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Abstract
When a dynamic earthquake rupture propagates on a fault in the Earth’s crust, the medium around the fault is dynamically
damaged due to stress concentrations around the rupture tip. Recent field observations, laboratory experiments and canonical
numerical models show the coseismic off-fault damage is essential to describe the coseismic off-fault deformation, rupture
dynamics, radiation and overall energy budget. However, the numerical modeling of “localized” off-fault fractures remains a
challenge mainly because of computational limitations and model formulation shortcomings. We thus developed a numerical
framework for modeling coseismic off-fault fracture networks using the combined finite-discrete element method (FDEM),
and we applied it to simulate dynamic ruptures with coseismic off-fault damage on various fault configurations. This paper
addresses the role of coseismic off-fault damage on rupture dynamics associated with a planar fault, as a base case, and with
a number of first-order geometrical complexities, such as fault kink, step-over and roughness.

Keywords Earthquake ruptures · Fracture damage · FDEM

1 Introduction

The contribution of inelastic off-fault deformation to the
rupture dynamics has been pointed out since 1970s. Sib-
son [39] conceptually proposed a formulation for the overall
energy budget of dynamic earthquake ruptures; a part of the
energy released from accumulated strain energy by inter-
seismic deformation is converted to seismic wave radiation,
while the rest is expended in inelastic deformation processes
within the fault zone. Then, numerous studies via field obser-
vations have shown evidence of fractured rock surrounding
the fault core, which can be coseismically damaged due to
dynamic earthquake ruptures (e.g., [5,10,38]). Furthermore,
Mitchell and Faulkner [23] showed that microfracture den-
sity is significantly higher in the near-fault region while it
exponentially decreases with distance from the fault core,

B Kurama Okubo
kurama_okubo@fas.harvard.edu

1 Department of Earth and Planetary Sciences, Harvard
University, Cambridge, MA, USA

2 EES-17 - Earth and Environmental Sciences Division, Los
Alamos National Laboratory, Los Alamos, NM, USA

3 Laboratoire de Géologie, École Normale Supérieure/CNRS
UMR 8538, PSL Research University, Paris, France

evidencing the presence of a well-defined off-fault damage
zone.

Figure 1 shows the hierarchical fault system in a wide
range of length scales. Generally, fault geometrical com-
plexity associated with an earthquake event is discussed in
kilometric scale (Fig. 1a, b). However, when we focus on a
smaller portion of the fault system, we find off-fault frac-
tures in subkilometric scale (Fig. 1c, d). These smaller-scale
off-fault fractures are either not included in kinematic and
conventional dynamic earthquake rupture models, or their
effects are homogenized using elastic-plastic constitutive
damage models (i.e., [3,41]). In these approaches, the local-
ized off-fault fractures indicated by red lines in Fig. 1c remain
to be fully modeled because of limitations in the damage
model formulations, although their contributions might be
significant on the rupture dynamics, deformation and resid-
ual stress field. Therefore, we need a numerical framework
which allows formodeling both dynamic rupture on complex
fault systems and coseismic generation of off-fault damage
to investigate its effects on them.

This paper first describes the numerical framework of
modeling dynamic earthquake rupture using the combined
finite-discrete element method (FDEM) [27–29] that allows
for modeling localized coseismic off-fault fractures and for
quantifying their contributions to rupture dynamics, seismic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40571-020-00335-4&domain=pdf
http://orcid.org/0000-0001-6453-8238
http://orcid.org/0000-0002-4624-2844
http://orcid.org/0000-0002-4965-5556
http://orcid.org/0000-0003-0361-1854


Computational Particle Mechanics

Fig. 1 Fault systems’ hierarchical structure for a wide range of length
scales. a Fault map of southern California [11]. Black lines indicate
fault traces. Stars and color lines indicate the location of epicenters and
rupture traces of historic earthquake events, respectively. b Fault map
and rupture traces (in red) associated with the 1992 Landers earthquake
(modified from [40]). c Smaller-scale off-fault fracture network [40].

d Schematic of a typical fault zone structure, showing a fault core sur-
rounded by damage zones [23]. e, f Fault damage zone of Caleta Coloso
fault, the variation in microfracture (mf.) density within the damage
zone as a function of distance from fault core, and some microfracture
images taken at different distances from the fault core are shown [24]

radiation and energetics of earthquakes. We then perform a
series of dynamic rupture modeling cases, showing FDEM’s
capability for modeling dynamic earthquake ruptures with

dynamically activated tensile and shear fractures in the off-
fault medium. Both friction and cohesion laws are applied
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on the fracture surfaces, providing a quantitative measure
for energy dissipation due to the off-fault fracturing.

Since FDEM uses unstructured meshes, it can be used to
model ruptures on complex fault systems such as fault kink,
step-over and roughness.We demonstrate the rupture model-
ing on these fault configurations with first-order geometrical
complexity in order to identify the damage pattern associated
with each case and to investigate the rupture dynamics for
first-order geometrical complexities. This case study even-
tually contributes to decompose the effects of coseismic
off-fault damage on real fault systems with further paramet-
ric studies as a real fault system is formed by the aggregation
of those simpler geometrical complexities.

2 Continuum–discontinuum approach for
dynamic earthquake rupturemodeling

In the numerical framework ofmodeling both dynamic earth-
quake rupture and coseismic off-fault damage, geological
faults and off-fault fractures are equivalently defined as
discontinuities within a continuum medium. From this per-
spective, we consider both the faults and the off-fault damage
in the same framework as an aggregation of fractures at dif-
ferent length scales. The activation of new fractures in the
medium is represented as the loss of cohesive resistance.
Frictional processes then take place at the boundary of the
fractured surfaces, and they have a significant contribution
in earthquakes’ overall energy budget. Therefore, we need
a modeling scheme able to handle both continuum (defor-
mation) and discontinuum processes (fractures) within the
same framework. Furthermore, this model requires efficient
contact algorithms to resolve contact, cohesive and frictional
forces, operating on every fracture surface and potential fail-
ure planes. We first provide a general description of the
numerical framework using FDEM to model the dynamic
earthquake ruptures on the prescribed fault system.

2.1 Formulation of FDEM

The application of FDEM, pioneered by Munjiza et al. [25],
has been expanded in the last couple of decades to solve broad
scientific problems associated with fracturing and failure of
solidmedia such as block caving, rock blasting, dam stability,
rock slope stability and hydraulic fracturing (e.g., [9,12,18–
22,37,48]). In the FDEMframework, a solidmedium is firstly
discretized into finite elements, in which the deformation is
governed by stress-strain constitutive laws as in the conven-
tional finite element method (FEM). The interaction among
individual elements is then computed based of prescribed
cohesion and friction laws. In this study, we utilized the
FDEM-based software tool, HOSSedu (Hybrid Optimiza-
tion Software Suite-Educational Version), developed by Los

Fig. 2 Sign convention for stress and orientation. a Tensile and clock-
wise directions are positive for stresses. b Sign convention for the
stresses on the fault. −σ 0

yy and σ 0
yx are, respectively, initial normal

traction and shear traction applied on the fault along the x axis. −σ1 is
maximum compressive principal stress with the angle ψ to the fault

Alamos National Laboratory (LANL) [16]. More details of
main algorithmic solutions used within HOSSedu can be
found in a series of monographs [27–29].

2.2 Model description

In this section, we describe the prestress condition and failure
criteria used for dynamic earthquake rupture modeling with
coseismic off-fault damage. The sign convention used in this
work considers that tensile stresses and clockwise rotations
are positive as shown in Fig. 2.

2.3 Initial stress state with depth

We follow a similar process to that proposed by Templeton
and Rice [41] and Xu et al. [47] to make an assumption of
initial stress state as a function of depth. For the sake of sim-
plicity, we assume the prestress state linearly increases in
depth based on lithostatic and hydrostatic conditions; there-
fore, it does not represent to a certain regional stress at depth.

A main fault plane is set parallel to the depth direction
z, while the xy - plane is perpendicular to z. The x-axis is
aligned with the main fault, and the origin of the x–y coor-
dinate system is located in the middle of the main fault. The
initial stress state is set for triggering a right-lateral strike-
slip on the main fault. We solve this problem assuming plane
strain conditions. The initial stress state is initially uniform in
the homogeneous and isotropic elastic medium and is given
by
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Fig. 3 Model description for the case studywith depth. a 2-D strike-slip
fault for dynamic rupture modeling with coseismic off-fault damage.
The pre-existing fault is defined as the interface without cohesion. The
orientation of maximum compressional principal stress σ1 is fixed to
60◦ from the main fault. The slip on the fault δI I is defined as the rel-

ative displacement. b Schematic of case study with depth. Lc indicates
the critical nucleation length at instability in Eq. 19. c The evolution of
initial stress state and quasi-static process zone size R0(z) with depth.
−σ1(z), −σ2(z) and τmax(z) indicate maximum principal stress, mini-
mum principal stress and maximum shear traction, respectively

σ 0
i j =

[
σ 0
xx σ 0

yx
σ 0
yx σ 0

yy

]
. (1)

Let normal stress σ 0
yy on the main fault be given by linear

overburden effective stress gradient such that

σ 0
yy = −(ρ − ρw)gz, (2)

where ρ is the density of rock, ρw is the density of water, g
is the gravitational acceleration, and z is the depth measured
from the ground surface. The initial shear stress σ 0

yx is esti-
mated in terms of the seismic S ratio, defined by [1], on the
main fault such as

S = fs(−σ 0
yy) − σ 0

yx

σ 0
yx − fd(−σ 0

yy)
, (3)

where fs and fd are the static and dynamic friction coeffi-
cients, respectively. The value of the S ratio defines whether
the rupture velocity is supershear (S < 1.77) or remains sub-
Rayleigh (S > 1.77) in 2-D (Fig. 3). Thus, the initial shear

stress on the main fault can be written as

σ 0
yx = fs + S fd

1 + S
(−σ 0

yy). (4)

The horizontal compressive stress σ 0
xx is then determined

by the normal stress σ 0
yy , shear stress σ 0

yx and the given orien-
tation of the initial compressive principal stress to the main
fault ψ (indicated in Fig. 2b) as follows:

σ 0
xx =

(
1 − 2σ 0

yx

tan (2ψ)σ 0
yy

)
σ 0
yy . (5)

The relationship of the magnitude of σ 0
xx and σ 0

yy depends
on ψ in the following manner:

⎧⎨
⎩

(−σ 0
xx ) ≥ (−σ 0

yy), 0 < ψ ≤ π/4

(−σ 0
xx ) < (−σ 0

yy), π/4 < ψ < π/2
(6)
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Fig. 4 Schematic of contact algorithm. a Computational domain dis-
cretized using an unstructured mesh. Every interface between elements
is regarded as a potential failure plane, where cohesion and friction
stresses are operating as a function of displacements δI/I I . bLinear dis-
placement softening cohesion law. The area highlighted in gray under

the softening part of the curve indicates the fracture energy associated
with cohesion in tension Gc

IC and in shear Gc
I IC , respectively. c Lin-

ear slip-weakening law. The energy dissipated by frictional process is
divided into the fracture energy associated with friction, G f

I IC , while
the rest is considered as heat

which is consistent with the condition of initial stress state
defined by Poliakov et al. [34] and Rice et al. [35].

2.4 Failure criteria

In the FDEM framework, cracks are represented as a loss of
cohesion at the interfaces of the finite elements in the model.
The combined single and smeared discrete crack approach
[26] is generally accepted as a crack model based on fracture
energy, where the cohesion and friction are prescribed fol-
lowing actual representations of experimental stress-strain
curves [19]. It is worth noting that the cohesion and the fric-
tion against the opening or sliding motion between contactor
and target are a function of displacements defined by the
aperture δI and the slip δI I between the contactor and the
target.

The cohesive and frictional resistances are applied on
every interface between elements (i.e., at every edge), which
is regarded as a potential failure plane. Both cohesion and
friction curves are divided into two parts, an elastic loading
part and a displacement-weakening part as shown in Fig. 4. In
the elastic loading part, the resistant forces against displace-
ments acting on the interface increase nonlinearly (for the
case of cohesion) or linearly (for the case of friction) with
the stiffness of the elastic loading portions being pc, p f ,
respectively. Since this elastic loading part ideally should
be zero to represent the material continuity, the stiffnesses,
pc and p f , are chosen to be much higher than the Young’s
modulus of the material E in order to minimize the extra
compliance introduced by the interfaces’ elastic loading por-
tions. In this study, we chose pc = 1000E , and p f is chosen
in the same order of pc as described in the following section.
When the applied traction on the interface reaches the peak
tensile or shear cohesion strengthsC p

I/I I , the interface bond-
ing starts to be weakened (i.e., damage starts to accumulate),

and eventually it loses the cohesion (Fig. 4b).When the shear
traction reaches frictional strength τp, it decreases down to
the residual strength at critical displacements Dc as shown in
Fig. 4c. The friction curve follows the linear slip-weakening
law originally proposed by Ida [14] and Palmer and Rice
[32], which has been widely used for dynamic earthquake
rupture modeling (e.g., [1,4,7]). Eventually, the medium’s
shear strength follows the Mohr–Coulomb failure criteria.
Note that the friction law is operating on both the main fault
and the secondary cracks activated in the off-fault medium.

Themixedmode fracture is evaluated by a damage param-
eter, D, which is defined as

Di = δi − δ
c,e
i

δ
c,c
i − δ

c,e
i

i = I , I I (7)

D =
√
D2

I + D2
I I (0 ≤ D ≤ 1) (8)

DT = DI

D
=

{
1, for purely tensile crack
0, for purely shear crack

}
, (9)

where Di (i = I , I I ) are the components of damage for
tensile and shear modes, δi are the normal and tangential
displacements, δ

c,e
i are the initial critical displacements for

elastic loading, δc,ci − δ
c,e
i are the maximum displacements

during linear-softening where δ
c,c
i are the initial critical dis-

placements for the linear-weakening part, D is the degree
of damage and DT indicates the type of damage. Similar
expressions can be found in Rougier et al. [36] and Lisjak et
al. [21].

Since we employed a linear softening law, the fracture
energies related to cohesion for tensile (mode I) and shear
(mode II) (i.e., the energy required to completely break the
bonds between finite elements) are evaluated as

Gc
iC = 1

2
C p
i

(
δ
c,e
i − δ

c,c
i

)
i = I , I I (10)
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where Gc
iC are the tensile and the shear fracture energies

and C p
i are the tensile and the shear cohesive strengths. The

fracture energy for friction is, following Palmer and Rice
[32], described as

G f
I IC = 1

2
Dc

(
τp − τr

)
(11)

where G f
I IC is the fracture energy for friction, Dc = δ

f ,c
I I

is the critical slip distance for friction, and τp and τr are the
peak strength and the residual strength for friction, defined
as

τp = fs(−σn) (12)

τr = fd(−σn), (13)

where fs and fd are the static and dynamic friction coeffi-
cients and σn is the normal stress on the contact surface. Note
that the elastic loading part δ f ,e

i is much smaller than Dc, so

that the representation of fracture energyG f
I IC by Eq. (11) is

acceptable even without the consideration of elastic loading
part.

2.5 Friction law

When the amount of slip exceeds the elastic slip distance
for cohesion δ

c,e
I I , the cohesive force starts weakening. We

assume that the friction starts weakening at δ
f ,e
I I = δ

c,e
I I so

that the cohesion and the friction start weakening at the same
amount of slip.We do this by adjusting the stiffness of elastic
loading for friction p f , as follows:

p f = τ
p
I I

2C p
I I

pc. (14)

The fracture energy related to friction,G f
I IC , is approximated

from Eq. (11).
One interesting question is, as pointed out by Rice et al.

[35], what parameters vary with depth. In our parametriza-
tion, normal stress on the fault lithostatically increases with
depth. Lachenbruch [17] proposed a formula of frictional
resistance similar to the exponential slip-weakening law,
where the slip-weakening distance Dc on the fault is almost
independent of depth because it is composed by physical
parameters like the width of fault gouge and other coef-
ficients related to pore fluid or rock material, which are
assumed to be constant with depth (also referred in Rice et
al. [35]). In this case, G f

I IC on the fault derived by Eq. (11)
increases with depth as the strength drop linearly increases

as τp − τr = ( fs − fd)
{
−σ 0

yy(z)
}
in our model description,

described as

G f
I IC (z) = 1

2
D∗
c

(
τp − τr

)
, (15)

where D∗
c is a given constant critical slip distance with depth.

This is thefirst scenario thatwe consider. The second scenario
is to assume thatG f

I IC on the fault is kept constantwith depth.
In this case, Dc decreases with depth, as a function of a given
constant G f ∗

I IC on the fault, as follows:

Dc(z) = 2G f ∗
I IC

( fs − fd)
{
−σ 0

yy(z)
} . (16)

For the sake of simplicity, we call the first scenario constant
Dc case and the second scenario constant GI IC case.

In both scenarios, as proposed by Palmer and Rice [32],
the process zone size R0 for the quasi-stationary crack, over
which the friction is weakened with ongoing slip to the resid-
ual strength, is described as

R0(z) = 9π

32(1 − ν)

μD∗
c

( fs − fd)
{
−σ 0

yy(z)
} , (17)

for the constant Dc case, while

R0(z) = 9π

16(1 − ν)

μG∗
I IC, f[

( fs − fd)
{
−σ 0

yy(z)
}]2 , (18)

for the constant GI IC case. As shown by Eqs. (17) and (18),

R0 decreases with depth as
{
−σ 0

yy(z)
}−1

for constant Dc

case and
{
−σ 0

yy(z)
}−2

for constant GI IC case.

Note that since the size of potential failure area is of the
same order of magnitude as R0(z) (e.g., [34]), the damage
zone is expected to decrease with depth, as mentioned by
Rice et al. [35].

To artificially nucleate the rupture from a part of pre-
existing fault, a slippery zone where frictional resistance is
lower than the rest of the fault is set in the nucleation patch.
The length of the slippery zone is slightly greater than the
critical nucleation length at instability, Lc, derived by Palmer
and Rice [32] such as

Lc = 2μDc(τp − τr )

π(σ 0
yx − τr )2

. (19)

2.6 Closeness to failure

Here, we describe the parametrization of the failure criteria
based on the fracture energy estimated from the experiments
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and observations [33,44], and the closeness to failure, pro-
posed by Templeton and Rice [41] and Viesca et al. [45],
which indicates the safety of the initial stress state to the fail-
ure of thematerial represented by the ratio of the radius of the
Mohr’s circle to the distance to the Mohr–Coulomb criteria.
Let σ1 and σ2 be the maximum and minimum compressive
principal stresses. Assume aMohr–Coulomb friction criteria
with shear peak strength C p

I I . Then, the closeness to failure,
dMC , is derived from geometrical relationships such that

dMC = σ2 − σ1

2C p
I I cosφ − (σ1 + σ2)

=

(
σ1

σ2
− 1

)

(
σ1

σ2
+ 1

)
− 2

(
C p
I I

σ2
cosφ

) (20)

where φ is the friction angle as tan φ = fs (Fig. 5). Thus,
dMC < 1means no failure anddMC ≥ 1 implies the initiation
of failure in shear on the corresponding plane. Note that dMC

locally changes due to perturbations of the stress field.
Tomake themedium equally close to failure, regardless of

the stress state, dMC is kept constantwith depth. By assuming
the constant angle of maximum compressive principal stress
Ψ and the seismic ratio S, the ratio of principal stresses σ1/σ2
is derived to be constant with depth. Thus, from Eq. (20), the
ratioC p

I I /σ2 has to be kept constant to obtain an equal close-
ness to failure with depth, implying that peak cohesion C p

I I
must increase linearly in depth. Therefore, we first calculate
σ 0
i j as described in previous section, and then we then derive

C p
I I as follows:

C p
I I = σ2 − σ1 + dMC (σ1 + σ2) sin φ

2dMC cosφ
, (21)

where dMC should be chosen carefully to avoid C p
I I being

negative. C p
I is chosen from the experiments [6], and is kept

constantwith depth. SeeOkubo [30] for the rest of parameters
to define cohesion curve such as δ

c,e
I/I I and δ

c,c
I/I I .

3 Results

In this section, we present the results obtained from FDEM
simulations for a number of relevant earthquake rupture
cases: 1) rupture of a planar fault (base case), 2) rupture along
a fault with a kink, 3) rupture on a step-over fault system and
4) rupture along a rough fault.

Fig. 5 Mohr–Coulomb failure criteria and closeness to failure, dMC

3.1 Rupture on a planar fault

We performed the dynamic earthquake rupture modeling
with a planar strike-slip fault, surrounded by intact rock, in
plane strain conditions allowing for the generation of off-
fault fractures. Figure 3a shows the model description for
the 2-D dynamic earthquake rupture modeling. In this paper,
we show the result of 2km depth for sub-Rayleigh and super-
shear cases, where the height and width of model are 25Lc
(∼ 77 km) and 18.75Lc (∼ 58 km) with sub-Rayleigh case,
respectively. The material properties and parameters for con-
tact interactions used in this section are listed in Tables 1 and
2.

The rupture is artificially nucleated from the nucleation
patch, where the peak friction is lower than the initial shear
traction on the main fault. The size of nucleation patch Lc is
determined by the critical crack length [32]. Then, it prop-
agates bilaterally on the main fault, dynamically activating
off-fault fractures. The x axis is along the fault-parallel direc-
tion, while the y axis is along the fault-normal direction. The
z axis is thus along depth. Figure 3b shows the schematic of
case study with depth. We performed a set of 2-D dynamic
earthquake rupture modeling to investigate the evolution of
coseismic off-fault damage and its effects as a function of
depth. We conducted 2-D simulations for depths ranging
from z = 2km to 10km in 1-km intervals, imposing the
corresponding initial stress states as shown in Fig. 3c. We
assume lithostatic condition with depth so that the confining
pressure linearly increases with depth. The quasi-static pro-
cess zone size R0 (see Eq. 18) decreases with depth, while
the fracture energy on the main fault G f

I IC is kept constant
(Fig. 3c). Note that the case study does not address the 3-D
effect (e.g., free surface) as we model the dynamic ruptures
in plane strain conditions.
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Table 1 Material constants and parameters for modeling a planar fault
at 2km depth

Valuables Values Descriptions

E 75GPa Young’s modulus

μ 30GPa Shear modulus

ν 0.25 Poisson’s ratio

ρ 2700kg m−3 Density

ϕ 60◦ Orientation of σ1

σn 33.3MPa Normal stress on the main fault

R0 1192m Quasi-static process zone size

ds 79.5m Grid size on the main fault

dt 0.11ms time step

Sub-Rayleigh

τ 13.3MPa Shear stress on the main fault

S 1.0 S ratio

Lc 3092m Nucleation length

Supershear

τ 14.5MPa Shear stress on the main fault

S 0.7 S ratio

Lc 2234m Nucleation length

For the sake of fair comparison between different depths,
the model parameters are nondimensionalized (i.e., made
dimensionless) by a combination of scaling factors. R0 [m]
and shear wave velocity cs [m/s] are used to scale the length

[m] and the time [s] by R0 and R0/cs , respectively. Sub-
sequently, other variables are also nondimensionalized by a
combination of those two scaling factors. Since themedium’s
density does not change during the simulations, there is no
need for a mass nondimensionalization in our problem.

Figure 6 shows a snapshot of a dynamic earthquake
rupture simulation with dynamically activated off-fault frac-
tures, where the particle velocity field and the fracture traces
around the main fault are superimposed. The seismic ratio S
is equal to 1.0 (see Eq. 3), which results in a sub-Rayleigh
rupture. The off-fault fractures are plotted when the traction
applied on the potential failure plane (i.e., interfaces between
finite elementswithin themesh) reaches the cohesive strength
and the cohesion starts weakening. Bottom and left axes indi-
cate the fault-parallel and fault-normal distances in physical
length scales, while top and right axes indicate the nondi-
mensionalized length scales.

The off-fault fractures are initiated around the rupture tip,
forming an intricate fracture network as the main rupture
propagates along the main fault. The particle velocity field
is significantly perturbed due to the generation of coseismic
off-fault damage. The extensional side of the main fault is
mostly damaged, which is supported by theoretical analyses
of potential failure areas [34,35] and other numerical sim-
ulation studies (e.g., [3]). The intricate network is formed
by means of fracture coalescence between tensile, shear and
mixed mode fractures. We later discuss this off-fault fractur-
ing process under a relatively steep angle of the maximum

Table 2 Variables for contact
interactions for modeling a
planar fault at 2km depth

On the main fault

fs 0.6 Static friction coefficient

fd 0.2 Dynamic friction coefficient

Dc 0.45m Characteristic slip distance

G f
I IC 3MJm−2 Fracture energy for friction

In the off-fault medium

fs 0.6 Static friction coefficient

fd 0.2 Dynamic friction coefficient

Dc 1.0mm Characteristic slip distance

Gc
IC 0.7KJm−2 Fracture energy for tensile cohesion

Gc
I IC ,G f

I IC 5.0KJ m−2 Fracture energy for shear cohesion and friction

dMC 0.45 Closeness to failure

C p
I 8.0MPa Peak cohesion for opening crack in low-cohesion zone

δ
c,c
I − δ

c,e
I 0.18mm Critical displacement for softening of tensile cohesion

Sub-Rayleigh

C p
I I 24.5MPa Peak cohesion for shear crack in low-cohesion zone

δ
c,c
I I − δ

c,e
I I 0.41mm Critical displacement for softening of shear cohesion

Supershear

C p
I I 28.1MPa Peak cohesion for shear crack in low-cohesion zone

δ
c,c
I I − δ

c,e
I I 0.35mm Critical displacement for softening of shear cohesion
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Fig. 6 Snapshot of the dynamic earthquake rupture with coseismic off-
fault damage. We plot only the right part of the model (x > 0) as the
result is symmetrical with respect to the origin. The initial stress state
and the material strength correspond to a 2km depth with S = 1.0.
The color contours indicate the particle velocity magnitude. The dotted
line indicates the main fault, and the solid lines indicate the secondarily
activated off-fault fractures. The bottom and left axes show the physical
length scales, while the top and right axes show the nondimensionalized
lengths scaled by R0. “C” and “T” at right corners indicate compres-
sional and extensional sides of the main fault, respectively

compressive principal stress σ1 to the fault (ψ = 60◦), and its
effects on the near field radiation and overall energy budget.

Figure 7 shows a set of snapshots for the supershear case
with S = 0.7. The rupture is nucleated and propagates at sub-

Rayleigh speeds in the earlier phase. Then, a daughter crack
is born ahead of the rupture front at T = 4.7 s, which then
transitions to a supershear rupture. During the rupture transi-
tion from sub-Rayleigh to supershear, characteristic damage
patterns appear; there is a gap of coseismic off-fault damage
around the transition phase (around x = 12km in Fig. 7).
This characteristic damage gap has been also pointed out
by Templeton and Rice [41] and Thomas and Bhat [43].
This can be explained by the Lorentz contraction of the
dynamic process zone size R f (vr ). The dynamic process
zone size asymptotically shrinks at the rupture’s limiting
speed, i.e., Rayleigh’s wave speed. Hence, the damage zone
size is minimized around when rupture velocity jumps from
sub-Rayleigh to supershear, causing the damage gap in the
region.

3.1.1 Rupture velocity

We next focus on analyzing the rupture velocity changes
along the main fault. Figure 8 shows the evolution of slip
velocity on the main fault for four cases; S = 1.0 or 0.7
at 2km depth, each of which with or without considering
off-fault damage. For the cases without off-fault damage, the
activation of secondary fractures is prevented by imposing
very high values of cohesion strength for both tensile and
shear modes. Here, we plot the contour of slip velocity in

Fig. 7 Snapshots of supershear
rupture at 2km depth with
S = 0.7. The color contours and
lines have the same meaning as
in Fig. 6. The rupture velocity is
sub-Rayleigh until T = 3.4 s
(top), and then a daughter crack
is born ahead of the
sub-Rayleigh rupture front at
T = 4.7 s (middle), which
transitions to a supershear
rupture (bottom)
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Fig. 8 The evolution of slip velocity in time and space at 2km depth.
There are four cases: a S = 1.0 with no damage in the off-fault medium
b S = 1.0 with damage c S = 0.7 with no damage d S = 0.7 with
damage. For the cases without damage, very high cohesion strengths for
both tensile and shear failure modes are set so that the off-fault medium

behaves as a purely elastic material. The grayscale contours indicate
the slip velocity. Dotted lines indicate the reference of the slope cor-
responding to each wave velocity. Insets show the distribution of slip
velocity on the main fault at certain time

space and time. In Fig. 8a, there is a clear transition from
sub-Rayleigh to supershear around x/R0 = 20, which is also
shown in the inset. However, when the coseismic off-fault
damage is taken into account, the supershear transition is not
observed during the simulation as shown in Fig. 8b. Hence,
the secondary fractures can arrest, or delay, supershear tran-
sition in certain stress conditions. This can be explained by
the increase in critical slip distance due to the coseismic off-
fault damage. The supershear transition length L trans can be
estimated from the Andrews’ result [2,46] as follows:

L trans = 1

9.8(Scrit − S)3

1 + ν

π

τ p − τ r

(τ − τ r )2
μDc, (22)

where Scrit is the threshold for the supershear transition
(Scrit = 1.77 for 2-D), ν is the Poisson’s ratio of the medium,
τp, τr and τ are peak friction (Eq. 12), residual friction

(Eq. 13) and shear traction on the fault, respectively, μ is
the shear modulus and Dc is the critical slip distance for
friction (Eq. 16). Dc is initially uniform on the main fault.
However, the effective critical slip distance, which takes into
account the fracture energy associated with both on and off
the fault, increases with the evolution of coseismic off-fault
damage (see Okubo [30]). Therefore, L trans also increases as
it is proportional to Dc.

Figure 8c, d shows the cases with S = 0.7, where the rup-
ture transitions to supershear for both cases with and without
off-fault damage because of the large contrast of the initial
shear traction to the normal traction on the main fault. The
time at which the supershear transition happens is delayed
for the cases with off-fault damage due to the decrease of
rupture velocity, whereas the difference of transition length
is still obscure with these results. The two insets shown in
Fig. 8c, d show a clear difference in the slip velocity peak and
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Fig. 9 Rupture velocity inferred fromFig. 8. Due to inherent discretiza-
tion errors, it is difficult to precisely capture the jump of rupture velocity
from sub-Rayleigh to supershear. The error is estimated from the differ-
ence between the slope of cR and cs , the grid spacing and the sampling
rate of slip velocity

Fig. 10 Model setup for a fault kink. The angle of the fault bend is
α. The material constants and relevant model parameters are listed in
Tables 3 and 4. C and T indicate the compressive and extensional sides,
respectively. The length of the main fault is 12.5km, while the fault
bend is 7.5km

the fluctuations. In addition, the rupture arrival is delayed by
the coseismic off-fault damage, implying a decrease in rup-
ture velocity.

The rupture velocity is calculated based on first arrival
times along the main fault. Figure 9 shows the evolution
of rupture velocity as a function of time. We take the time
derivatives of first arrival time in discretized space along the
main fault to calculate the representative rupture velocity at
a certain position. Since it is difficult to capture the exact

time when the rupture velocity jumps to supershear, which
is where the curve of first arrival time has a kink and is
nondifferentiable, the error caused by the smoothing of the
rupture velocity is taken into account as shown by the error
bars in Fig. 9. Therefore, the markers in the forbidden zone
cR < vR < cs do not conclusively indicate that the rupture
velocity is between them due to the uncertainty in themethod
used to calculate it.

Regardless of the uncertainty, the comparison between the
cases with and without off-fault damage shows the effects of
coseismic off-fault damage on the rupture velocity and on the
supershear transition. The rupture transitions to supershear
for both cases with S = 0.7, though the rate of increase in
rupture velocity is lower for the case with off-fault damage.
However, the supershear transition is suppressed due to the
coseismic off-fault damage with S = 1.0.

Further discussion on the rupture dynamics with coseis-
mic off-fault damage using an infinite planar fault model can
be found in Okubo [30] and Okubo et al. [31]. In this sub-
section, we summarized the modeling with this fault model
as it is fundamental for the rupture modeling with first-order
geometrical complexity demonstrated in the following sec-
tion.

3.2 Rupture along a kink

Next, we model dynamic earthquake rupture along a fault
kink. Since the stress is locally concentrated due to the
fault kink, the coseismic off-fault damage could be enhanced
around the kink.We thus conducted dynamic earthquake rup-
ture modeling with the fault kink, which bends toward either
the compressional or extensional side of the fault.

Figure 10 shows the model setup for a fault kink. The
model parameters and are listed in Tables 3 and 4. The angle
of bend, α, is an important parameter for the rupture propa-
gation on the fault kink. When α > 0, the fault bends on the
compressional side of the main fault. In this case, the ratio
of shear traction to the normal traction, τ/σn , decreases as α

increases. Thus, the rupture is less likely to propagate along
a fault bend with large α. On the other hand, when α < 0, the
fault bends on the extensional side of the main fault, where
the τ/σn is larger on the fault bend than on the main fault.

Here, we demonstrate the cases for α = +10◦ with and
without coseismic off-fault damage to investigate the rupture
dynamics and the associated damage patterns (see Okubo
[30] for the case with α = −10◦). Figures 11 and 12 show
the results obtained for a fault kink bent on the compressional
side of the main fault. In this case, the rupture is less likely to
propagate along the fault bend due to the decrease in τ/σn .
Nevertheless, in the case without off-fault damage, the rup-
ture propagates completely along the prescribed fault. This
result is in accordance with Templeton et al. [42]. However,
in the case with coseismic off-fault damage, the rupture is
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Table 3 Material constants and
parameters for modeling a fault
kink, step-over and roughness

Valuables Values Descriptions

E 75GPa Young’s modulus

μ 30GPa Shear modulus

ν 0.25 Poisson’s ratio

ρ 2700kg m−3 Density

σn 40MPa Normal stress on the main fault

τ 16MPa Shear stress on the main fault

σ1 49MPa Maximum compressive principal stress

σ2 12MPa Minimum compressive principal stress

S 1.0 S ratio

dMC 0.45 Closeness to failure

ϕ 60◦ Orientation of σ1

R0 552m Quasi-static process zone size

Lc 1200m Nucleation length

ds 55m Grid size on the main fault

Table 4 Variables for contact
interactions for a fault kink,
step-over and roughness

On the main fault

fs 0.6 Static friction coefficient

fd 0.2 Dynamic friction coefficient

Dc 0.25m Characteristic slip distance

G f
I IC 2MJm−2 Fracture energy for friction

In the off-fault medium

fs 0.6 Static friction coefficient

fd 0.2 Dynamic friction coefficient

Dc 12.5mm Characteristic slip distance

Gc
IC 8KJ m−2 Fracture energy for tensile cohesion

Gc
I IC ,G f

I IC 90KJ m−2 Fracture energy for shear cohesion and friction

C p
I 8MPa Peak cohesion for opening crack in low-cohesion zone

C p
I I 30MPa Peak cohesion for shear crack in low-cohesion zone

δ
c,c
I − δ

c,e
I 2.0mm Critical displacement for softening of tensile cohesion

δ
c,c
I I − δ

c,e
I I 6.0mm Critical displacement for softening of shear cohesion

arrested at the kink, while a significant amount of damage is
caused on the extensional side, resulting in the formation of a
secondary fault branch. Eventually, two major fracture paths
are generated; the orientation of these branches correspond-
ing to the conjugate failure planes of σ1 (Fig. 12). Therefore,
we expect that secondary fault branches from kinks are natu-
rally generated corresponding to the conjugate failure planes
of the regional stress.

3.3 Rupture on a step-over fault system

The step-over faults are another important component of nat-
ural fault networks. What is of interest here is determining
whether the rupture will jump from the main fault to the
step-over fault near the main fault. Systematic numerical

experiments of step-over faults, pioneered by Harris et al.
[13], demonstrated the geometrical conditions to nucleate
the secondary rupture on the step-over fault. Parallel strike-
slip faults are widely used as an example of simple step-over
faults (Fig. 13). The relative position of the fault with respect
to the main fault is controlled by two parameters: width and
overlap. The ability of the main rupture jumping onto the
fault segments depends on whether the fault is located on the
compressional side (compressional step) or the extensional
side (dilational step) of the main fault. Harris et al. [13] show
that the dilational step is more likely to induce a second rup-
ture on the fault. Thus, in this section, we demonstrate the
dilation step and compare the cases with and without off-
fault damage to investigate the effects of coseismic off-fault
damage on the rupture dynamics for the faults.
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Fig. 11 Snapshot at T = 5.2s. The rupture propagates on the prescribed
bent fault for the case without off-fault damage, whereas the rupture
does not propagate on the prescribed fault with the coseismic off-fault
damage. Instead of the arrest of the rupture at kink, a new fault branch
is generated toward the extensional side

Fig. 12 Snapshot at T = 7.4s. Eventually the rupture is arrested at the
edge of the bent fault for the case without off-fault damage. For the case
with allowing for the coseismic off-fault damage, however, the branch
grows as activating a lot of off-fault damage from the fault kink and
induces the secondary branch upward as guided by red dashed lines

Fig. 13 Model setup for modeling faults. The material constants and
relevant model parameters are same with the fault kink model (Tables 3
and 4). The fault length is 15km, the step-overwidth is 600m (∼ 0.5Lc),
and the overlap is 2.5km (∼ 2.1Lc)

Fig. 14 Snapshot at T = 3.5s. The rupture reaches the edges of the
main fault and is arrested for the case without off-fault damage, whereas
the coseismic off-fault damage grows toward the step-over fault

Fig. 15 Snapshot at T = 6.8s. The secondary rupture is eventually
nucleated on the step-over fault due to the off-fault damage

Figures 14 and 15 show two snapshots of the results
obtained for a dilational step case both with and without
coseismic off-fault damage. The rupture is nucleated in the
middle of the main fault and propagates bilaterally. The step-
overwidth is set as 600m (∼ 0.5Lc), and the overlap is 2.5km
(∼ 2.1Lc). When the rupture reaches the edges of the main
fault, the rupture is arrested for the case without coseismic
off-fault damage and does not induce a second rupture on the
fault (Fig. 14). However, when off-fault damage is consid-
ered major off-fault fracture paths evolve from the right edge
of the main fault, which reach the fault. Then, as the coseis-
mic off-fault damage evolves around the edge of the main
fault, the secondary rupture is nucleated close to the major
damage zone on the fault (Fig. 15). Since the secondary rup-
ture is not nucleated for the case without coseismic off-fault
damage, implying this combination of fault geometry and
initial stress conditions is not favorable for “rupture jump-
ing,” we conclude that the coseismic off-fault damage around
the fault can increase the probability of rupture jump onto the
fault. These preliminary results for the faults demonstrate the
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Fig. 16 Self-similar fault geometry, initial shear traction and initial f0
on the main fault. a Fault geometry. The nucleation patch is set in the
middle of the fault, which is much larger than Lc to nucleate the rupture
on the rough fault.Model parameters are samewith the fault kinkmodel
(Tables 3 and 4). The fault length is finite, set as 25km, and the entire
fault is encompassed by the low cohesion zone. b Initial shear traction
on the main fault. The dashed line indicates the reference shear traction
with a planar fault (16MPa). c Initial ratio of τ0 to σn . The dashed lines
indicate the static and dynamic friction coefficients on the main fault

need of parametric studies to rectify the conditions of rupture
jumps with coseismic off-fault damage.

3.4 Rupture along a rough fault

In the previous sections, we only consider a combination of
planar faults even though it has a kink or step over faults.
However, it is recognized that fault roughness also plays a
crucial role in rupture dynamics, radiations and coseismic
off-fault damage (e.g., [8]). In this section, we demonstrate
a preliminary result with a self-similar fault to investigate
the rupture processes on the rough faults with coseismic off-
fault damage. The self-similar fault geometry is reproduced
based on Dunham et al. [8]. The self-similar fault profile has
a spectral density, Pm(k), as follows:

Pm(k) = (2π)3β2|k|−1, (23)

where k is thewave number andβ is a parameter to determine
the magnitude of fluctuation of the fault.

Figure 16 shows the self-similar fault geometry and the
shear traction on the fault. β is to 3.2 × 10−3. We chose
the fault geometry so that the initial ratio of τ0 to σn , f0, is

Fig. 17 The dashed line indicates the prescribed main fault. Top win-
dow show the result without coseismic off-fault damage, while the
bottom window show the result with off-fault damage. The arrows indi-
cate the sense of slip on the main fault. The white lines indicate the
secondarily activated off-fault fractures

Fig. 18 Snapshot at T = 4.3s. The rupture on the left side for the case
with off-fault damage is also arrested due to the off-fault damage

globally less than the static friction coefficient, fs to avoid
unexpected rupture nucleation during the loading phase.

Figures 17 and 18 show snapshots for the cases with and
without off-fault damage. In the case without off-fault dam-
age, the rupture is nucleated and propagates bilaterally. How-
ever, in the case with off-fault damage, the rupture is not suc-
cessfully nucleated on the right side of the nucleation patch
(Fig. 17) due to prominent cracking at the edges of nucleation
patch. One of the reasons for the nucleation failure is the
artificial manipulation of nucleation process, where low fs
is assigned within the nucleation patch, which causes abrupt
change of fs at the edges of nucleation patch and consequent
stress concentrations. Thus, the nucleation process needs to
be reconsidered to nucleate rupture on the rough fault.

In addition, the rupture on the left side is also arrested
by the coseismic off-fault cracks (Fig. 18). Thus, the main
fault is not fully ruptured for the case with coseismic off-fault
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damage. Therefore, we conclude that the roughness tends to
arrest the earthquake ruptures due to the coseismic off-fault
damage. Further parametric studies are needed to investigate
the condition of the arrest of ruptures and the associated off-
fault damage patterns on the rough fault.

4 Conclusion

We demonstrated the continuum–discontinuum approach
using FDEM, showing the capability of modeling dynamic
earthquake rupture with the coseismic activation of local-
ized off-fault fractures and its effect on the rupture dynamics.
Although the number of parameters to define the constitutive
law and the contact interactions increases in comparisonwith
the canonical FEM, we can fairly constrain those parameters
following a set of formulations presented in Sect. 2. The
result shows the nonnegligible effect of coseismic off-fault
damage on the rupture dynamics such as the decrease in rup-
ture velocity.

Each first-order complex fault geometry has a unique
coseismic off-fault damage pattern, which would help eluci-
date the complicated earthquake rupture scenario on the real
fault system. We need to further explore these fundamental
fault system to address the following questions:

1. What is the critical angle associated with fault kink,
which decides whether the rupture propagates on the pre-
existing fault or generates a dominant fracture path in the
orientation of conjugate failure plane?

2. How does the off-fault damage modify the criteria of
rupture jump onto the step-over fault?

3. How is the off-fault damage pattern and residual stress
on the rough fault?

In addition to the case study associated with the first-
order geometrical complexities, our future applications of
rupture modeling include the dynamic rupture modeling on
real fault system. We applied the FDEM to the rupture mod-
eling on a part of fault system associated with The 2016 Mw
7.8 Kaikōura earthquake [15], which is the first-of-its-kind
application to the real fault geometry. It reveals the potential
localized damage zone with a hypothetical scenario earth-
quake, which has an agreement with satellite imagery and
field observations. This work shows a capability of modeling
dynamic earthquake ruptures with coseismic off-fault dam-
age on real fault system. Therefore, wewill further model the
earthquake ruptures on other earthquake events and compare
the estimated ground motion and coseismic deformation to
the observations to validate our numerical model.
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