifting with

strain-softened elasto-plasticity calibrated on experiments conducted at laboratory strain rates

(Figure 11). The plate reaches a significantly greater peak stress of ∼ 160 MPa (Figure 14B), and

experiences more drastic weakening down to its long-term frictional strength, which is inferred

from pre-cut samples (µ = 0.7 and no cohesion). By contrast, simulation EP-tecto, which is

calibrated to reproduce the intact strength of samples predicted by the SCAM model at tectonic

strain rates (yellow line in Figure 11), unsurprisingly produces a stress-strain curve similar to the

SCAM simulation (Figure 14B).

Through its built-in dependence on strain rate, the SCAM rheology can extrapolate crustal strength

under tectonic conditions, even though it is entirely calibrated on laboratory data. It thus consti-

tutes a promising alternative to the standard approach in tectonic modeling, which consists of using

“Byerlee’s law”, i.e., assigning the pre-cut sample strength to intact brittle lithosphere ((Brace &

Kohlstedt, 1980)). The SCAM flow law has the advantage of using a single value of friction and

a handful of micro-mechanical parameters to predict the lithosphere’s intact strength across ten

orders of magnitude of strain rate. It self-consistently handles the transition from intact to bro-

ken (pre-cut), and does not require any empirical assumption on weakening strain. Alternatively,

SCAM can be used to prescribe an intact strength that is appropriate at tectonic strain rates, for

use in standard elasto-plastic models (e.g., simulation EP-tecto). This approach, however, does

not solve the problem of the ad-hoc weakening strain.

6.4 Growth of geological structures

In order to compare the tectonic structures formed after greater amounts of finite extension by the

SCAM and elasto-plastic (EP-tecto) rheologies, we performed three additional simulations under

strain rates of 1 mm/yr, 1 cm/yr and 10 mm/yr for each rheology. Due to the computationally

demanding nature of the SCAM model, we decreased the resolution of the spatial domain using a

cell size of 250 × 500 m within 8 km of the top and bottom walls, and a greater resolution, with

a cell size of 250 × 250 m in the rest of the domain containing the brittle plate.

Snapshots of the second invariant of strain rate (ϵ̇II) fields at different times are displayed in Figure

15. The first three rows correspond to successive times throughout the SCAM simulations after

∼ 251, ∼ 1079 and ∼ 3457 m of horizontal stretching, respectively. The fourth row corresponds to

snapshots of elasto-plastic simulations performed under the same extension rates, after ∼ 3457 m

of extension. The elasto-plastic simulations remain unsurprinsingly insensitive to a change of strain
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Figure 15: Numerical simulation of about 3.5 km of extension of a 10-km thick brittle plate, at

varying rates (columns). Snapshots of the second invariant of strain rate at different amounts of

finite extension (shown on the left), for a brittle plate governed by A–C. the SCAM flow law, and

D–F. the EP-tecto rheology. The model resolution has been reduced compared to Figure 13 to

reach greater amounts of finite extension in reasonable time.

rate (e.g., Olive et al., 2016), as they all develop the same central graben structure (Figure 15D–F)

The SCAM simulations, on the other hand, generate features that vary with extension rate. The

first one is the location of the cluster of faults in the hanging-wall ((Figure 15A1–C1). The faster

the extension rate, the closer this cluster of secondary faults lies to the master fault, with distances

ranging from 15 to 7 km. The second feature is the geometry of the rift after 3457 of extension

(Panels A3–C3). The rift structure shows a greater degree of asymmetry with increasing extension

rate. This is particularly well expressed in topography, which corresponds to a symmetric graben

in Panel A3 but is closer to a half-graben in Panels B3 and C3, as more extension is accommodated

of the central right-dipping fault. We acknowledge that some of this variability could be attributed

to stochasticity in marker positions, coupled with strong non-linearities of the SCAM flow law.

We however ran the SCAM simulations a second time using different randomly assigned marker

positions, and otherwise identical parameters. This second set yielded the same pattern of strain

rate dependence as illustrated in Panels A3–C3.

Extension rate is known to influence rifting styles, primarily by modulating the thermal structure

(Buck, 1991; Lavier & Buck, 2002). Our results suggest that it may play an additional, more

subtle role by modulating the very processes of fault development. Specifically, the SCAM model

introduces a strain rate dependence of brittle deformation by transiently activating a moderate to

low viscosity in portions of the upper crust where damage is actively growing (e.g., Panels F1 and

F2 of Figure 13). An analogous strain rate dependence of deformation was previously noted by

Olive et al. (2016) in rifting simulations that treat the upper crust as a visco-plastic medium rather

than an elasto-plastic medium. In the present case, however, the viscosity of the upper crust has a

physical meaning (ηD, related to the damage growth rate), as opposed to an arbitrarily high value

meant to simulate a stiff visco-plastic upper crust.
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6.5 Upscaling the SCAM parameters

The results presented thus far show that a flow law indexed on the activity of sub-millimetric rock

defects, and calibrated on decimeter-sized samples can produce reasonable deformation patterns

when applied to tectonic problems at scales > 10 km. This fact does not negate the implication of

larger defects (> 10 cm) in the nucleation of crustal faults, but highlights that they need not be

explicitly described in our constitutive relation. These intermediate-scale defects can be thought of

as emerging through the formation of distributed damage bands, albeit only at scales greater than

the numerical grid size, before dominant crustal-scale bands fully develop (e.g., Figure 13D1–F1).

In other words, the coalescence of sub-millimetric shear cracks produce diffuse proto-faults, and

stress concentrations at their tips generate further localization at larger and larger scales.

Nonetheless, it is legitimate to wonder how differently our model would behave if it was based on

larger (e.g., metric) shear defects. To address this question, we assess the effect of initial defect size

a on the two extreme measures of rock strength in the SCAM framework: the minimum strength

that characterizes extremely slow deformation, and the maximum strength at very high strain

rates. The absolute lower bound on SCAM strength is given by the maximum differential stress

satisfying KI = 0 (Figure 6, end of Section 5.1.2). It corresponds to the differential stress that

must be reached for macroscopic failure to be achievable, albeit after an infinitely long time (plain

blue line in Figure 11). The expression of KI (19) is a function of σ1, σ3, µ, a, and Nv (through

D0), but in the special case where KI = 0, the explicit dependence on a drops, such that the

maximum differential stress at KI = 0 only depends on σ3, D0 and µ. Assuming µ is constant

across scales, we end up with a lower bound on strength that only depends on D0 = f(a,Nv).

Interestingly, this property can be used to constrain a plausible range of D0 values to be used in

tectonic simulations. The minimum strength (continuous blue line in Figure 11) must exceed the

stress required to slip on a favorably oriented pre-existing frictional surfaces (e.g., ∼ 500 MPa for

σ3 = 150 MPa, the value used to construct Figure 6; dashed blue line in Figure 11). The minimum

strength must also be lower than the strength measured in the laboratory at the slowest possible

strain rate (somewhere within the red area in Figure 11). Taking 90% of the peak value from

Wawersik and Brace (1971) (e.g., 1150 MPa for σ3 = 150 MPa) as a rather conservative estimate,

considering that Brantut et al. (2012) observed brittle creep failure at ∼ 77% of estimated peak

strength under 50 MPa of confining pressure, brackets the minimum strength for σ3 = 150 MPa

between ∼ 500 and ∼ 1150 MPa. This corresponds to a range of D0 between 0.06 and 0.4.

On the other hand, the maximum strength of the material at very fast strain rates can be assessed

by equating equation (19) to KIC , and rewriting it as a function of σ1. This gives an equation

whose maximum with respect to D yields the maximum differential stress a rock can withstand

(Figure 6), as cracks grow critically at seismic wave speeds (Bhat et al., 2012). This maximum

stress roughly scales as KIC/
√
a. It follows that the difference between the maximum differential

stress at KI = KIC and at KI = 0, a measure of the overall strain rate dependence of the SCAM

model, approximately scales as a−1/2. If fracture toughness is a scale-invariant, intrinsic property

of the material, increasing the size of the initial shear cracks brings the maximum and minimum

strengths closer and closer to each other, severely suppressing the strain-rate dependence of the

material’s intact strength. This result is a fundamental property of the wing-crack model of Ashby

and Sammis (1990), and does not depend on the specifics of the SCAM model. Whether it applies

to natural systems remains an open question, as it is well known that fracture toughness can vary

significantly across scales.
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7 Conclusions and perspectives

In this paper, we introduced a Sub-Critically Altered Maxwell (SCAM) framework to describe

brittle deformation in long-term tectonic models. It is a set of constitutive equations that cap-

ture experimentally-described behaviors of rocks at upper crustal pressures and temperatures. It

is based on the evolution of an internal damage state and on its interactions with the elastic

properties of the material. The model also allows large deformations by branching to plastic be-

havior after microcracks interact and coalesce. The SCAM model has several notable properties

that make it a promising alternative to standard elasto-plastic models, or a way to improve their

parameterizations of brittle yielding. Elastic properties are permanently altered due to their in-

dexation on damage. Damage growth is a time-dependent process that is activated at stresses

far below failure strength, through frictional sliding on shear defects distributed throughout the

rock. It promotes strain softening pre-peak and self-consistently generates the successive stages

of brittle creep. Creep behavior results from the transition from negative to positive retro-action

between damage and damage growth, which represents increasing interactions between lengthening

cracks. The SCAM model also produces two yield strength using a single friction coefficient and

no cohesion: a peak failure strength with high effective friction and strain rate dependent cohe-

sion, which ultimately transitions to a rate-independent residual strength that obeys Byerlee’s law.

Despite the high effective friction (∼ 1), shear band orientations in 2-D plane strain simulations

remain consistent with the true friction coefficient that describes the strength of shear defects

(µ ∼ 0.7). The SCAM model can be calibrated against experimental data using prior knowledge

on well-constrained rock properties to model the deformation of a specific lithology. Here Bayesian

inversions of experimental data on Westerly granite and Darley Dale sandstone led to a set of

reasonable micromechanical parameters whose impact on the macroscopic behavior of the rock can

be straightforwardly interpreted.

Preliminary results of rifting simulations in a 10-km thick brittle plate subjected to gravity show

that the SCAM model generates a population of faults with power-law distributed slip rates, akin

to the distribution of natural fracture sizes and fault offsets, and likely introduces a strain rate

dependence of the geological structures that develop at large strains. These features make it a

good candidate to further investigate the complexity of brittle behavior across scales.

In designing the SCAM framework, we have strived to capture key micromechanical processes

while keeping the model as simple as possible. This came at the cost of a few simplifications that

may be relaxed in future work. A first strong assumption is that weakening of the shear modulus

occurs isotropically, even though the orientation of the shear defects is strongly anisotropic. This

assumption has the advantage of reducing the complexity of the constitutive law and simplifying

its interpretation, but lacks consistency when relating crack geometry to macroscopic behavior.

Within this assumption, however, a more consistent approach to damage-induced elastic weakening

could be to assume isotropic weakening in the plane containing the crack normals (the (σ1, σ3)

plane), and no weakening in the perpendicular direction. Such anisotropy however implies that the

2-D plane strain condition can no longer be satisfied for arbitrary extremum stresses, i.e., enforcing

ε2 = 0 could lead to σ2 not being an intermediate stress between σ1 and σ3.

In addition to neglecting material anisotropy, the evaluation of KI (Section 2.3) assumes that all

cracks remain oriented at 45◦ with respect to σ1 regardless of the stress and material rotations that

may occur during large deformations. This assumption can lead to significant errors on the stresses

resolved on shear defects. We note that the strains associated with shear band localization are on
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the order of a few percent, and thus should not be accompanied by significant finite rotation. On

the other hand, large strains could conceivably rotate shear defects out of an optimal orientation

in a long-term tectonic simulation. From a theoretical and computational point of view, keeping

track of multiple shear defect orientations in an evolving stress state is challenging, in part because

evaluating stress intensity factors and interaction terms would become very complex. The very

definition of damage should also be revised to account for curving wing-cracks that grow along a

changing σ1 direction, and/or different sets of tensile wings associated with different sets of shear

defects.

Another possible improvement for long-term tectonic modeling would be to allow damage to par-

tially or completely heal over long time scales. This would promote the progressive recovery of

intact elastic properties within abandoned shear bands, and require a re-mobilisation of micro-scale

frictional processes in order to re-activate a de-activated fault. To this end, a sub-critical crack

growth law similar to that of Darot and Gueguen (1986) seems adequate. Crack growth is formu-

lated as a thermally activated process where the growth or healing of a crack is indexed on the sign

of the energy balance associated to the incremental advance of the crack front. This formulation

has a more robust thermodynamical foundation than Charles’ (1958) law and also accounts for the

effect of temperature. It however involves more parameters, which is why we restricted ourselves

to a simpler version of Charles’ law in this work

Finally, and importantly, the present study neglected the intrinsically dilatant effect of mode-I crack

growth. Incompressibility is a common simplification in long-term tectonic models (Gerya, 2010),

which amounts to setting the Poisson’s ratio to 0.5 and the dilatancy angle to zero when modeling

brittle failure with Mohr-Coulomb plasticity. Recent studies have shown that accounting for elastic

and plastic compressibility noticeably impacts the outcome of tectonic simulations. Specifically,

Duretz et al. (2021) found that compressibility hinders strain localization (it produces broader shear

zones), and can facilitate the convergence of numerical solvers. A mechanically consistent way of

introducing inelastic dilatancy within the elastically incompressible (ν = 0.5) SCAM model would

be to use the constitutive law developed by Bhat et al. (2012). Their approach consisted of assessing

the Gibbs free energy of a damaged solid (assuming the (Ashby & Sammis, 1990) micro-mechanical

model), and deriving it with respect to stress to yield effective elastic compliances. This approach

outlines two sources of volumetric strain during damage accumulation: one directly results from the

elastic compressibility of the material, which is altered by damage, the other represents a coupling

between shear and volumetric deformation (a direct consequence of mode-I cracks being wedged

open by shear defects). An elastically incompressible, yet inelastically dilatant SCAM model could

focus on capturing this shear-volumetric coupling through an effective dilatancy angle that can be

directly related to damage and stress Bhat et al. (2012). Dilatancy should cease as soon as cracks

coalesce (D ∼ 1), and give way to standard incompressible Mohr-Coulomb plasticity.

In its current state, the SCAM framework already unveils novel prospects for tectonic modelers.

Keeping track of a damage field enables new connections between crustal scale simulations and

key observables. Damage fields could straightforwardly be converted to seismic velocity maps for

comparison with crustal tomography data. The distribution of damage along the model’s free

surface could also be used as a proxy for the erodibility of rocks exposed to weathering, and help

understand variability in erosion rates across tectonically active landscapes (Molnar et al., 2007;

Gallen et al., 2015) Finally, damage accumulation is intrinsically linked to an increase in porosity

within the rock, and fracture connectivity is a primary control on fluid pathways. The evolving

damage field could therefore be used as a proxy for the permeability of the brittle crust (e.g., Perol
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and Bhat (2016)) enabling coupled models of progressive brittle failure and fluid flow. This would

enable the consideration of both poro-elastic feedbacks between fluid pressure and deformation, as

well as alterations of mechanical properties through fluid-rock reactions.

Appendix

A Bayesian inversion procedure

A.0.1 Mathematical description

As illustrated in Section 3, our “forward” problem consists of predicting a vector of data points

d, e.g., a time series of stress or brittle creep strain rates, given a set of rock parameters (Table

1) stored in a vector m. This problem synthetically writes d = g(m). By contrast, the inverse

problem consists of finding the distribution of model parameters that best fits known experimental

data dobs with associated uncertainty. We adopt a least-squares approach in which all probability

distributions quantifying uncertainties are Gaussian. Uncorrelated data uncertainty can thus be

represented as a Gaussian distribution centered on dobs with a diagonal covariance matrix Cd.

Similarly, a-priori knowledge on the distribution of model parameters can be assumed to follow a

Gaussian distribution centered on mprior, with diagonal covariance matrix Cm.

We seek the best-fitting model (m̃) which minimizes the log-likelihood function: a measure of

distance between dobs and d, weighted by data uncertainty and prior knowledge:

S(m) = (g(m)− dobs)
TC−1

d (g(m)− dobs) + (m−mprior)
TC−1

m (m−mprior). (46)

The log-likelihood is then minimized using a Gauss-Newton iterative algorithm (Tarantola, 2005).

The iterative scheme, initialized at m0 = mprior, reads :

mn+1 = mn − κn
(
Gt

nC
−1
D Gn +C−1

m

)−1 (
Gt

nC
−1
D (g(mn)− dobs) +C−1

M (mn −mprior )
)
, (47)

where n and n + 1 refer to the current and next iteration, κn ≤ 1 is the step multiplier, a

hyperparameter that can be tuned to help convergence in case of strong non-linearities in the

log-likelihood function. G is the Jacobian matrix:

Gij
n =

(
∂gi
∂mj

)
mn

. (48)

The posterior model covariance matrix, a measure of the uncertainty on the inverted parameters,

is then computed as

C̃M ≃
(
GtC−1

D G+C−1
M

)−1
= CM −CMGt

(
GCMGt +CD

)−1
GCM. (49)
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A.0.2 Implementation

For each inversion, we assemble a data vector dobs by concatenating data from several constant

strain rate experiments conducted under different confining pressures, and several brittle creep ex-

periments conducted under different imposed axial stresses. The constant strain rate data consists

of time series of axial stress complemented by the peak axial stress and the corresponding axial

strain that was reached in each experiment. By assigning a lower uncertainty (in Cd) on the peak

axial stress and strain relative to the uncertainty on the stress time series, we can assign more

weight to this constraint. Doing so helps favor models that accurately predict the position of the

peak stress. The brittle creep data for Darley Dale sandstone consist of concatenated time series of

axial strain rate from experiments conducted under different axial stresses. Because such data was

not available for Westerly granite, we instead concatenated measurements of the representative

secondary creep strain rate from experiments conducted under different axial stresses.

At every step of the inversion algorithm, a vector of “simulated data” dn = g(mn) is built by

simulating each individual experiment, and ordering the outputs to match the order of dobs. In

order to simulate brittle creep, the axial stress is first raised by imposing a constant strain rate

matching that of the experiment (e.g., loading up to the star in Figure 4A as damage accumulates

in in Figure 4B). The damage state achieved by the sample is then used as initial condition for

the brittle creep simulation. The axial stress is kept constant as we simulate the evolution of axial

strain rates (See Section 3).

To ensure that the inversion does not assign negative values to parameters which are inherently

positive, we construct a model vector m that contains the logarithm of each SCAM parameter,

namely: G0, γ, µ, a, D0, Di, n, KIC , and l̇0. The associated uncertainties (prior or posterior) are

thus log-normal distributions of the parameters, or Gaussian distributions of the logarithm of the

parameters. If a positive parameter has a standard deviation s̄ and a median m̄, the distribution

of its logarithm can be adequately represented by a Gaussian distribution centered on log(m̄)

with variance σ̄2 = log(1 + s̄2/m̄2). We make use of these formula to assign uncertainties on the

experimental data and on our prior knowledge of the model parameters.

B Derivation of the plastic viscosity

Two situations have to be considered to construct the plastic viscosity term ηp used in SCAM

numerical simulations. The first situation is stresses that lie above the plastic yield envelope at

the onset of plastic behavior. This can happen because damage build-up may cause stresses to

increase past the plastic yield stress (σy). In this case, we require the plastic viscosity to relax

excess stresses above σy in one iteration. Equation (38) recast in term of ṡij thus becomes

ṡij =
syij − sij

∆t
= 2G0f(D)

(
ėij −

sij
2ηp

)
, (50)

where syij corresponds to any deviatoric stress tensor whose second invariant satisfies syII = σy .

We approximate equation (50) by using σy, sII and the second invariant of the strain rate tensors

ėII =
√
J2(ε̇) :
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σy − sII
∆t

= 2G0f(D)

(
ėII −

sII
2ηp

)
. (51)

This yields the following closed form equation for ηp :

ηp =
sII

2
(
ėII − σy−sII

2G0f(D)∆t

) . (52)

The other possible situation involves stresses capped by the yield envelope (i.e., sII < σy). In this

case, we additionally require that ηp be infinite if the elastic stress rate 2G0f(D)ėII is lower than

the value required to reach the yield stress in one iteration (
σy−sII

∆t ). This amounts to rewriting

ηp:

ηp =
sII

2
(
ėII −min (

σy−sII
2G0f(D)∆t , ėII)

) , (53)

to ensure that the plastic viscosity is finite only when sII ≥ σy, or if an elastic stress increment

suddenly brings sII above σy.
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