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S U M M A R Y 

Here, we present a new thermomechanical geodynamic, numerical implementation that in- 
corporates Maxwell viscoelastic rheology accounting for temperature-dependent po wer-la w 

dislocation creep and pressure-sensitive, non-associated Drucker–Prager brittle failure, as 
well as for volumetric stresses and strains during viscoplastic flow, a departure from the tradi- 
tional incompressible assumptions. In solving for energy conservation, we incorporate the heat 
source term resulting from irreversible mechanical deformations, which embodies viscoelastic 
and viscoplastic work, and by considering the total stress tensor and total inelastic strain rate 
tensors, including dilatant plasticity effects for lithospheric-scale applications, instead of only 

the shear terms as is usually assumed for incompressible materials. This form of the work 

term thus allows to consider, volumetric deformation and to couple the energy equation to the 
constitutive description, and hence the stress balance, via the evolving temperature field. Code 
design enables us to switch individual features of this general rheology ‘on or off’ and thus to 

benchmark this implementation with published numerical experiments of crustal-scale short- 
ening experiments. We investigate whether ‘brittle-plastic’ compressibility can promote or 
inhibit localization of deformation and thermal evolution during compression for crustal, and 

upper mantle rheology. For both crustal-scale and lithospheric-scale experiments, we establish 

that the feedback from volumetric dissipation, while contributing to temperature increase along 

with shear dissipation, can potentially slow down heat production per unit time, depending on 

the choice of boundary conditions. Our new implementation can be used to address buckling 

problems and collision tectonics. 

Key words: numerical modelling; heat generation and transport; Mechanics, theory, and 

modelling. 
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 I N T RO D U C T I O N  

train localization, that is, the concentration of internal deformation
long narrow paths of finite thickness in a material during loading,
s a key ingredient of plate tectonics (Jacquey et al. 2021 ). It is
ypically interpreted as a precursor to material failure (Besson et al.
010 ) and characterizes fault zones, ranging in length from a few
etres to hundreds of kilometres and up to plate boundary scale,
hose activity may persist for millions of years. In the context of
late convergence in geodynamics, both initiation of subduction in-
erfaces and/or lithospheric-scale structures in continental collision
ones are example cases where strain localization and the evolution
f deformation are central problems to study (Regenauer-Lieb &
uen 1998 ; Toth & Gurnis 1998 ; Stern 2004 ; Stern & Gerya 2018 ;
allemand & Arcay 2021 ). An underlying issue is that experimen-

ally determined strengths of rocks (primarily mantle peridotites)
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
re too great for the resistance of a homogeneous lithosphere to
e overcome by the stresses generated by buoyant mantle convec-
ion, making it difficult to break (McKenzie 1977 ; Cloetingh et al.
989 ; Mueller, & Phillips 1991 ). Strain localization in the litho-
phere is associated to an irreversible process and to the formation
f shear bands, which may be compared to real fault zones. The
nset of localized deformation in numerical or analogue models is
sually controlled either by including some heterogeneity in initial
onditions, for example in material properties, and/or some rheo-
ogic characteristic that will lead to positive feedback. Thus, the
xistence of prescribed weak zones such as lithospheric-scale faults
nherited from previous tectonic episodes is expected to be rele-
ant (Cloetingh et al. 1982 ; Gurnis 1992 ; Toth & Gurnis 1998 ;
ikolae v a et al. 2010 ; Baes et al. 2011 ). Rheologic features prone

o causing a positive feedback once localization nucleates such as
rain-size reduction (Thielmann et al. 2015 ), structural softening
oyal Astronomical Society. This is an Open Access 
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(Le Pourhiet 2013 ; Duretz et al. 2016 ), thermally activated soften- 
ing due to shear heating during irreversible deformation (Crameri 
& Kaus 2010 ; Thielmann & Kaus 2012 ; Duretz et al. 2015 ; Willis 
et al. 2019 ), density changes or age offsets between plates (Leng 
& Gurnis 2011 , 2015 ; Zhang et al. 2021 ; Zhou & Wada 2021 ) 
material anisotropy (Pardoen et al. 2015 ) or damage rheology (Kar- 
rech et al. 2011 ) have been looked at. Thielmann & Kaus ( 2012 ), 
for e xample, inv estigated thermal softening due to shear heating 
during irreversible deformation and explicitly did not include a pre- 
existing mechanically weak zone to focus on this thermally activated 
feedback. Ho wever , their system was given an initial thermal het- 
erogeneity with an age offset to facilitate nucleation of localization. 
Some of these v arious ef fects might indeed occur concomitantly 
in natural situations. We note here that strain localization can also 
arise naturally from non-associative brittle plasticity (Vermeer & 

de Borst 1984 ; Gerbault et al. 1998 ), as a result of kinematic stress 
rotation effects. 

Geodynamic modelling has sometimes been approached from a 
fluid-mechanical perspective and assumptions of incompressibility, 
either elastic or plastic (Gerya et al. 2004 ; Babeyko & Sobolev 
2008 ; Thielmann & Kaus 2012 ; Schmalholz et al. 2014 ; Ruh et al. 
2015 ; Vogt et al. 2017 ), which means that elastic compressibility 
and/or dilation during plastic flow are unaccounted for. In studies 
of lithospheric-scale deformation, plastic compressibility is mostly 
not taken into account (Kaus 2010 ; Duretz et al. 2014 ; Bessat 
et al. 2020 ), and elasticity is often neglected in studies over long 
timescales (Garel et al. 2014 ; Holt et al. 2015 ; Patocka et al. 2019 ; 
Pajang et al. 2021 ). Ho wever , a number of studies do account for 
elastic and plastic compressibilities into the constitutive laws for 
large-scale lithospheric models (Hassani et al. 1997 ; Gerbault 2000 ; 
Gurnis et al. 2004 ; Burov 2011 ; Burov et al. 2014 ; Duretz et al. 
2020 , 2021 ; Jacquey & Cacace 2020 ). From a solid mechanics per- 
spective, rocks are known to accommodate elastic behaviour and 
undergo volumetric strain during plastic deformation and they are 
therefore not strictly plastically incompressible (Bridgman 1964 ; 
Cook 1970 ; Alejano & Alonso 2005 ; Zhao & Cai 2010 ). At least in 
the colder parts of the lithosphere, the role of elasticity in stress stor- 
age and hence its potential influence on the overall deformational 
behaviour might actually have been underestimated. 

Whether or not elasticity or plasticity are included in constitutive 
laws for geodynamic modelling, the influence of volumetric (dila- 
tant) plastic deformation as an energy source in the energy equa- 
tion has not been considered yet by the geodynamic community. It 
remains an open question whether or not the plastic compressibility 
of rocks under lithospheric conditions may contribute to localization 
both from a solid-mechanical and a thermal perspective. 

In the current contribution, we present and benchmark a new 

solid-mechanical numerical implementation that explicitly includes 
volumetric (dilatant plastic) contributions in the momentum and 
energy balances. We include specifically a source term in the energy 
equation that is due to irreversible deformational work. We explore 
the effect of thermal softening as an agent of localization, but in 
addition to considering the impact of heating due to irreversible 
shear deformation, we aim to develop an understanding of the role 
of volumetric (dilatant plastic) deformation. In practical terms, we 
compare the effect of including volumetric plastic deformations in 
the thermal feedback. We compute irreversible deformation and 
heating with the full stress and stain-rate tensors, or with only 
shear terms contributing thermodynamically as has been mostly 
done before (Regenauer-Lieb et al. 2001 ; Kaus & Podladchikov 
2006 ; Nikolae v a et al. 2010 ; Thielmann et al. 2015 ), that is, we 
can switch on or off the different effects, so that we go beyond 
previous work. For convenience and to avoid confusion with general 
volumetric strains associated with thermoelastic effects, and finite 
deformations, we refer to heating arising from contributions due to 
irreversible dilatant plastic strains and volumetric stresses as dilatant 
heating. 

We begin by stating the mechanical and energy conservation 
laws and then give a step-by-step description of the constitutive 
laws and solution methods we hav e dev eloped. We then proceed 
to benchmark our new implementation against published mod- 
els by presenting comparative tests assuming viscoelastic, and 
viscoelastic–viscoplastic rheologies, and compare the relative con- 
tributions of shear heating and shear combined with dilatant heating. 
Fur ther more, we apply our approach to the geodynamic context of 
lithospheric-scale strain localization. Finally, we discuss the impli- 
cations of this study for future work. 

2  T H E O R E T I C A L  F R A M E W O R K  

2.1 Conservation laws 

Our starting point is the balance of linear momentum for a com- 
pressible viscoelastic–viscoplastic solid medium given by Lemaitre 
& Chaboche ( 1994 ) and Zienkiewicz & Taylor ( 2005 ): 

∂ σi j 

∂x j 
+ f i = ρ

∂ 2 u i 

∂t 2 
, (1) 

where σi j represents components of the Cauchy stress tensor, f i 
represent internal body forces: in this case the lithostatic stress state 
due to the weight of the material gi ven b y ρg , with ρ as density, 
g as gravitational acceleration, x j represents spatial variables in 
the Cartesian coordinates; u i are the components of displacement. 
A quasi-static approach is used, which means that we account for 
small accelerations in the system. The mass balance in Lagrangian 
framework is given by: 

ρR = det 

(
δi j + 

∂u i 

∂x j 

)
ρ, (2) 

where ρR is the mass density at a point in a reference (undeformed) 
configuration and ρ is the density at that point in the current (de- 
formed) configuration. The quantity in parenthesis maps a quan- 
tity from a reference (undeformed) state to a current configura- 
tion (Zienkiewicz & Taylor 2005 ). Under infinitesimal strain theory 
(where displacements and strains are infinitesimal), mass balance 
translates to fixed density. Mechanical dissipation arises from ir- 
reversible thermomechanical work, that is, due to viscoelastic and 
viscoplastic deformation. We can account for heat generation and 
diffusion for the case of constant thermal conductivity, λ, in the 
conservation of energy which reads: 

∂T 

∂t 
= αth ∇ 

2 T + β
σi j ( ̇ε v i j + ̇ε 

vp 
i j ) 

ρC p 
, (3) 

where C p (J kg −1 K 

−1 ) is the specific heat capacity and αth (m 

2 s −1 ) 
is the thermal dif fusi vity with αth = λ/ρC p . ε̇ v i j and ε̇ vp 

i j strain rate 
components from (viscous) creep and viscoplastic deformations, 
respecti vel y; σi j 

(
ε̇ v i j + ̇ε 

vp 
i j 

)
is the contribution to heating from de- 

formational work (Rittel 1999 ; Ravichandran et al. 2002 ) with β, 
the Taylor–Quinney coefficient which quantifies the proportion of 
deformational work which is dissipated into heat. In this paper, we 
choose a value of 1, that is, all mechanical work is dissipated as 
heat. Which deformation strain rate contributes to the thermal dis- 
sipation depends on which of them is dominant at a given point in 
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pace or time and is not imposed a priori . In addition, thermoelas-
ic effects including thermal expansion and adiabatic heating, and
ensity variation with temperature and pressure are not considered
ere. 

.2 Def ormational framewor k 

ur formulation relies on a small (infinitesimal) strain theory which
llows an additive decomposition of any contributing strain rate
omponents (Mase 1970 ; Lemaitre & Chaboche 1994 ; Zienkiewicz
 Taylor 2005 ; Bower 2009 ; de Souza Neto et al. 2011 ; de Borst

t al. 2012 ). Our constitutive law incorporates elastic strain, ductile
reep and plastic flow laws with inelastic work being dissipated into
eat. 

We assume a Maxwell viscoelastic rheology and that the strain
ate is a combination of an elastic contribution and a viscous con-
ribution (Turcotte & Schubert 2002 ; de Borst et al. 2012 ; Gerya
019 ), and Drucker–Prager viscoplasticity. Each time step starts
ith an elastic trial state that is then corrected via viscous creep

cti v ated at non-zero stresses, and followed by plasticity through a
ield stress criterion. Such rheology has been widely used in earlier
eodynamic models (Hassani et al. 1997 ; Gerbault 2000 ; Gerbault
t al. 2002 ; Burov & Cloetingh 2010 ). The standard approach for
mplementing viscoelasticity in the geodynamic community is a
ombination of shear modulus G , viscosity η and time step �t .
ecent considerations involve a correction of the shear modulus

o obtain a viscoelastic shear modulus ( G 

ve ) that depends on the
ynamic shear viscosity ( η), the elastic shear modulus ( G ) and the
lgorithmic time step ( �t ), (Duretz et al. 2018 , 2021 ). 

Based on small-strain assumption, we compute the stress evolu-
ion, creep and plastic flow relying on an additive decomposition
f the total strain rate tensor into elastic, viscous and viscoplastic
train rates, represented, respecti vel y, b y superscripts ‘ e ’, ‘ v ’ and
 vp ’ below: 

˙ i j = ε̇ e i j + ̇ε v i j + ̇ε 
vp 
i j , (4) 

˙ i j = ε̇ e i j + γ̇ v ∂
 

v 
F 

∂s i j 
+ γ̇ vp ∂
 

vp 
F 

∂σi j 
. (5) 

 

v 
F and 
 

vp 
F are respecti vel y viscous (creep) and viscoplastic flow

otentials, the deri v ati ves of the viscous and viscoplastic flow po-
entials with respect to deviatoric stress and total stress components
re indicative of viscous and viscoplastic flow directions, respec-
i vel y; γ̇ v and γ̇ vp are viscous and viscoplastic multipliers in rate
orm; s i j represent the components of the deviatoric stress tensor
ith s i j = σi j − σkk / 3 . 

.2.1 Elastic rheology 

he elastic part of the material response is treated as an isotropic
olid characterized by its Young’s modulus, E , and Poisson’s ratio,
. The classical elastic stress strain relation is given by Hooke’s
aw (Zienkiewicz & Taylor 2005 ; Bower 2009 ): 

e 
i j = C 

e 
i jkl ε 

e 
kl , (6) 

here C 

e 
i jkl is a fourth-order tensor representing the components of

he elastic stiffness tensor of a material, incorporating the elastic
onstants listed above. σ e 

i j and ε e kl are respecti vel y, components of

lastic stresses and strain tensors. w  
.2.2 Creep (viscous) rheology 

t is commonly assumed that, at high temperatures and low stresses,
ocks deform viscously without stresses necessarily overcoming a
ield criterion, that is, yield criterion is ef fecti vel y zero (de Souza
eto et al. 2011 ). The limiting behaviour for the elastic rheology

n our constitutive law is therefore high temperature creep. We
ssume that the dominant creep mechanism is dislocation creep and
ormulate the viscous deformation as follows: 

˙ v i j = γ̇ v ( σ e 
i j , T ) 

∂ 
 

v 
F 

∂s e i j 

, (7) 

ith γ̇ v , a non-ne gativ e quantity specifying a magnitude of viscous
ow in rate form and ∂ 
 

v 
F / ∂s e i j specifying the direction of viscous

ow taking account of only deviatoric stresses. 
 

v 
F = 

√ 

J e II with
J e II representing the invariant of the deviatoric stress tensor, is the
iscous flow potential whose direction is given by: 

∂ 
 

v 
F 

∂s e i j 

= 

s e i j 

2 
√ 

J e II ( s 
e 
i j ) 

. (8) 

The magnitude of viscous flow γ̇ v assumes various functional
orms depending on the specific problem and material (de Souza
eto et al. 2011 ). We utilize the po wer-la w functional form of (Boyle
 Spence 1983 ; Rosakis et al. 2000 ; Poulet & Veveakis 2016 ): 

˙ v ( σ e 
i j , T ) = 

(

 

v 
F 

)m 

f ( T ) . (9) 

 represents the po wer-la w exponent that describes the sensitivity
o stress during viscous flow. The temperature dependence is given
n the form of (Skrzypek 1993 ; Kohlstedt et al. 1995 ; Ranalli 1995 ): 

f ( T ) = A e −
E a 
RT . (10) 

ere E a is the acti v ation energy, R is the molecular gas constant, T is
he absolute temperature (in Kelvin, K) and A is the pre-exponential
actor. 

Eq. ( 10 ) indicates that viscous creep becomes significant at high
emperatures; otherwise, the viscous correction at low temperatures
s so small that the effect of elasticity is preserved. Because the
iscous correction term is insignificant at low temperatures and low
tresses, the feedback to viscous strain rate and deviatoric stresses is
mall, and the contribution to thermal dissipation evolves similarly
thermoelastic effects are unaccounted for). Therefore, the partition-
ng between elastic behaviour and ductile creep depends essentially
n the temperature. This strategy can be seen as an elastic predictor,
ollowed by a viscous correction step (Jacquey & Cacace 2020 ). 

.2.3 Viscoplastic rheology 

he elastic and viscous behaviour or viscoelastic rheology is
ounded by a pressure-sensitive frictional plastic yield criterion
hich has been used to model brittle deformation on a lithospheric

cale (Moresi et al. 2007 ; Babeyko & Sobolev 2008 ; Burov &
loetingh 2010 ; Kaus 2010 ; Baes et al. 2011 ; Jacquey & Cacace
020 ). Here, we use a Drucker–Prager criterion given by (Drucker
 Prager 1952 ; Alejano & Bobet 2012 ): 

 

DP 
Y = 

√ 

J v II ( s 
v 
i j ) + α1 P 

e − α2 c > 0 , (11) 

here J v II = s v i j s 
v 
i j / 2 represents the second inv ariant of the de viatoric

tress tensor after creep deformation, P 

e = I 1 / 3 = σkk / 3 is the first
nvariant of the stress tensor, c is the cohesion which may depend on
he deformation history; α1 and α2 are material-dependent constants
hich are functions of the internal friction angle ( ϕ) as follows for
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the specific case of a plane strain deformation (de Souza Neto et al. 
2011 ): 

α1 = 

3 tan ϕ √ 

9 + 12 tan 2 ϕ 

, α2 = 

3 √ 

9 + 12 tan 2 ϕ 

. (12) 

V iscoplastic flo w rate initiates when rate-dependent plastic de- 
formation has begun and follows the standard formulation (Desai 
& Zhang 1987 ; Vermeer 1990 ; Abu Al-Rub & Tehrani 2011 ): 

ε̇ 
vp 
i j = γ̇ vp ( σ v 

i j , T ) 
∂ 
 

vp 
F 

∂σ v 
i j 

= γ̇ vp ( σ v 
i j , T ) 

∂ 

∂σ v 
i j 

(√ 

J II + α3 P 

)
(13) 

specifying a magnitude and direction of viscoplastic flow, with 
γ̇ vp as a non-ne gativ e quantity defined as the viscoplastic con- 
sistency parameter describing the magnitude of viscoplastic flow 

(Simo & Hughes 1998 ); 
 

vp 
F is the viscoplastic flow potential and 

α3 = 3 tan ψ/ 
√ 

9 + 12 tan 2 ψ , ψ is the dilatancy angle whose value 
may describe associative or non-associative plasticity (Vermeer & 

de Borst 1984 ). The deri v ati ve of the viscoplastic flow potential with 
respect to the stress tensor describes the direction of viscoplastic 
flow: 

∂ 
 

vp 
F 

∂σ v 
i j 

= 

s v i j 

2 
√ 

J v II ( s 
v 
i j ) 

+ 

α3 

3 
δi j . (14) 

The equation above accounts for both deviatoric and dilatant vis- 
coplastic flow. Non-zero dilatancy removes the assumption of a 
plastically incompressible material, that is, one for which pressure 
changes due to viscoplastic deformation do not result in a net vol- 
ume change in the material (Poliakov & Herrmann 1994 ; Poliakov 
et al. 1994 ; Turcotte & Schubert 2002 ). In this crucial respect, our 
work differs from widespread practice in geodynamics, which ap- 
proximates rocks as either elastically or plastically incompressible 
(Babeyko & Sobolev 2008 ; Schmeling et al. 2008 ; Kaus 2010 ; Leng 
& Gurnis 2015 ; Ruh et al. 2015 ; Jaquet et al. 2016 ; Kiss et al. 2020 ;
Pajang et al. 2021 ). 

The viscoplastic consistency parameter γ̇ vp can represent various 
functional forms depending on the problem and material (de Souza 
Neto et al. 2011 ), we utilize the functional form of (Zienkiewicz 
& Cormeau. 1974 ; Owen & Hinton 1980 ; Perzyna 1986 ; Desai & 

Zhang 1987 ): 

γ̇ vp ( σ v 
i j , T ) = 

1 

μ

〈

 

DP 
Y 


 0 

〉m 

, (15) 

where 〈 ·〉 is the Macaulay bracket defined for any function f as: 
〈 f 〉 = f if f > 0 and 〈 f 〉 = 0 if f ≤ 0 . m here represents a ma- 
terial parameter following the form of Desai & Zhang ( 1987 ). 
 

DP 
Y 

represents the Drucker–Prager yield criterion, while 
 0 is a nor- 
malizing term usually taken as the yield stress or cohesion (Desai 
& Zhang 1987 ), or taken as the plastic viscosity (Jacquey & Cacace 
2020 ). Considering viscoplasticity, the model requires an additional 
term, μ in eq. ( 15 ), where 1 /μ has units of the inverse of time and 
expresses the relative rate of viscoplastic strain (Desai & Zhang 
1987 ). The temperature dependence of plastic deformation is in- 
cluded in the yield function 
 

DP 
Y through s v i j . In principle, we can 

include frictional hardening (or softening) and cohesion hardening 
(or softening) depending on the deformation history through a va- 
riety of strategies (Leroy & Ortiz 1989 , 1990 ), but these will not be 
considered here for the sake of simplicity. 
2.2.4 Sources of volumetric strains 

Volumetric strains measure volume changes in a material (Bower 
2009 ). They are often suppressed in geodynamic codes which as- 
sume incompressibility by setting the divergence of velocity to zero 
(Kaus 2010 ; Thielmann & Kaus 2012 ; Duretz et al. 2015 ; Jour- 
don et al. 2018 ; Bessat et al. 2020 ). Since the volumetric strains 
are related to the pressure through the bulk modulus, setting it 
to an arbitrarily high value can suppress volumetric elastic strains 
(Zienkiewicz & Taylor 2005 ). These are volume changes from elas- 
tic rheologies. In terms of plasticity, not all flow laws accommodate 
dilatant behaviour, for example, the von Mises criterion only uti- 
lizes the deviatoric stress invariant and cohesion to define the plastic 
strength of a material; other flo w la ws can suppress the influence of 
dilatant strain when the dilatancy angle is set to zero (Babeyko & 

Sobole v 2008 ), thereb y suppressing volume changes due to plastic 
flow. 

In addition to accounting for elastic compressibility in our con- 
stitutive laws, we include contributions to volumetric strains from 

dilatant plasticity during irreversible brittle deformation. Our point 
will be to show specifically the impact of this brittle plastic com- 
pressibility (dilatant plastic strain) on the deformation state and 
thermal feedback. 

2.3 Numerical implementation 

For computational purposes, we express eqs ( 4 ) and ( 5 ) in incre- 
mental form: 

�ε i j = �ε e i j + �ε v i j + �ε 
vp 
i j , (16) 

�ε i j = �ε e i j + �γ v ∂
 

v 
F 

∂s i j 
+ �γ vp ∂
 

vp 
F 

∂σi j 
. (17) 

Similarly, the unknowns in eqs ( 9 ) and ( 15 ) which were expressed 
in rate form are expressed in incremental form. 

In solving the conservation equations, we have utilized a solid 
mechanical finite element solver, Abaqus C © (Abaqus 2010 , 2019 ). 
Abaqus C © is a robust, optimized, engineering industry-accepted fi- 
nite element solver with a wide array of rheologies and element 
library. The software package also allows a user to custom any rheol- 
ogy or process through subroutines. Whenever stresses are updated 
through customized subroutines, a consistent algorithmic tangent 
modulus is required to aid convergence and estimate a time incre- 
ment for the next simulation time step. Abaqus C © has been widely 
used to study a variety of geodynamic problems (Regenauer-Lieb 
& Yuen 1998 ; Branlund et al. 2000 , 2001 ; Regenauer-Lieb et al. 
2001 ; Gerbault et al. 2002 ; Regenauer-Lieb & Yuen 2003 ; Dyk- 
sterhuis et al. 2005 ; Capitanio et al. 2007 ; Salomon 2018 ). We 
have used Abaqus C © capabilities to solve the mechanical conserva- 
tion equations, while we implemented the constitutive laws and the 
energy conservation problem through our own customized subrou- 
tines. We therefore transcribed our mechanical and thermal constitu- 
tive laws described in Section 2.2 into Fortran subroutines: a User- 
Material (UMAT) and User-Material Heat Transfer (UMATHT), 
respecti vel y, implementable in Abaqus C ©. 

The details of the algorithmic implementation of our constitutive 
laws, including the detailed computation of the consistent algorith- 
mic tangent moduli for viscoelastic and viscoplastic rheologies, are 
given in Appendix A . A summary of the thermomechanical im- 
plementation is illustrated in a pseudo-code in Algorithm 1. Our 
implementation can be summarized as an elastic trial state, a ther- 
mall y acti v ated viscous correction to the elastic state (viscoelastic 
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Figure 1. TEST 1, input model for studying crustal-scale shear-banding 
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heolo gy), followed b y a frictional plasticity correction acti v ated
pon the material stress state above the Drucker–Prager yield crite-
ion. 

lgorithm 1. Pseudo-code for custom viscoelastic-viscoplastic con-
titutive law, over one time-step loop. 

equire: �ε e, trial 
n at time step n 

From �ε e, trial 
n , obtain σ e, trial 

n 

if 
√ 

J e II �= 0 then 

Start creep routine 
while ˜ 
 

v > Tolerance do 
Newton-Raphson iterations to obtain �γ v 

end while 
Update s v n and J v II ( s 

v 
n ) 

Compute 
 

DP 
Y ( s v n ) 

if 
 

DP 
Y > 0 then 

Viscoplastic routine 
while ˜ 
 

vp 
R > Tolerance do 

Newton-Raphson iterations to obtain �γ vp 

end while 
Viscoplastic updates 
Update ε vp 

n+1 , s 
vp 
n+1 , P n+1 , σn+1 , T n+1 . 

Consistent algorithmic tangent modulus. 
Compute C 

vp 
i jkl 

else 
Viscous updates 
Update ε v n+1 , s 

v 
n+1 , σn+1 , T n+1 . 

Consistent algorithmic tangent modulus 
Compute C 

v 
i jkl 

end if 
else 

The stress state is elastic 
σn+1 = σ e, trial 

n 

end if 

At each simulation time step for all integration points (element
odal), Abaqus calls our UMAT subroutine to compute the stresses
nd uses the stresses to solve the mechanics (eq. 1 ). The consistent
lgorithmic tangent modulus is then used to estimate the adaptive
imulation time step to be used for the next time increment. 

In coupling the mechanical deformations (eq. 1 ) to the energy
onservation problem (eq. 3 ), we compute the heat source given
y the second term on the right hand side of (eq. 3 ), in the UMAT
fter updating the stresses which is then passed to the User-Material
eat Transfer (UMATHT) Fortran subroutine. Finally, the stresses,

emperature and other state variables are stored, which are called at
he next time step as history-dependent variables. 

Since we are interested in the feedback from mechanical work
o thermal dissipation and vice versa, we utilized the 2-D cou-
led continuum plane strain temperature-displacement triangular
lement library (CPE3T) with linear shape functions within the
baqus C © element library. The CPE3T element library is composed
f three nodal points, with two of them having displacement degrees
f freedom and one temperature degree of freedom. 

In addition to accounting for dilatant heating terms in the energy
udget, another originality of our approach is that we utilize two
ounds of Newton–Raphson iterations to compute the viscoelastic
nd viscoplastic multipliers. To ensure a strict positivity of these
erms for the respective rheologies and convergence of the local
ewton–Raphson iterations, we include a simple bisection scheme
ithin the Newton–Raphson loops (de Souza Neto 2004 ; Chapra &
anale 2011 ). 

 A L G O R I T H M I C  T E S T I N G  A N D  

A L I DAT I O N  

o assess the performance of our constitutive laws, we investi-
ated shear band formation using viscoelastic rheology and then,
iscoelastic–viscoplastic rheology. We first proceeded by investi-
ating the formation of ductile shear bands using viscoelastic rhe-
logy as in Duretz et al. ( 2014 ) with an initial constant temperature.
hereafter , we in vestigated crustal-scale shear band formations in
rittle and ductile regimes using viscoelastic–viscoplastic rheology
s used by Duretz et al. ( 2021 ). We utilized the same geometry and
oundary conditions for a systematic comparison with published
esults and highlighted similarities and differences in our different
onstitutive approaches. 

.1 TEST 1 (benchmark test 1): localization in an 

sothermal viscoelastic medium 

.1.1 Model configuration and boundary conditions 

ere, we utilized the setup introduced by Duretz et al. ( 2014 ).
he model setup has dimensions of 70 km by 40 km, comprises a

ock matrix that approximates a Maryland diabase rheology and a
 km radius semicircular weak inclusion w hich appro ximates dry
esterly granite rheology centred on the bottom boundary of the
odel as shown in Fig. 1 . The material properties for the matrix

nd weak inclusion are shown in Table 1 . 
The model boundary conditions approximate a pure shear experi-

ent; therefore we apply velocities on the lateral and top boundaries
o satisfy a constant background strain rate of 5 × 10 −14 s −1 , that
s, a time-varying velocity boundary condition; while the bottom
oundary is free to slip. All boundaries are thermally insulated so
hat no heat is e v acuated to the surroundings or admitted there-
rom. The model was discretized with 20 350 triangular elements
onnected by 10 477 nodes with linear shape functions, accounting
or displacement and temperature degrees of freedom. The element
ype we use is coupled thermal and displacement elements in plane
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Table 1. TEST 1 rheological parameters used in the benchmark setup shown in Fig. 1 drawn from Duretz et al. ( 2014 ). 

Material A (Pa −m s -1 ) m E a (kJ mol -1 ) αth (m 

2 s -1 ) C p (J kg -1 K 

-1 ) ρ (kgm 

-3 ) 

Matrix 3.20 ×10 -20 3 276 8 . 82 × 10 −7 1050 2700 
Inclusion 3.16 ×10 -26 3.3 186 8 . 82 × 10 −7 1050 2700 
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strain configuration which can help in the efficient conversion of 
mechanical work to heating provided the heat source is estimated. 

As Duretz et al. ( 2014 ) used viscous rheology for an incompress- 
ible fluid with viscous feedback to heating (i.e. heat source term 

described by the inner product of the viscous deviatoric stresses 
and the viscous strain rate tensors), we utilized the viscoelastic ap- 
proach with viscous thermal feedback for our test. We utilized a 
Young’s modulus of 25 GPa. We did not enforce a zero velocity 
divergence condition as is done for incompressible flow (Duretz 
et al. 2014 ). While the po wer-la w rheology is formulated in terms 
of ef fecti ve viscosity in Duretz et al. ( 2014 ), we implement our 
creep rheology in terms of strain rate. An additional difference is 
that we utilized a finite element approach allowing the elements to 
deform with the model, while Duretz et al. ( 2014 ) utilized the finite 
difference/marker in cell approach (Gerya & Yuen 2003 ). Finally, 
we adapted our time stepping based on the deformation state at 
the preceding time step, while fixed time steps were used in the 
reference study (Duretz et al. 2014 ). 

3.1.2 Results of viscoelastic benchmarking 

Localized deformation originated from the weak inclusion and prop- 
agated symmetricall y tow ards the top left and top right corners of 
the model domain. In terms of the geometry of the model compared 
to the benchmark setup (Duretz et al. 2014 ), we were able to realize 
the same amount of bulk shortening (Fig. 2 a). The logarithm of the 
second invariant of strain rate tensor, 

√ 

ε̇ i j ̇ε i j / 2 , is shown in Fig. 2 (a) 
after an estimated 25 per cent of bulk shortening. This evolution 
of strain rate reproduces the results of the reference model (Duretz 
et al. 2014 ) in terms of the amplitudes and width of the shear bands. 
We note some smearing as the shear bands propagated towards the 
boundaries. Shown in Fig. 2 (b) is the temperature accumulated at 
the end of the simulation due to viscous shear heating. This pattern 
aligns with the viscoelastic deformation, which is the source of the 
dissipative heating. Temperature rose by up to 205 K within the 
shear band. 

We extracted a 1-D plot of the difference between the final tem- 
perature and the initial temperature in an element within the shear 
band near the top left corner of the deformed model of Fig. 2 (b), 
and compared the evolution with that of Duretz et al. ( 2014 ) as 
shown in Fig. 2 (c). The temperature perturbation is similar to that 
pre viousl y obtained b y Duretz et al. ( 2014 ) until about 15 per cent 
of axial shortening, after which a difference of 5 K builds up at 
25 per cent of axial shortening. Ho wever , this difference of 5 K 

between our results and the reference study only represents about 
3 per cent given the large temperature increase. We attribute this 
dif ference to dif ferences in the numerical schemes mentioned previ- 
ously, which is further supported by the supplementary tests carried 
in the following section. 

3.1.3 Sensitivity to different element types, linear and nonlinear 
interpolators 

In order to assess the mesh sensitivity of our viscoelastic imple- 
mentation, especially the influence of mesh types and the type of 
interpolation used, we used the set up shown in Fig. 1 . For the re- 
sults presented in Fig. 2 (a), we used linear triangular elements in 
which the displacements between nodes were interpolated linearly. 
In assessing the robustness of our development, we carried out 
resolution tests using coarser (7468) and finer (42 604) triangular 
elements compared to the elements used in Fig. 2 (a). The resolution 
tests indicate that the shear bands are resolved irrespective of the 
resolution (Figs 3 a and b). Using different element types (quadrilat- 
eral elements) and including nonlinear (quadratic) shape functions, 
which interpolate displacements between nodes using higher or- 
der polynomials, we also found that the deformation was not mesh 
sensitive (Figs 3 c and d). 

We utilized the same setup as shown in Fig. 1 but with 20 411 
quadrilateral elements, with linear and nonlinear shape functions. 
As shown in Fig. 3 , the dimensions of the deformed domain as 
well as the width of the major shear bands are essentially identical 
to those obtained using triangular elements (Fig. 2 a). The results 
are, ho wever , insensitive to whether we used low-order or high- 
order finite elements. Apart from slightly higher strain rates when 
quadrilateral elements were used compared to triangular elements, 
the width of the shear bands and the associated temperature were 
insensitive to the different mesh types, interpolating functions and 
resolution. 

3.2 TEST 2 (benchmark test 2): localization in brittle and 

ductile regimes 

3.2.1 Model setup and boundary conditions 

The setup discussed for viscous shear-banding in a ductile regime 
in Section 3.1 above corresponds to an isothermal regime without 
body forces and with viscoelastic rheology to conform with the ref- 
erence model (Duretz et al. 2014 ). To test a case incorporating our 
viscoelastic–viscoplastic rheology, we utilize another setup intro- 
duced by Duretz et al. ( 2020 , 2021 ); it assumes a 100 km long and 
30 km thick crust with rheology corresponding to that of Westerly 
granite, and in which a 2 km radius circular imperfection is em- 
bedded in the middle of the model, as shown in Fig. 4 . The model 
includes an initial temperature of 293 K at the top increasing lin- 
early to 739 K at the base of the model (15 K km 

−1 ). All boundaries 
are insulated to prevent heat loss to the surroundings or input from 

external sources, such that dissipative heating only arises from the 
inter nal defor mation. The material proper ties are shown in Table 2 . 
We carried out simulations to keep a constant boundary strain rate of 
10 −15 s −1 . Note that we used an additional parameter μ described in 
eq. ( 15 ), where 1 /μ is the relative rate of viscoplastic strain, chosen 
to be 10 −15 s −1 . 

Points of departure from the results of Duretz et al. ( 2021 ) and 
our model arise from se veral dif ferences in the numerical methods, 
which were mentioned already above. Fur ther more, in Duretz et al. 
( 2018 , 2021 ), the conservation equations were discretized using a 
staggered grid finite difference scheme where velocity and pressure 
are considered as primary v ariables, as traditionall y assumed b y the 
geodynamic community; but here, we have discretized our system 

of equations on a finite element grid with displacement as primary 
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Figure 2. TEST 1 results: (a) viscoelastic strain rate, (b) accumulated temperature shown in deformed configuration. The bulk shortening is 25 per cent and a 
background strain rate of 5 ×10 −14 s -1 . (c) Temperature increase for an element within the shear band location of element indicated by an arrow in Fig. 2 (b) 
compared to temperature evolution within the shear zone of Duretz et al. ( 2014 ). 
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ariable, following a typical engineering approach (Zienkiewicz &
aylor 2005 ). 

.2.2 Strain localization in brittle and ductile regimes 

he models were run for 1.2811 Myr ( 4 . 04 × 10 13 s) with an adap-
ive time stepping. The initial boundary strain rate and the time of
he experiment assure a shortening of only 4 per cent, consistent
ith our assumption of small strain theory. We carried out simula-

ions with zero dilatancies without heating (Fig. 5 a), 10 ◦ dilatancy
ithout heating (Fig. 5 b), with shear heating (Fig. 5 c) and with shear

nd dilatant heating (Fig. 5 d). Whether viscoelastic or viscoplastic
eformation dominated at any time step, both regimes were charac-
erized by the formation of shear bands initializing within the weak
one and propagating into the brittle and the ductile domains. 

The upper brittle domain conformed to a viscoplastic deforma-
ion, characterized by narrow shear bands in all simulation cases;
 s  
hile the lower ductile domain conformed to a viscous deforma-
ion, characterized by comparatively broader shear bands which
ropagated towards the bottom boundaries (Figs 5 a–d). While the
hear bands attenuated in both upper and lower domains towards
he boundaries, the attenuation occurred faster in the hotter ductile
egions. The transition from brittle to ductile behaviour was ob-
erved within a depth range of 14.21 and 17.7 km, characterized by
 distinct horizon and peak pressure, except within the initial weak
one where pressure remains minimal (Figs 5 a–d). 

Our result with ψ = 10 ◦ succinctly captured similar features
o the work of Duretz et al. ( 2021 ) with 10 ◦ dilatancy angle and
ulk modulus of 5 × 10 10 Pa, despite using different numerical
iscretization schemes and constitutive law updates. These features
nclude: (1) the ver tical symmetr y of the deformation in terms of
he propagation and position of shear bands (upper versus lower
omains), (2) the style of dominant shear bands (narrower in the
rittle regime and broader in the ductile regime), (3) ∼33 ◦ angle of
hear bands compared to the range of ∼30 ◦ and 35 ◦ of the reference

art/ggae463_f2.eps
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Figure 3. TEST 1, resolution tests and element type with linear and nonlinear interpolators: (a) logarithm of the second invariant of strain rate for a coarse 
and finer triangular mesh compared to Fig. 2 (a), (b) corresponding temperature for the coarse and finer meshes, (c) logarithm of second invariant of strain 
rate invariant using linear (low order) and nonlinear (high-order) 20 411 quadrilateral elements and (d) corresponding temperature for using low-order and 
high-order elements (linear versus quadratic interpolants). This experiment was done for 25 per cent of shortening. 
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Figure 4. TEST 2: input model configuration for studying crustal-scale shear-banding in a pure-shear compression experiment with a rock matrix characterized 
b y Westerl y Granite rheolo gy and a circular weak zone of radius 2 km at the centre. Velocities are imposed as shown to satisfy a background of 10 −15 s −1 . The 
temperature at the top is 293 K with a linear gradient to 739 K at the bottom. We include a pre-loading gravity stage before imposing the velocity boundary 
conditions. The top surface is kept as a free surface throughout. The model setup and boundary conditions were introduced by Duretz et al. ( 2020 , 2021 ). 

Table 2. TEST 2: rheological parameters used in the benchmark setup shown in Fig. 4 . Bulk modulus, K = 5 × 10 10 Pa, C p = 1050 J kg -1 K 

-1 , ρ = 2700 
kgm 

-3 and a background strain rate was set at 10 −15 s −1 . The dilatancy angle ψ ( ◦) ranges between 0 and 10 ◦ for the matrix and was kept at 0 ◦ for the inclusion 
(see the text for details). These parameters were drawn from Duretz et al. ( 2020 ). 

Material A (Pa −m s -1 ) m E a (kJ mol -1 ) αth (m 

2 s -1 ) φ ( ◦) c 0 (MPa) 

Matrix 3.16 ×10 -26 3.3 186.5 8 . 82 × 10 −7 30 50 
Inclusion 1 ×10 -20 1 0 8 . 82 × 10 −7 0 0.1 
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odel (Duretz et al. 2021 ), corresponding to theoretical Arthur
r intermediate mechanically stable shear band angles defined by
5 ◦ ± ( ϕ + ψ) / 2 (Arthur et al. 1977 ; Kaus 2010 ) and (4) the brittle-
uctile transition (just below the weak inclusion), amplitudes of
eformation as well as the pressure evolution (Fig. 5 c). 

Including heat production (either shear heating or shear and di-
atant heating were accounted for) smoothes out the shear bands
n the brittle and ductile domains (Figs 5 c and d). In terms of 1-D
omparisons of volumetric strain rate (calculated as ε̇ kk ) and devi-
toric strain rate invariant, we observe that they are not affected by
ither shear heating or shear and dilatant heating (Figs 5 e and f),
xcept that dilatant strain rates are higher for non-zero dilatancy and
arginally higher for 10 ◦ dilatancy without heating. Localization is

igher for non-zero dilatancy (Fig. 5 f). We also observed a temper-
ture increase of between 31.42 and 35.32 K for shear heating and
9.73 and 32.66 K for shear and dilatant heating corresponding to a
emperature reduction of between 1.69 and 2.66 K. The difference
etween the second invariant of stress between zero-dilatancy and
0 ◦ dilatancy is between 16.38 and 39 MPa, while the pressure dif-
erence ranged between 30 and 75.2 MPa (Figs 5 e and f). Despite the
onstant background strain rate in these simulations, dilatant plastic
eedback through dilatancy has a small effect on the temperature
volution. 

.3 The role of plastic dilatancy 

ince the contribution to volumetric stresses and strains includes
ilatant plasticity, we investigated the effect of varying the dilatancy
ngles, for a given value of elastic compressibility ( K = 5 × 10 10 

a). We set the acti v ation energy to zero for the weak inclusion to
nsure viscous behaviour therein irrespective of temperature (Ta-
le 2 ). The results for constant dilatancy angles ψ = 0 ◦ to 30 ◦ are
hown in Fig. 6 for volumetric and deviatoric strain rate invariants,
nd Fig. 7 for deviatoric stress invariant and pressure. 
While the volumetric strain rate invariant increased in ampli-

ude from non-dilatant plasticity to the extreme case of associated
lasticity with dilatancy angle = friction angle = 30 ◦, we observed
niform volumetric strains in the ductile domain (below 15 km from
he surface) as shown in Fig. 6 . Concerning the deviatoric strain rate
nvariant, the shear bands are narrow in the brittle domain (above
5 km) and broader in the ductile domain (below 15 km), as shown
n Fig. 6 . Increasing dilatancy angles leads to increasing strain mag-
itudes within the shear bands in the brittle domain. 

The evolution of the deviatoric stress invariant and the pressure
ndicate a gradual increase in both quantities near the brittle–ductile
ransition as the dilatancy angles increased, with the pressure sat-
rating around the brittle–ductile transition for dilatancy of 30 ◦

Fig. 7 ). The zone of highest deviatoric stress invariant and pressure
lso moved upwards as dilatancy angles increased. 

To further assess the evolution of deformation and stress state,
e compared the evolution of the volumetric strain rate invariant
nd deviatoric stress invariant, we extracted 1-D curves for both
uantities (Fig. 8 ). Due to the ver tical symmetr y of deformation,
 e displa yed plots at the location indicated in Fig. 6 (a) and Fig. 7 (a).
oncerning the volumetric strain rate invariant, we observed that in-
reasing dilatancy angles leads to an increase in the volumetric strain
ate invariant in the brittle domain (Fig. 8 a). With respect to the sec-
nd invariant of the stress tensor ( J II ), the curves intersect near the
rittle–ductile transition below 15 km depth (Fig. 8 b). A first-order
bservation is the similarity in the shapes of the curves. The max-
mum deviatoric stress invariant ranged from 531 MPa for ψ = 0 ◦

nd 618 MPa for ψ = 30 ◦ at depths of 15.4 and 13.9 km, respec-
i vel y (Fig. 8 c). This indicates that higher dilatancy angles require
igher stress at a relati vel y shallower depth. Even though the experi-
ent is a pure shear case, the impact of dilatancy is more obvious in

he brittle domain. Decreasing dilatancy angles from realistic values
f 10 ◦, that is, at least 20 ◦ less than the friction angle (Vermeer & de

art/ggae463_f4.eps
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Figure 5. TEST 2 results shown in undeformed configuration from the benchmark setup of 100 km × 30 km (Fig. 4 ). The left panel from (a) to (d) shows the 
logarithm of the second invariant of strain rate; while the right panel indicates the pressure. Model with: (a) zero dilatancy without dissipative heating, (b) 10 ◦
dilatanc y without dissipativ e heating, (c) 10 ◦ dilatanc y with shear heating, (d) 10 ◦ dilatancy with shear and dilatant heating, The arrow at 7.5 km below the 
surface of the model in (a) indicates the starting location where horizontal profiles were extracted: (e) volumetric strain rate, (f) logarithm of deviatoric strain 
rate, that is, second invariant of strain rate, (g) temperature without heating, with shear heating alone and shear plus dilatant heating and (h) pressure and the 
second invariant of deviatoric stress. 
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Figure 6. The effect of constant plastic dilatancies on volumetric strain rate invariant (left half panel from x = 0) and deviatoric strain rate invariant (right half 
panel from x = 0) where shear and dilatant plastic deformations contribute to dissipative heating. The dilatancy angles span (a) 0 ◦ (non-dilatant plasticity) to 
(g) 30 ◦ (an extreme case of the friction angle = dilatancy angle). The black arrow indicates the location where 1-D profiles were extracted and shown in Fig. 8 . 
We have shown one half of each quantity due to the vertical symmetry about x = 0. 
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Figure 7. The effect of constant plastic dilatancies on deviatoric stress invariant (left panel) and pressure (right panel) where shear and volumetric plastic 
deformations contribute to dissipativ e heating. The dilatanc y angles span (a) 0 ◦ (non-dilatant plasticity) to (g) 30 ◦ is (an extreme case of the friction angle = 

dilatancy angle). The black arrow in (a) indicates the location where 1-D profiles were extracted and shown in Fig. 8 . 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/240/3/1551/7935523 by guest on 06 M

ay 2025

art/ggae463_f7.eps


Thermomechanical modelling 1563 

Figure 8. 1-D plots of (a) volumetric strain rate invariant and (b) deviatoric stress invariant with locations indicated by arrows in Figs 6 (a) and 7 (a), (c) plot 
of the maximum deviatoric stress invariant (used as the limit of the brittle domain) and depth to the brittle–ductile transition with respect to the dilatancy 
angles. 
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orst 1984 ) to non-dilatant plasticity led to a 25 MPa (or 10 per cent)
eduction in the deviatoric stress invariant near the surface, and ∼30

Pa (or 5 per cent) reduction at ∼14.5 km before the brittle–ductile
ransition. 

If we use this second stress invariant as a proxy for the magni-
ude of shearing exerted by a state of stress in the medium (Bower
009 ), w e ma y argue that low er dilatancy angles reduce the magni-
ude of shear stresses in the medium compared to higher dilatancy
ngles. The synchrony of the deviatoric stress invariants for differ-
nt dilatancy angles in the ductile domain can be attributed to the
ssumption that there are no volumetric plastic deformations in the
uctile domain, per our constitutive description. The apparent atten-
ation in the second stress invariant for small dilatancy angles may
xplain an increase in strain rate, alluding to the inverse relationship
etween the strain rate and second stress invariant (eq. A9 ). 
 T H E  E F F E C T  O F  V O LU M E T R I C  

L A S T I C  ( D I L ATA N T )  H E AT I N G  

he pure shear experiment was implemented with the deliberate
hoice of constant strain rate boundary conditions by adapting the
oundary velocity at each time step, and reproducing the conditions
or benchmarking purposes (Duretz et al. 2021 ). We showed that
he contribution of dilatant plastic dissipation to volumetric or devi-
toric localization was not significant (Figs 5 e and f) and impacted
he thermal state by reducing the temperature by up to 3 K (Fig. 5 g).

To in vestigate ho w different boundary conditions may influence
eformation and heat production when dilatant plastic dissipation
s included, we ran another series of simulations: where we imposed
onstant boundary velocities (TEST 3), utilized an isothermal do-
ain (TEST 4A) and high-strain rate experiments (TEST 4B). 
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Figure 9. TEST 3: Results of deformation with dissipative feedback from shear heating and shear with dilatant heating. (a) volumetric strain rate invariant, 
(b) logarithm of the deviatoric strain rate invariant, (c) evolved temperature at the end of the experiment, (d) temperature evolution with time for an element 
within the shear band, (e) temperature evolution with time for an element within the weak inclusion, (f) vertical temperature profile near the weak inclusion 
crossing one of the shear band and (g) horizontal temperature profile in the brittle domain along the model. The red arrowheads in (a) are locations where the 
temperature histories were tracked within the shear band and weak inclusion, respecti vel y; while the arrows indicate starting locations where 1-D temperature 
profiles were extracted. The left panel in Figs 9 (a)–(c) represents results from shear heating, while the corresponding right panels show the results when dilatant 
heating is included. 
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4.1 TEST 3: Nucleation zone in brittle–ductile domain 

In TEST 3, we utilized the same input setup shown in Fig. 4 with 
the same material parameters. In addition, we replace the vary- 
ing velocity boundary conditions with constant boundary veloc- 
ities. We ran the simulations for 2.5622 Myr ( 8 . 08 × 10 13 s) for 
a target shortening of 8 per cent. The results with shear heat- 
ing alone, and shear with dilatant plastic feedback are shown in 
Fig. 9 . 

Shown in Figs 9 (a) and (b) are the volumetric strain rate invariant 
and deviatoric strain rate invariant, respectively, for cases of shear 
heating alone and shear with dilatant heating. The corresponding 
temperatures at the end of the simulations are shown in Fig. 9 (c). 
We again note that the deformation is symmetric (vertical symmetry 
about the initial weak zone depth) similar to the pure shear experi- 
ment reported in TEST 2, with similar temperature evolution in 2-D. 
While the volumetric strain rate in variant follo wed the shear bands 
in the brittle domain, we note the uniformity of the volumetric strain 
rate invariant in the ductile domain (Fig. 9 a), which is consistent 
with our assumptions of treating volumetric plastic deformations 
only from brittle plasticity and not ductile creep. The observation 
of shear bands in the brittle and ductile regimes for the deviatoric 
strain rate invariant is also consistent with our accounting for de- 
viatoric strains in both the brittle and ductile domains. To compare 
the temperature, we extracted the temperature evolution for an el- 
ement within a shear band and within the weak zone (Figs 9 d and 
e). Within the shear band element, the temperature increased by 
102 K for shear heating. We observed that both the shear heating 
and shear with dilatant heating temperatures e volved similarl y until 
∼0.4 Myr where the temperatures were offset until the end of the 
experiment with the inclusion of dilatant heating leading to reduc- 
tion of 5 K at the end of the simulation. In the case of the element 
within the weak inclusion, the overall temperature rise was 20 K 

at the end of the experiment when shear heating was considered 
alone; ho wever , this temperature rise was reduced by 5 K when 
dilatant heating was included. The vertical temperature profile also 
shows that dilatant heating reduced the amount of heat dissipated 
by shear heating by 4 K (Fig. 9 f). The same observation is true 
for the horizontal profile where the inclusion of dilatant heating 
reduced the heat produced by shear heating by 5.5 to 6 K (Fig. 9 g). 
The temperature due to shear dissipative heating versus tempera- 
ture due to shear and dilatant dissipative feedback indicates that 
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ilatant contributions introduce a less heating effect in the brittle
omain. 

.2 TEST 4A: Viscoplasticity in an isothermal domain 

nd possible rheological change due to thermal dissipation

oti v ated b y the impact of dilatant plastic deformation on ther-
al dissipation, we returned to the initial setup for viscoelastic

enchmarking shown in Fig. 1 . We utilized the material properties
iscussed for TEST 3, and we have included dilatancy angle of 10 ◦.
he initial temperature we have used was set at 473 K, to ensure that

he impact of ductile creep was suppressed in order to ensure a vis-
oplastic initial rheology. We have run the simulations for 4 × 10 12 

 (126 kyr). 
We observed differences in the volumetric strain rate invariant

Fig. 10 a), deviatoric strain rate invariant (Fig. 10 b), the deviatoric
tress invariant (Fig. 10 c) and the temperature at the end of the
imulations (Fig. 10 d). The shear bands were observed at an angle of
35–42 ◦. Utilizing a friction angle of 30 ◦ and dilatancy of 10 ◦, the

ngle of the observed shear bands within the matrix corresponds to
r thur or inter mediate angles, suggesting that plasticity parameters

nfluenced the behaviour of shear bands during viscoplastic flow as
pposed to the ductile shear bands which are not influenced by these
arameters. 

When dilatant heating was included, shear bands were smoother
s seen in the volumetric strain rate invariant and deviatoric strain
ate invariant (Figs 10 a and b). While the lowest deviatoric stress
nv ariant w as observed in the weak inclusion whether shear heat-
ng or shear and dilatant heating were considered, we observed a
igher deviatoric stress invariant when dilatant heating was included
Fig. 10 c). The temperature at the end of the simulation showed that
emperatures increased for both shear heating and shear with dila-
ant heating (Fig. 10 d). Ho wever , temperatures were higher within
he shear bands when shear heating was considered alone compared
o when dilatant heating was included (Fig. 10 d). Our deduction
rom these results is that including the dilatant term contributed to
 higher deviatoric stress invariant, and lower deviatoric strain rate
nvariant with less heating effect within the shear bands. 

To further illustrate how dilatant plastic feedback may affect the
ehaviour of the plotted variables in Fig. 10 , we extracted 1-D plots
nd history plots from locations shown in Fig. 10 (a). Across the
odel, the contribution of dilatant plastic heating is either a reduc-

ion or an increase in the volumetric strain rate invariant (Fig. 11 a)
nd the deviatoric strain rate invariant (Fig. 11 b). We further con-
rmed that including dilatant heating led to increased pressure and
eviatoric stress invariant in the brittle domain, with the pressure re-
ucing within the shear bands for both shear heating and shear with
ilatant heating between x = −7.5 and −20 km (Fig. 11 c). This
bservation is consistent with our correction for pressure during
iscoplastic flow (eq. A11 ). That is, zones with the highest strains
volumetric or deviatoric) follow from zones with the highest vis-
oplastic multiplier ( �γ vp ), hence the more pressure correction. The
ressure difference ranges between 202 and 509 MPa when dilatant
eating is included, while the difference in deviatoric stress invari-
nt ranges is between 187.82 and 435 MPa. Across the profile, the
emperature rise was between 28.9 and 126.6 K when shear heating
as considered alone and between 24.5 and 99.6 K when dilatant
eating was included with shear heating (Fig. 11 d). The temperature
eduction when dilatant heating was included was between 4.3 and
8 K (Fig. 11 e). 
In Figs 11 (f)–(j), we show the history-dependent evolution of
ome of the variables for an element within the shear band whose
ocation was shown in Fig. 10 (a), near the weak zone. We observed
hat the integrated volumetric and deviatoric viscoplastic strain in-
ariants indicate that dilatant heating combined with shear heating
nfluences both quantities (Figs 11 f and g). This indicates that at
onger simulation times, dilatant heating may increase irreversible
trains. This is consistent with the along-axis profile where it was
bserved that when dilatant heating was included, it led to an in-
rease or decrease of volumetric strain rate or deviatoric strain rate
s shown in Figs 11 (a) and (b). The evolution of pressure and devi-
toric stress invariant approached a steady state behaviour at ∼83.6
yr (Fig. 11 h) at which point the inclusion of dilatant heating offset
he temperature by about 18 K (Figs 11 i–j). While the irreversible
trains, pressure and stress invariants were similar until ∼76 kyr, the
emperature for either: shear heating alone and shear with dilatant
eating were being offset from 20 kyr and the offset increased as
he simulations proceeded. 

It can be argued that shear heating alone can enhance deviatoric
train localization as already shown in previous studies (Thielmann
 Kaus 2012 ), while shear with dilatant heating also enhances

eviatoric strain localization even if delay ed (F ig. 10 b), increases
eviatoric stress invariant (Fig. 10 c) consistent with an inverse rela-
ionship between strain rate and deviatoric stress invariant (eq. A9 )
nd reduce the amount of heat produced (Fig. 10 d). Note that the
ame boundary conditions used here ensure a constant strain rate,
hich suggests that even for nominally volume-preserving bound-

ry conditions, volumetric plastic effects contribute to the rate of
eformation and temperature evolution depending on the rheology.
t must also be noted that as temperature increases due to heating
eedback, the likelihood of the rheology switching from viscoplastic
o viscoelastic is not ruled out. In fact, in some parts of the model,
his rheological switch was already seen when the material stopped
ielding, that is, in these areas where the Drucker–Prager criterion
eq. 11 ) was no longer satisfied. 

.3 TEST 4B: Viscoelasticity and viscoplasticity at high 

train rates 

o perform experiments at high strain rates, we returned to the setup
hown in Fig. 4 where we increased the initial boundary strain rate
y increasing the initial velocity by three orders of magnitude to
 × 10 −8 m s −1 for the vertical boundaries and to 3 × 10 −9 m s −1 

or the bottom boundary compared to TEST 3. The total amount
f shortening was 24 per cent. We ran the simulations for 1 × 10 12 

 ( ∼32 kyr) and show the results in Figs 12 (a)–(c) and associated
-D profiles for temperature variation across the brittle domain and
emperature history within an element in the shear band are shown
n Figs 12 (d)–(g). The shear bands initiated within the weak zone
nd propagated through the brittle and ductile domain, secondary
hear bands appeared on the top boundary as shown in Figs 12 (a)
nd (b). We also observed that the ductile shear bands had higher
mplitudes in the deviatoric strain rate invariant than brittle shear
ands (Fig. 12 b). We also followed the deformed zones where the
eat is produced as shown in the temperature evolution (Fig. 12 c)
here more heat was produced in the ductile domain than the brittle
omain. 

In assessing the discrepancy in the deformation and the tem-
erature when shear heating is considered alone or dilatant plastic
ontribution is incorporated, we observed from the horizontal pro-
les crossing two shear bands in the brittle domain that the feedback
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Figure 10. TEST 4A results shown in deformed configuration for a setup shown in Fig. 1 . We have utilized an initial isothermal temperature of 473 K to ensure 
viscoplastic deformations. The results show two columns indicating the influence of shear heating, and shear with dilatant heating, respecti vel y: (a) volumetric 
strain rate invariant, (b) deviatoric strain rate invariant, (c) second invariant of stress and (d) temperature evolution at the end of the simulation. These results 
are plotted in deformed configuration measuring 57.4 km in the x -direction and 48.8 km in the y -direction similar to the same observation in Fig. 2 . The arrows 
on the left border and one element within a shear band in (a) are pointers to, locations where 1-D profiles and some history-dependent variables were extracted 
and shown in Figs 11 (a)–(e), and Figs 11 (f)–(j), respecti vel y. 
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from dilatant and shear heating led to increased volumetric strain 
rate (Fig. 12 d) and a slight increase or decrease in the deviatoric 
strain rate (Fig. 12 e). Concerning temperature, the difference is up 
to 6 per cent (Fig. 12 f), while an example of temperature evolution 
in an element within the shear band in the brittle domain shows 
that the dilatant plastic feedback can lead to an 8 per cent reduc- 
tion in temperature after 30 000 yr. These results demonstrate, as 
with previous test cases, the ability of dilatant plastic dissipation to 
potentially slo w do wn shear heating and impacts on the volumetric 
strain rate. Over long time scales, this effect is expected to be more 
dominant. 

5  A P P L I C AT I O N  T O  L I T H O S P H E R I C  

DY NA M I C S  

To further illustrate the potential use of our proposed viscoelastic–
viscoplastic constitutive law, we carried out simulations that tackle 
the lithospheric-scale. 
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Figure 11. TEST 4A (a–e) are 1-D profiles extracted across two dominant shear bands from location indicated by arrow on the left border of the model shown 
in Fig. 10 (a): showing (a) volumetric strain rate invariant, (b) deviatoric strain rate invariant, (c) second invariant of stress shown in dashed lines and pressure 
shown in full lines, (d) temperature difference between the final temperature and initial temperature, and (e) final temperature; (f–j) are 1-D history evolution of 
quantities extracted from an element within one of the dominant shear bands whose location is shown in Fig. 10 (a): (f) volumetric viscoplastic strain invariant, 
(g) deviatoric viscoplastic strain invariant, (h) deviatoric stress invariant shown in dashed lines and pressure shown in full lines, (i) evolution of temperature 
and (j) integrated temperature. 
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.1 Initial model set-up and boundary conditions 

e in vestigated tw o models, both composed of a 12 km oceanic
rust and a mantle: (1) without a weak zone, and (2) with an elliptical
eak zone with major and minor radii 20 and 8.4 km, respecti vel y,
laced at 32 km below the surface. An example of the model set
p with an elliptical weak zone is shown in Fig. 13 . The model
etup without the weak zone was aimed at investigating possible
ithospheric buckling (or warping) when the model is subjected to
ong-term compression, while the model with the elliptical weak
one was to preferentially seed localization and to investigate the
ole of dilatant plastic and shear dissipation compared to shear
issipation alone. The material properties utilized are shown in
able 3 . 
The initial vertical thermal distribution in the mantle is com-
uted using the cooling of a semi-infinite half-space model
or a 50 Myr old lithosphere (Turcotte & Schubert 2002 ;
erya 2019 ): 

T y = T 1 + ( T 0 − T 1 ) 

( 

1 − 2 

π
arctan 

[ 
y √ 

αth τ

( 

1 + 

(
y 

2 
√ 

αth τ

)4 
) ] ) 

, (18) 

here T y is the temperature at a given depth, y, T 0 is the temperature
t the surface, T 1 is the temperature at the base of the model; the
unction in parenthesis approximates the error function, where αth 

epresents thermal dif fusi vity and τ represents the age of the litho-
phere in seconds. The initial temperature at the top of the model is
et at 273 K, while the temperature at the base is set at 1673 K: Both
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Figure 12. TEST 4B comparison of deformation states when accounting for shear heating alone and when dilatant plastic contributions were included (see 
Section 4.3 ). (a) volumetric strain rate invariant, (b) deviatoric strain rate invariant and (c) accumulated temperature. 1-D profiles extracted from ∼7.5 km 

(indicated by an arrow on the border of the model shown in Fig. 12 a) for: (d) volumetric strain rate inv ariant, (e) de viatoric strain rate invariant and (f) 
corresponding temperature across the profile. (g) temperature history for an element within the shear band in the brittle part of the model domain (location of 
the element tracking the temperature within a shear band is indicated by an arrow in Fig. 12 a). 
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the left and right boundaries have zero heat flux. The top boundary 
is a free surface, and the bottom boundary is maintained free slip. 
We apply normal inward constant velocities on both vertical bound- 
aries of the model at a rate of 2 cm yr −1 for at least 5 Myr (1.5768 
×10 14 s). We meshed the uppermost part of the model with 2.5 km 

element size and increased the element size towards the base of the 

model. 
5.2 Potential contribution of volumetric plastic 
deformation to lithospheric localization, and heating 

5.2.1 The buckling case 

The results of the experiment without the weak zone after 5.7 Myr of 
horizontal compression are shown in Fig. 14 . Seven shear bands de- 
veloped whether shear or shear and dilatant heating were accounted 
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Figure 13. Illustrative model setup and boundary conditions for two cases: case 1 without an initial weak zone, and case 2 with an elliptical weak zone. Only 
case 2 is shown in this sketch. The horizontal compression velocity is 2 cm yr −1 . 

Table 3. Material properties in the geodynamic model. E (Young’s modulus), v (Poisson’s ratio), K (bulk modulus), G (shear modulus), ρ (density), g
(gravitational constant), C p (specific heat capacity), αth (thermal dif fusi vity), A (pre-exponential multiplier), E a (creep acti v ation energy), R (molecular gas 
constant), ϕ (friction angle), ψ (dilatancy angle), c 0 (initial cohesion), m (stress exponent) and 1 /μ (relative rate of viscoplastic strain). The references for 
material parameters were drawn from 

a Ranalli ( 1995 ), b Goetze & Evans ( 1979 ), c Hirth & Kohlstedt ( 2003 ) and Thielmann & Kaus ( 2012 ). 

Property (unit): Mantle a , b , c Crust a Weak zone a , b , c 

Mechanical 
E (GPa) 25 25 25 
v 0.25 0.25 0.25 
G (GPa) 10 10 10 
K (GPa) 16.7 16.7 16.7 
ρ (kg.m 

-3 ) 3300 2950 3100 
g (m.s -2 ) 9.8 9.8 9.8 
m 3.5 2.3 4 

Thermal 

C p (J kg -1 K 

-1 ) 1050 1050 1050 
αth (m 

2 s -1 ) 8 . 7 × 10 −7 9 . 7 × 10 −7 9 . 2 × 10 −7 

Dislocation creep 

A (Pa -m s -1 ) 2 × 10 −21 1 . 59 × 10 −14 2 . 08 × 10 −23 

E a (kJ mol -1 ) 535 154 283 
R (J K 

-1 mol -1 ) 8.31 8.31 8.31 

Plasticity 

ϕ ( o ) 30 30 15 
ψ ( o ) 10 10 5 
c 0 (MPa) 1 1 1 
1 /μ (s −1 ) 10 −15 10 −15 10 −15 
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or (Figs 14 a and b). The interaction of these shear bands led to
ithospheric buckling (Fig. 14 c) and a zone of localization near the
entre of the model (between x = 0 and −100 km). We also observed
hat volumetric and shear localization were more enhanced at the
entre of the model when shear heating was considered alone, that
s, the tent-shaped feature resulting from the intersection of the two
entral shear bands was stronger when shear heating was the only
issipation mechanism (Figs 14 a and b). The temperature showed
n uplift of isotherms where the shear bands interacted (Fig. 14 d). 

We compared the impact of shear dissipation and shear with
olumetric plastic dissipation on the results of the buckling exper-
ment. Fig. 15 (a) displays the surface ele v ation for both cases with
hear heating and with shear and dilatant heating. We extracted 1-D
lots every 50 km along the model to investigate the variations of
he magnitude of the vertical heat flow (Fig. 15 b), depth to 895 K
sotherm (Fig. 15 c), depth to the 1473 K isotherm (Fig. 15 d) and
he depth to the maximum value of the second invariant of the stress
ensor where the model switches from brittle behaviour to ductile
ehaviour (Fig. 15 e). The heat flow was calculated based on the tem-
erature within the first 10 km using the standard formulation of
he product of thermal conductivity and thermal gradient (England
 Katz 2010 ). From the heat flow plots, we observed variations

f up to 3 mW s −2 reduction in heat flow when dilatant heating
as included (Fig. 15 b). We chose the 895 K isotherm as it was
bserved to be the isotherm that was elevated when shear heating
as the dissipation mechanism (Fig. 14 d). This isotherm was found

o be offset by up to 2.5 km when volumetric plastic dissipation
as included with shear dissipation (Fig. 15 c). The depth to the
473 K (ensuring viscous flow) indicates that volumetric plastic
issipation influences this isotherm (Fig. 15 d). This suggests that
ncluding volumetric plastic dissipation thickens the brittle part of
ithosphere by a few kilometres. Finally, the depth of the brittle–
uctile transition is also influenced when the dilatant heating is
ncluded with shear heating (Fig. 15 e). Considering that the maxi-

um of the deviatoric stress invariant was observed to correspond
o the depth of transition from brittle to ductile behaviour (Fig. 8 b),
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Figure 14. Geodynamic model results for setup in Fig. 13 without the weak zone after 5.7 Myr of horizontal compression corresponding to an overall shortening 
of 23 per cent. (a) volumetric strain rate invariant, (b) deviatoric strain rate invariant, (c) second invariant of stress and (d) evolved temperature. 
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the results from the buckling experiment shown in Fig. 15 (e) in- 
dicate that the depth to the brittle–ductile transition can be thick- 
ened by an additional 3.75 km near x = 0 when dilatant heating is 
included. 

5.2.2 The domal case 

Our experimental setup in Fig. 13 includes an elliptical weak zone 
which could represent a low-velocity zone associated with par- 
tial melting, internal fluid-filled fractures, high-temperature area 
or inherited features from a previous geological event. The impor- 
tance of such weak features in influencing tectonic regimes has 
been investigated by past authors (Cloetingh et al. 1982 ; Gur- 
nis 1992 ; Nikolae v a et al. 2010 ; Ruh et al. 2015 ). Our interest 
here is to investigate if we can observe similar features associated 
with domal structures due to compressional tectonics, for exam- 
ple, an anomalous thermal zone beneath a dome, the formation 
of faults that may affect the surrounding areas and the surface 
topography. 

For a simulation of 5.4 Myr, we show the deformed domain in 
an area of size 268.2 km by 600 km around the weak inclusion 
and away from the inevitable edge effects. Fur ther more, since the 
structural evolution between cases accounting for shear heating and 
shear with dilatant heating were similar, we only show the results of 
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Figure 15. Comparative profiles for geodynamic results shown in Fig. 14 (case 1) showing: (a) surface ele v ation, (b) magnitude of vertical heat flow, (c) 
depth to 895 K isotherm (d) depth to 1473 K isotherm and (e) depth to the maximum deviatoric stress where the model shifts from brittle to ductile 
behaviour. 
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Figure 16. Results for input model shown in Fig. 13 for shear and dilatant heating (case 2). (a) Logarithm of the deviatoric strain rate invariant, (b) temperature, 
(c) magnitude of vertical heat flow, (d) depth to 895 K isotherm chosen based on one of the isotherms that was shallower when dilatant heating was included; 
(e) depth to 1473 K where ductile behaviour was active, and (f) depth of the maximum deviatoric stress invariant which can be used as the transition to brittle 
mantle behaviour to ductile mantle behaviour. 
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shear with dilatant heating for deformation (Fig. 16 a) and tempera- 
ture (F ig. 16 b), w here four shear bands emanated from the elliptical 
inclusion. Two of the shear bands propagated upwards to the brittle 
lithosphere and led to an ele v ated surface topo graphy, while the 
other two propagated downwards into the ductile part before fading 
out (Fig. 16 a). This behaviour led to the shallowing and deepening 
of some isotherms. We however compare results from shear heat- 
ing and shear with dilatant heating in extracted profile plots which 
we show in figures (Figs 16 c–f). The large-scale shear bands and 
the associated thermal feedback led to a zone with initially hori- 
zontal isotherms rising beneath the weak zone. While the dome is 
associated with ele v ated surface heat flow for shear or shear and 
dilatant heating (Fig. 16 c), the depth to the 895 K isotherm exhib- 
ited a shallowing beneath the dome (Fig. 16 d) and a deepening of 
the 1473 K isotherm (Fig. 16 e). This suggests a thermal anomaly 
which is a consequence of shear and dilatant dissipation. The spe- 
cific effect of dilatant heating is to shallow the 895 K isotherm by 
about 2 km beneath the dome. The depth to the maximum of the 
deviatoric stress invariant used as the point of transition from brittle 
mantle behaviour to ductile mantle behaviour is unaffected by shear 
heating or shear with dilatant heating (Fig. 16 f). Comparing the 
results of the depths to the chosen isotherms and the depth to the 
brittle–ductile transition, we can conclude that the effect of shear 
heating and shear with dilatant heating mostly influences the brittle 
domain in this case. 

6  D I S C U S S I O N  

In this contribution, we have described a formulation for 
viscoelastic–viscoplastic (VE-VP) constitutive behaviour, incorpo- 
rating elastic compressibility, plastic compressibility and po wer-la w 

viscoplasticity. We addressed the potential feedback from volu- 
metric plastic dissipation, which we referred to as dilatant heat- 
ing, and had been traditionally neglected in conventional geody- 
namic modelling. Our approach therefore treated the domain as 
a solid–mechanical system which also differs from traditional ap- 
proaches that utilize a fluid–mechanical idealization of a solid sys- 
tem. We have given a step-by-step description of the constitutive 
update for stresses and strains; consistent Jacobian matrices for 
adaptive time-stepping as well as a concise algorithmic descrip- 
tion. In this concise discussion section, we shall examine the im- 
pact of this volumetric plastic feedback to the dissipative heating 
loop. 
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The justification for the effect of volumetric plastic deformation
n heat reduction can be first explained in the following way: volu-
etric plastic deformation implies a work term whose sign depends

ltimately on the constitutive laws. When thermal conductivity is
ow as is the case for rocks, the overall process should be close to
sentropic, which implies that dilatant plasticity (expansion) indeed
mplies some cooling. From eq. ( A11 ), once the viscoplastic mul-
iplier is determined, a correction to the pressure is implemented.
ince the pressure multiplier is al wa ys positive, there is a reduction

n pressure. 
For pure shear experiments (TEST 2), the impact of volumetric

lastic and shear dissipation compared to shear dissipation alone did
ot show a large difference in the volumetric and deviatoric strain
ates; pressure and deviatoric stress invariant. Despite the volume-
reserving pure shear experiment, we observed a temperature re-
uction of up to 3 K when dilatant plastic heating was included. This
s because shearing dominated the deformation, and the feedback to
olumetric plastic deformations and resultant dilatant plastic heat-
ng was minimized, that is, there was little volume change, despite
 xtensiv e internal shear deformations. This was indeed apparent in
igs 5 (c) and (d), where the dif ferent dissipati ve feedback did not
ignificantly impact the pressure. 

TEST 4A to investigate viscoplasticity, which included an ini-
ially isothermal medium, indicated that volumetric plastic dissi-
ation impacted the volumetric strain rate, deviatoric strain rate,
ressure, deviatoric stress invariant and irreversible strains. History-
ependent variables like the inte grated irrev ersible strains were also
nfluenced by the contribution of volumetric plastic dissipation. In
ll cases, the temperature rose with the feedback on the temperature
ommencing before the other history-dependent variables like ac-
umulated viscoplastic strains and deviatoric stress invariants. High
train rate experiments (TEST 4B) also showed that temperature can
e reduced by up to 25 to 50 K when dilatant plastic heating was
onsidered. 

It has been argued that rocks generally deform viscoelastically at
ow stresses and do not necessarily support elastic stresses over
he timescale of a subduction process, for example (Schmeling
t al. 2008 ). A metric for assessing the timescale over which elastic
tresses can be relaxed is the Maxwell relaxation time, given as
he ratio of the ef fecti ve viscosity and the shear modulus. In some
umerical studies, the impact of elasticity is inhibited by setting an
nrealistically high value for the shear modulus, which makes the
axwell relaxation time small, hence elastic stresses are dissipated

uickly (Schmeling et al. 2008 ). We have not included assump-
ions in our model to mitigate elasticity, as it had been shown in
ther studies that elasticity (represented by the shear modulus) is an
mportant attribute in lithospheric-scale strain localization (Jaquet
t al. 2016 ; Bessat et al. 2020 ). Our inclusion of elasticity in our
odel is justified on the basis that, we assume that the material

an deform elastically until thermall y acti v ated viscous flow kicks
n, while viscoplastic behaviour evolves once the Drucker–Prager
ield criterion is breached. 

In utilizing our new implementation in studying lithospheric dy-
amics, our results indicated that realistic heat flow values were
eproducible for thermal dissipation alone when compared with
ublished results of heat flow measurements from compressional
nvironments (Manga et al. 2012 ; Ezenwaka 2023 ). We also ob-
erved that the contribution of volumetric plastic dissipation either
or the buckling experiment or for the collisional case was a re-
uction of heat flow values, and variation in the depth of some
sotherms, with shear heating more likely to lead to lithospheric
hinning than shear with dilatant plastic heating. 
As observed in all the simulations reported here, it is much more
ommon for several shear bands to develop (see Figs 14 a and b, for
xample). This sets up the question of what happens where differ-
nt shear bands intersect/interact. In these regions, deformation is
oth intense and going in all directions which impedes the develop-
ent of a single dominant shear direction. Hence localization in the

ense of allowing a simple macroscopic shear direction to develop
s hampered. Never theless, defor mational heating remains intense
ecause strong irreversible deformation is still occurring in such
egions (Fig. 14 d). 

 C O N C LU S I O N  

e hav e dev eloped a solid-thermomechanical constitutiv e descrip-
ion to study strain localization in compressional experiments with
ontributions from volumetric plastic dissipative feedback, which
re usually not considered in geodynamic models. Using small strain
ssumptions, we developed and applied a full 2-D viscoelastic–
iscoplastic stress update scheme and included time adaptivity with
onsistent algorithmic tangent moduli. Our constitutive laws have
een implemented on the Abaqus C © finite element solver. Based on
ur studies, we conclude as follows: 

(i) We benchmarked our new solid-mechanical model against
ther published numerical models for viscoelastic and viscoelastic–
iscoplastic rheologies. Our benchmarking tests indicate that our
imulations are not mesh-sensitive nor are they sensitive to low-
rder (linear) or high-order (quadratic) elements. 
(ii) In comparing results of shear heating and shear with dilatant

eating for pure shear numerical experiments, our results indicated
hat the implicit conservation of volume in the experimental setup
hrough the specific choice of boundary conditions to keep the back-
round strain rate constant leads to the volumetric plastic feedback
ot having a strong influence on the results. 
(iii) A depar ture from volume-conser ving boundar y conditions

ure shear experiments demonstrated the contributions of volumet-
ic plastic feedback to the temperature and the stress state. Using
equentially a linear temperature profile (TEST 3), an isothermal
ase that ensured viscoplastic deformation (TEST 4A) and a high
oundary strain rate (TEST 4B), we observed that volumetric plas-
ic dissipation contributed to the thermal state of our models by
educing the amount of heat produced, which affected the depth to
sotherms and even the brittle-ductile transition. 

(iv) Whether thermal dissipation is due to shear heating or shear
ith dilatant heating, both scenarios led to a temperature rise, but the

nclusion of volumetric plastic dissipation led to reduced heating,
ometimes up to 8 per cent. 

(v) The volumetric plastic dissipation leading to reduced heating
s primarily due to plastic dilation (expansions). Despite including
ilatant plasticity for the mantle, our results did not indicate that
olumetric plastic dissipation had significant effects in the hotter
arts of the mantle as we did not include assumptions of volumetric
lastic strains during ductile creep. Our new model is therefore
ble to switch between viscoelastic behaviour (controlled by the
emperature) and viscoplastic behaviour (controlled by the Drucker–
rager yield criterion which occurs in the brittle regimes). 
(vi) We also successfully applied our new model to lithospheric-

cale dynamics where we found that whether shear heating and
hear with dilatant heating are accounted for, the onset of buckling
evelops at the same time. Ho wever , where we observed a higher
olumetric plastic strain, we observed a temperature reduction of
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28–33 K, which is about 4 per cent reduction of shear heating when 
dilatant terms are included. 

While the actual temperature change is not so large, we have 
shown that the impact of accounting for volumetric plastic stresses 
and strains on several aspects of crustal-scale and lithospheric- 
scale geodynamic models is not negligible, such as the depths to 
isother ms, brittle-ductile transition; defor mation histor y, stress evo- 
lution and heat flow. Our new model also allowed the emergence of 
sev eral comple xities which were not imposed a priori , for example, 
softening behaviour. The fact that the brittle–ductile transition is a 
function of the amount of plastic dilatancy also opens new vistas 
to other questions, for example, the influence on mantle and crustal 
solidus, thermal steady-state, that is, where the amount of heat pro- 
duced is e v acuated b y conduction thereb y keeping the temperature 
in equilibrium; and investigating areas with high heat flows that can 
be targeted for geothermal exploration. 
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A P P E N D I X  A :  N U M E R I C A L  

I M P L E M E N TAT I O N  O F  C O N S T I T U T I V E  

L AW S  

The formulations to solve the mechanical and thermal diffusion 
parts of the system described in Section 2 have been coded into 
a User-defined mechanical material behaviour (UMAT) and user- 
defined thermal material behaviour UMATHT subroutines, respec- 
ti vel y, and implemented in Abaqus C © (Abaqus 2010 , 2019 ). 

Given a displacement at a given time step which can result from a 
v elocity or force-driv en boundary condition, Abaqus C © supplies the 
total strain increment at that time step. Using our proposed constitu- 
tive laws, corresponding elastic stresses are computed. The viscous 
and viscoplastic corrections to the stresses are at the heart of the 
stress update scheme, and for an adaptive time-stepping scheme that 
we adopt, the consistent algorithmic tangent modulus is required. 
We describe the details of our algorithmic implementation here. 

A1 Stress update scheme 

At each time step, we first assume that the strain increment, �ε e i j , 
at that time step is fully elastic. We then compute an elastic trial 
stress. 

σ
e, trial 
i j = C 

e 
i jkl 

(
ε 

e, trial 
kl + �ε 

e, trial 
kl 

)
. (A1) 

Given the elastic trial stress, we obtain trial deviatoric stresses and 
pressures from: 

s e,trial 
i j = σ

e,trial 
i j − σ

e, trial 
kk 

3 
δi j , 

P 

e,trial = 

I e, trial 
1 

3 
= 

σ
e, trial 
kk 

3 
. 

(A2) 

The trial deviatoric stresses are used to compute the invariant of 
deviatoric stresses in the elastic state. Given the function in eq. ( 9 ), 
we can write a viscous function in the form: 

˜ 
 

v ( σ e 
i j , T ) = 

( 
 

v ) m f ( T ) − �γ v 

�t 
= 0 , (A3) 

where �t is the time increment at a step, 


 

v = 

√ 

J e II ( s 
e, trial 
i j ) − G�γ v . Eq. ( A3 ) is a nonlinear equation and 

we obtain the unknown �γ v by performing Newton–Raphson 
iterations (Ben-Israel 1966 ; Yqma 1995 ) using the deri v ati ve of ˜ 
 

v 
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ith respect to �γ v : 

d ̃  
 

v 

d �γ v 
= = −mG 

( 
 

v ) m −1 f ( T ) �t − 1 = 0 . (A4) 

fter computing �γ v , update the deviatoric stresses as follows: 

ε v i j = � γ v ( σ e, trial 
i j , T ) 

∂ 
 

v 
F 

∂s e,trial 
i j 

= � γ v 
s e,trial 

i j 

2 
√ 

J e II ( s 
e, trial 
i j ) 

, (A5) 

 

v 
i j = 

⎛ 

⎝ 1 − G� γ v √ 

J e II ( s 
e, trial 
i j ) 

⎞ 

⎠ s e, trial 
i j . (A6) 

 deviatoric stress invariant ( J v II ) is computed after correcting for
reep. This new stress invariant is fed to assess the viscoplastic
outine through the Drucker–Prager yield function in eq. ( 11 ). If
he yield criterion is violated, we perform more Newton–Raphson
terations to obtain the viscoplastic multiplier. We therefore write a
esidual viscoplastic potential function using the functional form of
Zienkiewicz & Cormeau. 1974 ; Perzyna 1986 ): 

˜ 
 

vp 
R ( σ

v 
i j , T ) = 

�t 

μ

(

 

DP 
R 


 0 

)m 

− �γ vp = 0 , (A7) 

here 
 

DP 
R = 
 

DP 
Y − c 1 �γ vp , with c 1 = ( G + α1 α3 K ) , 
 0 = c 0 

nd μ is a viscosity-related term. Because eq. ( A7 ) is a nonlin-
ar equation, we find the unknown �γ vp by Newton–Raphson
terations as the creep case. The deri v ati ve of the residual
iscoplastic potential function required for these iterations is
i ven b y: 

d ̃  
 

vp 
R 

d �γ vp 
= − c 1 m�t 

c 0 μ

(

 Y − c 1 �γ vp 

c 0 

)m −1 

− 1 . (A8) 

qs ( A7 ) and ( A8 ) are used to perform Newton–Raphson iterations
o obtain the unknown �γ vp . A critical aspect of the convergence
f the Newton–Raphson iterations for obtaining both the viscous
nd viscoplastic multipliers is the requirement that the multipliers
re strictly positive and that the algorithm converges. To aid the
onvergence of the Newton–Raphson scheme, we have included a
odified bisection method when these conditions are violated (de
ouza Neto 2004 ; Chapra & Canale 2011 ). 
After obtaining the viscoplastic multiplier upon yielding, the

tresses, viscoplastic strains, temperature change and state variables
an be computed: 

ε 
vp 
i j = � γ vp 

( 

s v i j 

2 
√ 

J v II ( s 
v 
i j ) 

+ 

α3 

3 
δi j 

) 

(A9) 

 

vp 
i j = 

( 

1 − G� γ vp √ 

J v II ( s 
v 
i j ) 

) 

s v i j , (A10) 

P = P 

e, trial − α3 � γ vp K , (A11) 

i j = s vp 
i j + P , (A12) 

T = 

σi j � ε 
vp 
i j 

ρC p 
. (A13) 

2 Consistent algorithmic tangent modulus (CATM) 

inally, using the Newton scheme to solve the global equations,
n important consideration is the convergence of the solver and
he selection of an adaptive time step. To this end, we estimate
 convergence matrix obtained by linearizing the stress update
chemes for deviatoric stresses and pressure given in eqs ( A6 ),
 A10 ) and ( A11 ). We proceed by taking small increments in
he deviatoric stress and pressure with respect to the trial elas-
ic state. We compute this matrix for the creep and viscoplastic
tates. 

2.1 Consistent algorithmic tangent modulus for creep 
eformation 

 

v 
i jkl = 

d σi j 

d ε e, trial 
kl 

= 

d s v i j 

d ε e, trial 
kl 

+ δi j 

( 

d P 

d ε e , trial 
kl 

) 

(A14) 

The expression for deviatoric stresses can be equivalently written
n terms of the deviatoric strains ( e e, trial 

i j ) taking into account that

 

e, trial 
i j = 2 Ge e, trial 

i j , and e trial 
i j = ε trial 

i j − ε trial 
kk / 3 : 

 

v 
i j = 2 G 

( 

1 − �γ v 

√ 

2 e trial 
norm 

) 

e trial 
i j . (A15) 

 

trial 
norm 

= 

√ 

e trial 
i j e trial 

i j represents the Euclidean norm of the deviatoric

train tensor. The elements to assemble the consistent Jacobian
atrix during creep deformation are gi ven b y deri v ati ves of the

tress states after creep: 

d s v i j 

d ε e trial 
kl 

= 2 G 

( 

1 − � γ v 

√ 

2 e trial 
norm 

) 

I dev 
i jkl 

+ 

√ 

2 G 

(
� γ v 

e trial 
norm 

− b 1 

)
e trial 

i j 

e trial 
norm 

e trial 
kl 

e trial 
norm 

, (A16) 

i j 
d P 

e, trial 

d ε e, trial 
kl 

= K δi j δkl , (A17) 

ith 

 1 = 

√ 

2 G 

( �t f ( T ) ) 1 /m 

( �γ v ) (1 −m ) /m 

m 

+ G ( �t f ( T )) 1 /m 

. 

he expression for the consistent Jacobian, when creep deformation
s considered without viscoplasticity, is given by a combination of
quations ( A16 ) and ( A17 ): 

 

v 
i jkl = 2 G 

( 

1 − � γ v 

√ 

2 e trial 
norm 

) 

I dev 
i jkl = 

+ 

√ 

2 G 

(
� γ v 

e trial 
norm 

− b 1 

)
e trial 

i j 

e trial 
norm 

e trial 
kl 

e trial 
norm 

+ K δi j δkl , (A18) 

here I dev 
i jkl = 

(
δik δ jl + δil δ jk 

)
/ 2 − δi j δkl / 3 is the fourth order devi-

toric projection tensor, which extracts the deviatoric components
f a stress or strain tensor. 

2.2 Consistent algorithmic tangent modulus for viscoplastic 
eformation 

he linearization scheme follows the same procedure used for the
reep state. For the deviatoric stresses, 

d s vp 
i j 

d ε e trial 
kl 

= 

⎛ 

⎝ 1 − G�γ vp √ 

J v II ( s 
v 
ij ) 

⎞ 

⎠ 

d s v ij 

d ε e trial 
kl 

. (A19) 
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kl 

= 
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J v II ( s 
v 
ij ) 

⎞ 
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kl 

− α1 b 2 K G √ 
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δi j 
s v kl √ 

J v II ( s 
v 
kl ) 

− G √ 

J v II ( s 
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⎝ 

√ 

2 Gb 2 

(
1 − b 1 √ 

2 

)
e trial 
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e norm 
+ 

√ 

2 G�γ vp √ 

J v II ( s 
v 
i j ) 

(
b 1 √ 

2 
− 1 
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e trial 

i j 

e norm 

⎞ 

⎠ 

s v kl √ 

J v II ( s 
v 
kl ) 

, 

δi j 
d P n + 1 
d ε e trial 

kl 

= K 

( 1 − α1 α3 b 2 K 

) δi j δkl + α3 b 2 K 

(
b 1 −

√ 

2 G 

) e trial 
i j 

e trial 
norm 

δkl , (A20) 
C © The Author(s) 2024. Published by Oxford University P
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where 

b 2 = 

1 

c 0 

(
�t 

μ

)1 /m 

( �γ vp ) (1 −m ) /m 

m 

+ 

c 1 
c 0 

(
�t 

μ

)1 /m 

. 

The procedure of obtaining the tangent moduli is a lin- 
earization of the stress update scheme, such that the adaptive 
time stepping is a function of the deformation state of the 
material. 
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