
Probability of earthquake fault jumps from physics based criterion. 

Sylvain Michel1,2,3, Oona Scotti1,4, Sebastien Hok1,4, Harsha S. Bhat3, Navid Kheirdast3, Pierre Romanet5,2, 

Michelle Almakari3, Jinhui Cheng3  

1 Institut de Radioprotection et de sûreté Nucléaire, 31 avenue de la Division-Leclerc, 92262, Fontenay-aux-Roses, France  

2 Université Côte d’Azur, CNRS, IRD, Observatoire de la Côte d’Azur, Géoazur, Sophia-Antipolis, France 

3 Laboratoire de Géologie, Département de Géosciences, Ecole Normale Supérieure, PSL Université, CNRS UMR 8538, 24 Rue Lhomond, 75005, 

Paris, France. 

4 Now at Autorité de Sûreté Nucléaire et Radioprotection, 31 avenue de la Division-Leclerc, 92262, Fontenay-aux-Roses, France 

5 Department of Earth Sciences, La Sapienza University of Rome, Rome, Italy,  

 

Non peer reviewed manuscript submitted to Earth and Planetary Sciences 

 

Highlights: 

- Criterion based on R&S framework characterizes earthquake efficiency to jump faults 

- Criterion predicts jumps in seismic cycle simulations where coulomb stress fails  

- Maximum jump distance increases to infinity as normal stress (depth) goes to zero 

- Method to compute earthquakes jump probabilities taking into account fault angles  

  



Abstract 

Geometrical complexities in natural fault zones, such as steps and gaps, pose a challenge in 

seismic hazard studies as they can act as barriers to seismic ruptures. In this study, we propose a 

criterion, which is based on the rate-and-state equation, to estimate the efficiency of an 

earthquake rupture to jump two spatially disconnected faults. The proposed jump criterion is 

tested using a 2D quasi-dynamic numerical simulations of the seismic cycle. The criterion 

successfully predicts fault jumps where the coulomb stress change fails to do so. The criterion 

includes the coulomb stress change as a parameter but is also dependent on other important 

parameters among which the absolute normal stress on the fault which the rupture is to jump 

to. Based on the criterion, the maximum jump distance increases with decreasing absolute 

normal stress, i.e. as the rupture process occurs closer to the surface or as pore pressure 

increases. The criterion implies that an earthquake can jump to an infinite distance at the surface 

if the normal stress is allowed to go to zero. Thus, the properties of the surface layers are of the 

outmost importance in terms of maximum rupture jump distance allowed. The absolute normal 

stress is the main controlling parameter followed by the uncertainty on the slip of an earthquake, 

which controls the coulomb stress impact on the receiver fault. Finally, we also propose a method 

to compute probabilities of earthquakes rupture to jump, which allows to consider uncertainties 

in geometrical configurations between two faults. 
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1. Introduction 

Evaluating the efficiency of an earthquake rupture to jump from one fault to another is 

fundamental to anticipate the maximum magnitude of earthquakes. Is there a maximum distance 

between two faults an earthquake cannot jump? Can we quantify the probability of jumping 

based on fundamental parameters controlling fault interactions? 

Multiple types of geometrical barrier exist such as fault bends, steps, or branching (Biasi and 

Wesnousky, 2021, 2016). In this study, we will focus on a setting where two faults are 

disconnected spatially but can potentially rupture together, which regroups geometrical barriers 

defined as gaps and steps (Figure 1).  

Several earthquakes have demonstrated that seismic ruptures can jump across fault gaps or step 

overs. Based on surface observations, Biasi & Wesnousky (2016) and Wesnousky (2008) have 

documented which earthquake succeeded or failed to pass such geometrical complexities and 

have also quantified their numbers and sizes. For example, the 1992 𝑀!7.2 Landers earthquake 

is just one event among many that succeeded to jump multiple steps: three of 1.5, 2 and 3 km 

distance in this case. Based on their observations, they suggested that seismic events are not able 

to jump steps beyond 5 km, an upper bound considered in many seismic hazard analysis (e.g. 

UCERF 3; Field et al., 2014 ; Scotti et al., 2019). However, some recent events were suggested to 

have jumped across greater distances, such as the 2016 M7.8 Kaikoura earthquake in New 

Zealand (jump of an apparent restraining step of 15 km; Diederichs et al., 2019; Hamling et al., 

2017). While the number of events within the catalogs increase with each study (Baize et al., 

2020; Rodriguez Padilla et al., 2024; Sarmiento et al., 2024), these observations are naturally 



limited as they are collected at the surface, specific to each site and essentially blind to the details 

of how and why rupture jump or do not jump (e.g. fault geometry and rupture history at depth).  

Numerous studies have used numerical simulations to understand further the physics behind the 

efficiency of an earthquake to jump from one fault to another (Bai and Ampuero, 2017; Harris 

and Day, 1999, 1993; Kroll et al., 2023; Mia et al., 2024; Shaw and Dieterich, 2007). Most studies 

simulate one single event and rely on the slip weakening friction law in which the evolution of 

friction with slip is predefined (e.g. Bai & Ampuero, 2017; Harris & Day, 1999). The propagation 

of seismic waves is usually modeled making the simulations fully dynamic. Among them, some 

studies concentrate on replicating the rupture of complex 3D fault networks due to a single 

known event (e.g. 2023 Kahramanmaraş M7.8 and 7.7 earthquakes; Gabriel et al., 2023). While 

those studies are insightful, they rely on an initial stress distribution of faults which is fixed 

arbitrarily prior to the simulation and that determines whether a seismic rupture will propagate 

or stop. The ratio between strength excess and stress drop is often used as a criterion to quantify 

the relative prestress level and assess the triggering potential of a fault (Das and Aki, 1977), 

although the parameters involved are difficult to quantify. On the other hand, seismic cycle 

simulations allow to model different sizes of events and all the different periods of a fault’s life, 

including the inter-, co- and post-seismic periods, as well as the nucleation process of 

earthquakes. Those simulations rely on the empirical rate-and-state friction law (Dieterich, 1979, 

1972) which is expressed as: 

𝜏 = 𝜎 %𝑓∗ + 𝑎	𝑙𝑛 ,
𝑉
𝑉∗
. + 𝑏	𝑙𝑛 ,

𝑉∗	𝜃
𝐿 .2, (1) 



where 𝜏 and 𝜎 correspond to the shear and normal stress, respectively, 𝑉 is the slip rate and 𝑓∗ 

is the coefficient of friction at the reference slip rate 𝑉∗. 𝐿 is a characteristic slip distance. 𝑎 and 

𝑏 are frictional parameters where 𝑎 describes the effect of shear stress in response to an abrupt 

change in slip rate, called the direct effect, and 𝑏	governs the evolution of the state variable, 𝜃. 

The rate-and-state friction law has to be complemented by an evolution law for the state variable 

𝜃 (e.g. the aging law; Ruina, 1983). Regions where 𝑎 − 𝑏 < 0 are said to be Velocity Weakening 

(VW) and can potentially birth earthquakes, while regions where 𝑎 − 𝑏 > 0 are said to be 

Velocity Strengthening (VS) and tend to creep steadily.  Simulations using the rate-and-state 

friction law enable to generate sequences of earthquakes and stress distributions on the fault 

that are controlled by the evolution and history of slip. Nevertheless, modeling multiple faults is 

computationally demanding and approximations are often applied to make the simulations 

faster. As an example, the quasi-static RSQSim algorithm (Dieterich and Richards-Dinger, 2010; 

Richards-Dinger and Dieterich, 2012) simplifies the rate-and-state friction law behavior into three 

slip regimes (i.e. locked, nucleating or dynamically slipping) and has been used to study 

sequences of earthquakes on complex fault networks, including rupture jumps (e.g. Shaw et al., 

2022).  

While the use of simulations using the rate-and-state friction law begins to be widely used to 

study fault network interactions, and even incorporated into seismic hazard analysis (e.g. 

Chartier et al., 2021; Shaw et al., 2018), the study of the fundamental parameters controlling 

fault interactions, rupture jumps included, within this framework has not been studied in detail. 

It is important to explore the uncertainty of each of those parameters and properties as it allows 

to estimate in a probabilistic approach the efficiency of an earthquake to pass an obstacle (e.g. 



Kaneko et al., 2010; Michel et al., 2021; Molina-Ormazabal et al., 2023; Ozawa et al., 2023). This 

modeling framework can then be used to evaluate a fault’s seismogenic potential, taking into 

account the effect of the obstacles, and be included into seismic hazard analysis (Biasi and 

Wesnousky, 2021).  

Our study aims to better characterize the efficiency of an earthquake to jump from one fault to 

another based on the Rate-and-State friction law, and identify the parameters that control fault 

interaction. To do so, we first build a rupture jump efficiency criterion which roots from the rate-

and-state equation (Eq. [1]), and test it against numerical earthquake sequences generated along 

two faults using the quasi-dynamic seismic cycle algorithm VEGA developed by Romanet et al. 

(2018). We then explore the implications of the criterion in terms of maximum jump distance and 

propose an approach to compute probabilities of rupture jumps. Finally, we discuss about the 

limits of the criterion before concluding. 

2. Rupture Jump Efficiency Criterion 

To build a rupture jump efficiency criterion, we use the rate-and-state formulation (i.e. Eq. [1]) 

for the slip rate parameter 𝑉: 

𝑉 = 𝑒𝑥𝑝 %
1
𝑎 %
𝜏
𝜎 − 𝑓∗ −  𝑏	𝑙𝑛 ,

𝑉∗	𝜃
𝐿 .2 + 𝑙𝑛(𝑉∗)2. (2) 

The ratio between the slip rate prior and after the interaction of an earthquake,  𝑉# and 𝑉$, 

respectively, is thus expressed as: 
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If we assume that the earthquake interaction is instantaneous, then the state variable 𝜃# = 𝜃$  

and: 

𝑉$
𝑉#
= 𝑒𝑥𝑝 %

1
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This expression can be reordered as follows: 
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𝑉$ 	is thus the absolute value of the slip rate after an earthquake interaction, which we will rename 

𝑉-./012. (𝜏$ − 𝜏#) and (𝜎$ − 𝜎#) correspond to the shear and normal stress changes due to the 

earthquake, while ("
)"

 correspond to the effective coefficient of friction before the earthquake. 

Equation [5] can then be expressed as: 
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where ∆𝐶 is the coulomb stress change. Notice that a slightly different formulation is mentioned 

in the study from Kroll et al. (2023). 

The definition of an earthquake in rate-and-state cycle simulations is ambiguous since in this 

framework the faults never stop slipping and slip rates can vary in orders of magnitude. Here we 

define it as any portion of a fault with a slip rate above 10-3 m/s. Thus, if an earthquake interaction 

on a second fault increases 𝑉-./012	above 10-3 m/s, this earthquake has, by our definition, 

jumped.  

Note that the equation does not provide any information on whether rupture initiation triggered 

by one fault on a nearby fault will propagate further. Note also that 𝑉-./012	implies that the 



instantaneous reaction of the fault an earthquake tries to jump to does not solely depend on the 

coulomb stress change (i.e. ∆𝐶). However, the information about the size of the rupture trying to 

jump and the geometry of the faults are included in ∆𝐶 and ∆𝜎. The other parameters, 𝑉#,	𝑎, and 

𝜎#, modulates the spatial pattern implied by ∆𝐶 and ∆𝜎. 

 

3. Seismic Cycle Simulations 

We test the predictivity of Eq. [6] based on 2D quasi-dynamic seismic cycle simulations generated 

from the algorithm VEGA (Romanet et al., 2018). This algorithm, based on the rate-and-state 

friction law, allows to model sequences of earthquakes on a network of faults. The aging law is 

here used to describe the evolution of the state variable (Ruina, 1983). The description of the 

model geometric setting is shown in Figure 1. To represent the simplest geometry of a fault step, 

we model two linear parallel faults of same length, respectively Fault 1 and 2, which are 

separated in space. The parallel and perpendicular distance between the closest tips of the two 

faults, respectively 𝐷 and 𝐻, are taken relative to the direction of the first fault. Each fault is 

divided into a VW and VS area of identical size. The faults are loaded using a back-slip rate 

approach (Heimisson, 2020; Savage, 1983; Shaw et al., 2022; Tullis et al., 2012), which enables to 

load each fault with different slip rates, contrarily to a regional stress loading. Fault 1 and 2 are 

loaded at 30 and 7 mm/yr, respectively. Fault 1 generates thus earthquakes at a greater 

frequency than Fault 2 and tests the second fault at different times of its seismic cycle, i.e. with 

different levels of stress distribution. Fault 1 and 2 are defined as the generator and receiver 

faults, respectively. Without this contrast of loading, the two faults tend to synchronize and 



rupture together, which makes it difficult to explore a variety of scenarios. The parameters 𝑎 and 

𝑏 of the friction law for the VW area are chosen here equal to 0.01 and 0.018, respectively, 

standard values used in the literature (e.g. Michel et al., 2017).  

Three different scenarios are considered in this study, for which the parameters are indicated in 

Table S1. Two scenarios have aligned faults and thus don’t have any normal stress interaction but 

have different values of normal stress: 80 and 40 MPa, respectively. The normal stress is 

controlled by the regional static stress field which is optimally set at 30° from the faults 

(Anderson, 1905). The third scenario has the same parametrization as the first scenario except 

that the faults overlap a third of their VW areas and that normal stress interactions occur. For 

each scenario we test different lengths of the fault’s VW portion (e.g. 10, 30, 60 and 100 km), as 

well as different values of 𝐷 (from -1 to 10 km) and 𝐻 when there is an overlap (-0.5 to 0.5 km) 

(see Table S1). The characteristic distance 𝐿 of rate-and-state friction law is set to 0.0155 m which 

prescribes a nucleation length of 1 and 2 km for normal stresses of 80 and 40 MPa, respectively. 

The size of the sub-patches of the faults are determined so that they are at least ten times smaller 

than the cohesive zone (Day et al., 2005). The simulations are thus well resolved (Lapusta and 

Liu, 2009). 

 

4. RESULTS 

4.1. Example of simulation 

We show in Figure 2 an example of a simulation from the third scenario, with an overlap between 

the two faults and a perpendicular distance of 150 m (below the cohesive zone size of ~310 m), 



to illustrate the complexity of behavior within one simulation. Figure 2.a represent the maximal 

slip rate, 𝑉8'9, through time occurring on each fault. The timing and spatial extent of earthquakes 

are defined by the detection threshold of 10-3 m/s (Romanet et al., 2018). In this simulation, 

spanning ~1500 yrs (3 105 time steps), 47 events have occurred on both faults, 26 on Fault 1, 

among which 10 have jumped from Fault 1 to Fault 2. Those 10 events are here numbered (Figure 

2.b). Figure 2.b shows the timing and size of each event on Fault 1 and indicates which have 

jumped (dark blue bars). Magnitudes are estimated assuming square areas for the 2D ruptures 

(i.e. rupture length is squared). Figure 2.c shows the spatio-temporal distribution of slip rate on 

both faults. Note that the time is here expressed in time steps. In the simulations, time steps 

decrease when slip rate increases, hence the greater number of time steps during earthquakes 

compared to the inter-seismic period, that help visualizing the propagation of seismic events. The 

following comments are here to illustrate the complexity of the fault behavior that is present 

within each simulation. Events nucleate on both the transition between VW and VS zone, and at 

the end of the fault on the VW section (e.g. jumping event 6 and 10), but also near the location 

of the extent of the overlap (e.g. jumping event 9). Full and partial ruptures of the VW are 

observed. An increase of slip rate propagating along the receiver fault during the propagation of 

an earthquake occurring on the generator fault is also observed (e.g. blue line within the overlap 

zone for jumping event 6) but is only visualized for cases when a rupture is very close to the 

receiver fault (less than roughly the size of the cohesive zone). We note here the special case of 

jumping event 8 which does so right after a full rupture of Fault 2, and re-ruptures a portion of 

Fault 2 during its post-seismic period. Finally, in Figure 2.d, we show the slip distribution of all 

events which are roughly parabolic or truncated parabolas. The 1st events on both faults of the 



simulations have generally larger slip amplitude due to the initial stress distribution imposed and 

are thereafter not taken into account in our analysis. Neither are the last events which might 

have been cut in time at the end of our simulations. 

4.2. 𝑉-./012 and ∆𝐶	predictiveness in the simulations 

To test the predictivity of eq. [6], we calculate the distribution of 𝑉-./012 along Fault 2 due to the 

stress impact of each earthquake 𝑖 on Fault 1. We thus focus only on the events generated by 

Fault 1 that are trying to jump on Fault 2. The parameter 𝑎 is fixed in our simulations. The 

distributions of the initial slip rate, 𝑉#, normal stress, 𝜎#, and shear stress, 𝜏#, on Fault 2 are 

sampled at the start of earthquake 𝑖 on Fault 1. The distributions of normal and shear stress 

change, ∆𝜎 and ∆𝜏, respectively, are calculated as the difference between the distributions of 

the normal, 𝜎-, and shear stress, 𝜏-, at the start of seismic velocities on Fault 2 if the earthquake	𝑖 

has jumped, and 𝜎# and 𝜏#, respectively. If earthquake	𝑖 didn’t jump, 𝜎- and 𝜏- are sampled at 

the end of earthquake	𝑖. The stress change on Fault 2 in the simulations is expected to be a 

combination of a static stress change term due to slip on Fault 1 (as if Fault 2 didn’t exist) but also 

a stress redistribution of Fault 2 in response to the static stress change between the timing of the 

samples (i.e. between 𝑡# and 𝑡-). In the simulations, the static stress change is dominant and the 

second term negligible, as illustrated in Figure S1. For each earthquake, we select the maximum 

𝑉-./012 from its distribution along Fault 2 and sample the other parameters at this maximum 

𝑉-./012 location. 

The results of predictivity of Eq. [6] for the three scenarios are shown in Figure 3. We see that 

jumping events in the simulations (red dots in Figure 3) have a 𝑉-./012 close to 10-3 m/s (all within 



0.4 10-3 and 2.3 10-3 m/s), while events that did not jump (black and green dots in Figure 3) have 

all a 𝑉-./012 below our detection threshold. Those results confirm the predictability of eq. [6] 

within the model framework.  

For scenario 1 and 2, the faults are aligned and there is thus no normal stress interaction (Figure 

3.d, e, g and h), only shear stress interactions. We see that if we only refer to the coulomb stress 

change, ∆𝐶, for predicting the jumps of earthquakes, it would be insufficient (Figure 3.a and b). 

Earthquakes tend to jump at ∆𝐶	 = ~12-13 MPa for 𝜎# = 80 MPa and at ~6 MPa for 𝜎# = 40 

MPa, half less, as expected from Eq. [6]. Overlapping faults, as in scenario 3, allow for normal 

stress interaction (Figure 3.f and i) which scatters even more any predictability from ∆𝐶 alone 

(Figure 3.c). 

For aligned faults (scenario 1 and 2), the location of maximum 𝑉-./012 is always at the tip of Fault 

2 closest to Fault 1. This zone tends to creep at loading rate (i.e. 𝑙𝑜𝑔&#(7 mm/yr) = -9.7), making 

it easier to jump compared to locked portions of the fault (i.e. 𝑙𝑜𝑔&#(𝑉) = -15) as expected from 

eq. [6]. After an earthquake ruptures the tip of Fault 2, slip rates at this location drop to locked 

values (~𝑙𝑜𝑔&#(𝑉) = -15/-20 in our simulations) and then needs a period of time to come back 

to loading slip rate values (see example in Figure S2). During this initial ‘healing’ period, it is thus 

more difficult for an earthquake to jump. For aligned faults, it is as hard for a rupture to jump just 

after a small event on the receiver fault that resets slip rates to locked values, as after a large 

earthquake that rupture the full VW area. For any scenarios, locations of faults that tend to creep 

at slip rates close to loading rates, other than VS areas, are the borders of the VW regions, the 

tips of the faults, and the location where residual stress has been left by previous earthquakes. 

Any of those locations makes it easier for an earthquake to jump. This is illustrated by events that 



have Coulomb stresses similar or higher than the ones needed to jump (green dots in Figure 3.a, 

b and c; Text S2), but failed to do so because of low 𝑉# (Figure 3.j, k and l). 

5. Implications in terms of jump distance 

We saw in Section 3 that eq. [6] predicts well in the simulations whether an event jumps or not 

on a second fault. In this section we will focus on the implications in terms of jump distance based 

solely on the exploration of the parameters of eq. [6], and provide some sensitivity tests. For 

simplicity, and as an example for a base scenario, we still assume two parallel linear faults. For 

the rest of this section we assume also that the slip distribution of events are uniform along strike. 

With a uniform slip distribution and assuming that the second tip of the generator fault is too far 

away to have an impact on the receiver fault (although this last assumption actually depends on 

the fault’s length; Figure S3), the coulomb and normal stress fields have a similar pattern for any 

given slip value and their amplitudes are proportional to the slip. With these assumptions, the 

stress fields depend only on the slip value (and the angle between the two faults; see Figure S4 

and S5) and not on the length of the generator fault and Eq. [6] can then be simplified: 

𝑉-./012 ≈ 	𝑉#	𝑒𝑥𝑝 @	
∆7::::	;

'	()"4∆)::::	;)
		C, (7) 

where ∆𝐶OOO and ∆𝜎OOO are the Coulomb and normal stress change normalized by the slip, and 𝑆 is the 

slip. Those assumptions can easily be changed if wanted. 

We first aim to estimate the maximum jump distance as a function of 𝜎#, which in turn can be 

transcribed in terms of pseudo depth using one’s favorite model. The conversion is here based 

on a fault in strike-slip regime and hydrostatic conditions, with a gradient of normal stress with 

depth equal to 23.2 MPa/km (see Text S1 for details). We effectively determine a map of 𝜎# 



needed for an earthquake of a given slip to jump. To do so, we isolate 𝜎# in eq. [6] and assume 

𝑉-./012 = 10-3 m/s, 𝑉# = 30 mm/yr (i.e assuming there is always on the receiving fault an area 

slipping at loading rate; see last paragraph of Section 4.2), 𝑎 = 0.01 and test here a constant slip 

amplitude of 0.5 m, equivalent roughly to a 𝑀!6 (using the slip-length and length-magnitude 

scaling laws from Leonard (2010)). The map of 𝜎# related to the maximum jump distance is 

represented in Figure 4.b. It shows that for relatively strong 𝜎#, it is relatively difficult to jump 

(e.g. 1.25 km maximum jump distance for 𝜎# = 23.2 MPa / ~1 km pseudo depth; see contour 

line). Inversely, as 𝜎# decreases linearly, it is exponentially easier to jump a larger distance (e.g. 

~7 km maximum jump distance for 𝜎# = 2.3 MPa / ~0.1 km pseudo depth; see contour line). This 

is better seen on Figure 4.a, in which the black curve represents a cut section of the 𝜎# map for Y 

= 0 km. As 𝜎# approaches zero linearly, the maximum jump distance goes to infinity. If 

interpreted in terms of depth, maximum jump distance approaches infinity when approaching 

the surface. This has strong implications as it suggests that most earthquake ruptures that jumps 

from one fault to another should do so close to the surface. Note that the map in Figure 4.b and 

the profile in Figure 4.a can be easily modified to retrieve similar results for different values of 

slip. This is possible based on the assumptions of uniform slip distribution and negligible impact 

of the second tip of the generator fault. Figure 4.c is an illustration of the normalization of the 

maximum distance of jump as a function of 𝜎# based on the slip value. We want to emphasize 

that 𝜎# represents the effective normal stress on the fault and that it is also dependent on pore 

fluid pressure. Any areas with high fluid pressure which induces low effective normal stress will 

also facilitate rupture jumps.  



A similar exercise can be applied to estimate the maximum jump distance as a function of slip, 

which in turn can be transcribed in terms of magnitude (e.g. using the slip-length and length-

magnitude scaling laws from Leonard, 2010)). If we fix 𝑉-./012 = 10-3 m/s, 𝑉# = 30 mm/yr, 𝑎 = 

0.01 and test here 𝜎# = 2.3 MPa (~0.1 km pseudo depth), a map of slip related to the maximum 

jump distance can be retrieved (Figure 4.d). As expected, a slip of ~0.5 m (~𝑀!6) allows for a 

jump of ~7 km as seen in Figure 4.b. 

6. Computation of jump probabilities  

6.1. Example for a fixed angle between two faults 

In this section, we show how the equation for 𝑉-./012 can be used to compute probabilities of an 

earthquake to jump between two faults. For simplicity, we again assume two parallel linear 

faults, uniform slip distribution for seismic events and negligible impact of the stress field due to 

the second tip of the generator fault. In this section, the angle between the faults is fixed while 

in the next Section we will explore the uncertainty on the angle. 

To provide an example, we test a setting where the 2nd fault is at 𝐻 = 200 m from the first fault 

(i.e. restraining step; Figure S6), with an overlap of 𝐷 = 3 km, and explore uncertainties of the 

parameters of eq. [6]. We assume that the generator fault is 10 km long (~𝑀!6), which, using the 

length-slip scaling law from Leonard (2010) and related uncertainty, produce a normal 

distribution of slip in log10 scale: 𝑁(𝑙𝑜𝑔&#(0.5), 0.4) 𝑙𝑜𝑔&#(𝑚) (Figure 5.e). Note that only the slip 

is needed to compute 𝑉-./012 and that the length-slip scaling law is solely used here to provide 

uncertainties on the slip. Those uncertainties are quite large since the 5 and 95 % percentiles of 



the distribution are associated with slip of 0.1 and 2.3 m. For 𝜎#, we assume a normal distribution 

of 𝑁(23.2,6.0)	𝑀𝑃𝑎, corresponding to the conditions at 1 km pseudo-depth according to the 

normal stress with depth gradient used in this study (Figure 5.f; see Text S1 for details). The 

distribution is truncated at 11.3 and 35.2 MPa at its lower and upper bounds, respectively, to 

keep our example in a strike-slip regime. 𝑉# is assumed Gaussian with a mean value of 30 mm/yr 

and an uncertainty equivalent to 10% of its mean:  𝑁(30	,3)	𝑚𝑚/𝑦𝑟 (Figure 5.g). This choice for 

𝑉# assumes that there is always a point on the receiver fault that is at least slipping at loading 

rate and available for the jump (see last paragraph of Section 4.2). 𝑎 is also assumed Gaussian, 

𝑁(0.010,0.005), but is truncated at 0 to avoid any negative values (Figure 5.h). 

These distributions are sampled 30 000 times allowing to compute 30 000 maps of 𝑉-./012. For 

each map, any location with 𝑉-./012 > 10<=𝑚/𝑠 is assumed to be a location were the earthquake 

rupture tested will jump. The probability of jumping at a specific geographic location is calculated 

as the number of samples that managed to jump at this location divided by the total number of 

samples tested (i.e. 30 000). A map of probability of jumping, 𝑃>?8@, can thus be estimated, as 

shown in Figure 5.a. The probability of jumping on the second fault is estimated as the maximum 

probability sampled at the location of the fault, i.e. 54%. 

We can also retrieve for each of the 30 000 tests the distribution of 𝑉-./012 along the second fault 

and select for each distribution the maximum value. The histogram of maximum 𝑉-./012 at the 

location of Fault 2 is shown in grey in Figure 5.b and c. The probability of jumping is here 

calculated as the number of maximum 𝑉-./012 above 10-3 m/s divided by the number of samples, 

i.e. 𝑃>?8@ = 54%. 



We can then provide a sensitivity test by either fixing one parameter while exploring the 

uncertainty of other parameters (Figure 5.b) or by exploring the uncertainty of one parameter 

while the other parameters are fixed (Figure 5.c). For the 1st case, when 𝜎!, 𝑉# or 𝑎 are fixed the 

shape of the maximum 𝑉-./012 distribution does not change. On the contrary, when fixing only 

the slip the maximum 𝑉-./012 distribution changes (Figure 5.b) which suggests that the slip 

uncertainty controls the probability	𝑃>?8@. This is confirmed when exploring the uncertainty of 

one parameter while the other ones are fixed (Figure 5.c). Exploring the uncertainty of slip 

provides a distribution of maximum 𝑉-./012 similar to when the uncertainties of all the 

parameters are explored. The distribution of maximum 𝑉-./012 is sharp when exploring the 

uncertainty of 𝑉# (-3.3 and -3.0 𝑙𝑜𝑔&#(𝑚) for 1 and 99 percentiles, respectively), highlighting the 

weak weight of this parameter in the calculation of the final probability, given the uncertainties 

we determined. Finally, we see that the distribution of maximum 𝑉-./012 when exploring the 

uncertainty of 𝑎 (and to a lesser extent 𝜎#) has a shape similar to the one when the slip is the 

only parameter fixed (brown curve in Figure 5.b). This shows that the uncertainty of 𝑎 is the 

second most important parameter for the calculation of the probabilities, given the uncertainties 

explored here. Diminishing the uncertainty of the length-slip scaling law would give more weight 

to the uncertainty of 𝑎 as shown in Figure S7. This sensitivity test highlights here the weight of 

the uncertainties of each parameter, uncertainties that could be diminished by future studies or 

site specific data. 

Since slip mainly controls 𝑃>?8@, we show in Figure 5.d how 𝑃>?8@ evolves with slip. In the 

example in the paragraph above, 𝜎# and related uncertainties are determined for a case of 

pseudo-depth of 1 km. In reality, the depth at which earthquakes jump is not well documented 



and constrained, and 𝜎# depends also on other parameters than just depth, including pore 

pressure. In Figure 5.d we show additionally the results for a pseudo-depth of 0.1 km, with 𝜎# 

following a normal distribution of 𝑁(2.3,0.6)	𝑀𝑃𝑎. For the 1 km pseudo-depth case (~23 MPa), 

we observe that 𝑃>?8@ starts to increase smoothly at ~𝑙𝑜𝑔&#(𝑠𝑙𝑖𝑝) = −1.0	𝑙𝑜𝑔&#(𝑚) before 

reaching almost a 100% at 𝑙𝑜𝑔&#(𝑠𝑙𝑖𝑝) = 0.1	𝑙𝑜𝑔&#(𝑚). For the 0.1 km pseudo-depth case (~2.3 

MPa), everything is shifted −1.0	𝑙𝑜𝑔&#(𝑚) towards lower slip values. The shape of 𝑃>?8@ is here 

controlled by the uncertainties of the other parameters, mainly 𝑎 and 𝜎#. 

6.2. Examples with angle uncertainties between two faults 

Until now the angle between Fault 1 and 2 was fixed. We provide here examples on how to take 

into account the uncertainty of the angle between the two faults.  

Changing the angle between the two faults will change the pattern of Coulomb and normal stress 

change (Figure S4 and S5) as well as 𝜎# which depends on the angles of the faults relative to the 

regional principal static stress field. We create first an abacus of the Coulomb and normal stress 

changes for every 5° interval, stress changes which are normalized by the slip for the same reason 

as explained in Section 5.1, i.e., the hypothesis on the uniform slip distribution for seismic events 

and the negligible impact of the stress field due to the second tip of the generator fault. This 

abacus makes the calculations faster. The regional static stress field is fixed at the optimal angle 

of 30° relative to generator fault. We here explore the uncertainty of the normal stress, 𝜎#, of 

the generator fault similarly to the previous section (i.e. 𝑁(23.2,6.0)	𝑀𝑃𝑎), calculate the 

principle stresses 𝜎& and 𝜎= based on the 𝜎# sampled assuming that the Mohr circle should be 



tangent to the Mohr criteria using a coefficient of friction of 0.6, and sample the normal stress 

on the receiver fault using the appropriate angle relative to 𝜎& (see Figure S8). 

Based on those uncertainties, we suggest here two approaches to include the effect of the angle 

uncertainty between the two faults. The first assumes the patches of the receiver fault have an 

angle uncertainty that follows a Gaussian distribution, here centered on 0° with 10° as standard 

deviation. It assumes that even though the position of the fault is known, the sub-patches of the 

fault have a roughness following the chosen distribution. While we chose here a Gaussian 

distribution for simplicity, any other type of distribution can be chosen as input (e.g. Brodsky et 

al., 2016; Candela et al., 2011). The results are shown in Figure 6.a. As it is difficult to distinguish 

any differences between Figure 5.a and 6.a, we show in Figure 6.b the difference between the 

two maps (probability map with angle uncertainty centered on 0° minus the probability map for 

a fixed angle of 0°). We observe that probabilities drop slightly (~10%) at the position of the 

probability distribution for a fixed angle while it increases slightly at its borders (~15%). Indeed, 

some samples from the 30 000 possible have now angles closer to 10 or 20°, and thus give less 

weight in terms of probability for angles at 0°. The second approach to include angle uncertainties 

assumes that there will always be a fault patch optimally oriented for an earthquake to jump. 

Effectively, for each 30 000 samples, all angles are tested, and for each geographic location, the 

angle which produces the maximum 𝑉-./012 is selected. The results are shown in Figure 6.c and 

show two main high probability lobes at an extensional position. A map of the optimal angle, 

considering the uncertainties explored, is also presented in Figure S9. Note that the extensional 

position is also favored here as it is located parallel to the maximum principal stress 𝜎& which 

induces minimum normal stress (𝜎# equal to 𝜎=) and maximizes 𝑉-./012. The angle of the principal 



stresses is, to some extent, a modifier of the probability map without the effect of the regional 

stress (i.e. taking the same normal stress for both faults). An example of this second approach 

without the effect of the regional stress is shown in Figures S10 and still highlights the two main 

high probability lobes at an extensional position but with less force.  

7. Discussion 

In this study, we bring out the essence of what is important for an earthquake to jump from one 

fault to another, based on the rate and state friction law. The angle between the two faults 

provides a pattern of high and low probability through the normalized Coulomb (∆𝐶OOOO) and normal 

(∆𝜎OOOO) stress changes (see eq. [6]). The amplitude of this pattern is then modulated by the slip, 

𝜎#, 𝑎, and	𝑉#. While we can manage to provide rough uncertainties for the slip, 𝑎, and	𝑉#, values 

for the parameter 𝜎# are trickier to impose. This is important as very low value of 𝜎# lead to 

potentially very large jump distances, up to infinity if 𝜎# approaches 0. 

We here provide an illustration of an approach to constrain the values of 𝜎# using the empirical 

probabilities from Biasi & Wesnousky (2016). In their dataset of 76 earthquakes, including 46 in 

strike-slip regime, no events managed to pass a step greater than or equal to 6 km, which results 

in a probability to jump such steps equal to 0. Among those events, the 2010 Yushu earthquake 

and its foreshock of magnitude 𝑀!6.8 and 6.1, respectively, failed to pass a step of 6 km in 

extensional regime. We test here the minimum 𝜎# possible for such events to fail to jump a 6 km 

step. To do so, we explore values of 𝑉# using the normal distribution 𝑁(3.5	,0.5)	𝑚𝑚/𝑦𝑟 since 

the slip rate on the Yushu segment is about 3-4 mm/yr (Zhang et al., 2022), and explore the same 

uncertainties for 𝑎 as in the previous Sections. We calculate for a setting of two overlapping 



parallel faults, for both restraining and extensional regimes, the probability 𝑃>?8@ as a function 

of 𝜎# for different values of slip (Figure 7.a and b). The 5, 50 and 95 percentiles of those curve 

are estimated and reported in a slip versus 𝜎# map (Figure 7.c et d). According to a co-seismic slip 

inversion based on GPS and InSAR data (Wen et al., 2013), the maximum slip reaches 2 m while 

surrounding areas slip roughly one order of magnitude less (~0.2 m). For a step of 6 km in 

extensional regime, as for the Yushu earthquake, the minimum 𝜎# possible for a slip of 0.2 m is 

2.1 MPa (120 m in pseudo-depth) taking the 5% percentile of 𝑃>?8@ (Figure 7.d). Note that while 

this example takes advantage of earthquakes that failed to pass fault steps to retrieve a lower 

bound of 𝜎#, one can also use earthquakes that succeeded to pass to constrain an upper bound 

of 𝜎#. 

As 𝜎# decreases together with depth, the probability to jump to secondary faults at further 

distance increases (Figure 4.a and c), which increases slip distribution and partitioning at the 

surface. It supports the idea that the total displacement partitioned at the surface along 

secondary faults (off-fault deformation) is probably equivalent to the displacement occurring at 

depth on the main rupture .  

The calculations of probabilities in Section 5 expected earthquakes to stop at the tip of the 

generator fault. But an earthquake can stop before reaching it as a result of specific stress 

conditions on the fault (Michel et al., 2017). To take into account this aspect, it might be more 

reasonable to extrapolate along the generator fault the highest probabilities to jump (Figure S11). 

The probability calculations in Section 5 did not take into account the effect of the fault tip the 

furthest away from the step. This effect is not negligible but decreases with the length of an 



earthquake as implied by the length-slip scaling laws (e.g. 𝑙𝑜𝑔&#(𝑆𝑙𝑖𝑝) = 0.833 ∗ 𝑙𝑜𝑔&#(𝐿) −

3.84 for 3.4≤𝐿≤45 km; Leonard, 2010). For uniform slip distributions, it is straight forward to add 

the second tip effect by superposing the Coulomb and normal stress map of the second tip which 

has an inverted pattern to the tip closest to the step. Figure S3 illustrates the impact of the second 

tip for uniform slip distributions. 

Among the main limitations in the computation of fault jump probabilities is that the propagation 

and impact of seismic waves is not taken into account. The waves generated by an earthquake 

can pass through the receiver fault and change its shear and normal stress, and dynamically 

trigger a jump (Brodsky and van der Elst, 2014). This is additionally complexified as waves carry 

the source radiation pattern and directivity of the generator fault, might have constructive or 

destructive patterns of stress change on the receiver fault and will also interact with the earth 

surface. Eq. [6] might still hold considering the hypothesis behind it, but taking into account the 

effect of waves is challenging. Additionally, we assume here a fully elastic medium while fault 

damage and plastic processes actually occur during an earthquake and will modify to a certain 

extent the jump probabilities. Finally, while there is in the simulations an evolution of 𝑉# with 

time (e.g. the ‘healing’ period; see Section 3 and Figure S2.c), the probabilities calculated are not 

time dependent. We assume that the receiver fault is already ready to receive an earthquake. 

8. Conclusion and Perspective 

This study focuses on characterizing a criterion to evaluate the probability of an earthquake to 

jump from one fault to another. This criterion (Eq. [6]), 𝑉-./012, is based on the rate-and-state 

friction law and assumes an instantaneous stress interaction between the generator fault, 



hosting the earthquake, and the receiver fault, on which the earthquake rupture might 

propagate. 2D quasi-dynamic seismic cycle simulations were used to confirm the validity of the 

criterion in the rate-and-state framework. We further proposed an approach to evaluate the 

probability of an earthquake to jump and provided a sensitivity test of 𝑉-./012. 2D settings were 

presented as examples in this study, but the approach used here can be applied to 3D problems. 

The criterion depends on parameters that can be potentially estimated or measured. ∆𝐶 and ∆𝜎 

regroup the information on both the earthquake slip distribution of the generator fault and on 

the geometry of the step. But they are insufficient by themselves to predict if an earthquake will 

jump or not. 𝑎 can be estimated from experimental studies (e.g. Blanpied et al., 1991; Cappa et 

al., 2019). 𝑉# can be assumed close to the generator fault loading rate. Estimating 𝜎# concentrates 

the main challenges as small values implies longer jump distances, distances which seem 

improbable considering observations (Biasi and Wesnousky, 2016). To constrain the probabilities 

of fault jump, it will be necessary to characterize the depth profile of 𝜎# in the very shallow region, 

to evaluate if a minimum 𝜎# exists,  to understand if earthquake slip deficit, slip partitioning, 

effect of free surface and plastic processes among other phenomenas at the surface counteract 

the  effect of the decrease of 𝜎# on jump distances. Finally, it is important, using the data available 

(e.g. seismological records), to observe and document more thoroughly and systematically the 

location at which fault rupture jump occurs, whether it happens in the deeper or shallower 

portion of the fault.  
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Figure 1: Simulations’ general setting representing two faults separated in space. Different loading rates 
are applied to Fault 1 and 2, 𝑉"#$%&' and 𝑉(#$%&', respectively. The more frequent ruptures occurring on 
Fault 1, called the generator, will sometime jump on Fault 2, called the receiver fault. 𝐷 and 𝐻 correspond 
to the parallel (i.e. overlap) and perpendicular (i.e. step) distance between the two faults, respectively. 
VW and VS stand for Velocity Weakening and Strengthening, respectively. The regional stress field is set 
so that the simulations are in a strike-slip regime and with a maximum principal stress, 𝜎", optimally 
oriented (i.e. ~30° from Fault 1). 

 



 

Figure 2: Example of simulation from two overlapping faults, i.e. within Scenario 3 (see Section 3 and Table 
S1). Fault 1, the generator fault is loaded at 30 mm/yr while Fault 2, the receiver fault, is loaded at 7 
mm/yr. (a) Maximum slip rate on Fault 1 (blue) and 2 (orange) through time. (b) Magnitude of events on 
Fault 1 through time. Events that jumped from Fault 1 to 2 are indicated by dark blue bars and numbered 
from 1 to 10, while the ones that failed to jump are in light blue. (c) Slip rate of Fault 1 and 2 through time. 
The time is indicated here in time steps. In the simulations, time step size decreases when slip rate 
increases, which helps visualizing seismic events that last a few seconds in a sea of inter-seismic loading. 
The start of each jumping event of Fault 1 is indicated on the left side of the panel. VW and VS stand for 
Velocity Weakening and Strengthening, respectively. (d) Slip distribution of each event. The color indicates 
its timing.  



 

Figure 3: Results from the simulations for all scenarios (Section 3). For all panels, the red and black dots 
indicate events that succeeded and failed to jump, respectively. Green dots correspond to events with 
high Coulomb stress change, ∆𝐶, but that did not jump. (a), (b) and (c) show the ∆𝐶 on Fault 2 due to 
events occurring on Fault 1 at the location of maximum 𝑉&)'*+,. (d), (e) and (f) show the normal stress 
change, ∆𝜎, on Fault 2 due to events occurring on Fault 1 at the location of maximum 𝑉&)'*+,. Details on 
how ∆𝐶 and ∆𝜎 are retrieved are in Section 3. (g), (h) and (i) show the effective normal stress, 𝜎!, on Fault 
2 just before the start of events on Fault 1 at the location of maximum 𝑉&)'*+,. (j), (k) and (l) show the slip 
rate, 𝑉!, on Fault 2 just before the start of events on Fault 1 at the location of maximum 𝑉&)'*+,. 

  



 

Figure 4: Impact on the maximum jump distance of the parameters in Eq. [6] assuming uniform slip 
distributions along the fault and no contamination of the stress impact from the second tip of the 
generator fault, the one furthest away of a potential 2nd fault. All tests were realized using the same fixed 
values of 𝑎 and 𝑉!. (a) profile of 𝜎! along the direction of Fault 1 as a function of the maximum jump 
distance, for a rupture event with 0.5 and 1.0 m uniform slip. Decreasing linearly 𝜎! increases 
exponentially the maximum jump distance, up to infinity as 𝜎! approaches 0. 𝜎! can be interpreted as a 
pseudo depth. We use here the gradient 23 MPa/km. (b) Map of maximum jump distance for an 
associated 𝜎! for an event of 0.5 uniform slip (~𝑀-6). The contours indicate the position of the maximum 
jump distance for 𝜎! = 23 and 2.3 MPa, corresponding to a pseudo depth of 1 and 0.1 km, respectively. 
The profile in panel (a) is taken from this map along the coordinate Y=0. (c) Same profiles as in panel (a) 
but normalized by their respective slip amplitude. Both curves collapse. (d) Map of maximum jump 
distance for an associated slip amplitude fixing 𝜎! to 2.3 MPa (pseudo depth of ~0.1 km). 

  



 

Figure 5: Probability 𝑃./01 of an event of 10 km length to jump on a second fault, fixing the angle of the 
receiver fault to 0°. The probabilities were computed using 30 000 samples from the distribution of the 
parameters indicated in (e), (f), (g) and (h). (a) Map of 𝑃./01. The black horizontal lines represent the 
generator and receiver faults. Contours in full and dotted line correspond to the probabilities of 50% and 
5%, respectively. The grey histogram in panel (b) and (c) is the distribution of the maximum 𝑉&)'*+, on 
the receiver fault computed exploring the uncertainty of all the parameters. (b) Distribution of 𝑉&)'*+,  
when one parameter is fixed (see values of the vertical colored lines in panel (e) to (h)) while the 
uncertainty of the others is explored. The vertical black dashed line represents the threshold of 10-3 m/s 
over which an event is assumed an earthquake and thus has jumped to the 2nd fault. The probabilities of 
jumping are indicated in parenthesis. (c) Distribution of 𝑉&)'*+,  when the uncertainty of one parameter 
is explored while the other parameters are fixed. (d) 𝑃./01 as a function of slip for a distribution of 𝜎! 
centered around 23 MPa (full black line) and 2.3 MPa (dotted black line). 

  



Figure 6: Impact on 𝑃./01 of exploring the uncertainty of the angle between the generator and receiver 
fault. (a) Same as Figure 5.a but with an angle uncertainty which follows a Gaussian distribution centered 
on 0° and with a standard deviation of 10°. (b) Difference between the map of 𝑃./01 while exploring the 
angle uncertainty (Figure 6.a) and the one where the angle is fixed (Figure 5.a). (c) Map of 𝑃./01 assuming 
that there will always be a fault patch optimally oriented for an earthquake to jump. The small thin black 
lines indicate the angle at which the receiver fault is optimally oriented to host a jump.  

  



 

Figure 7: 𝑃./01 as a function of slip and 𝜎!. (a) 𝑃./01 as a function of 𝜎! for different values of slip and 
for a restraining step of 6 km. (b) Same as (a) but for an extensional step. (c) Map of 𝑃./01 in the slip-𝜎! 
space for a restraining step 6 km. The dark red lines indicate the position of 5, 50 and 95 % probabilities. 
(d) Same as (c) but for a extensional step. The red patch indicates the values of slip and 𝜎! within 5 and 
95% probability associated with the 2010 Yushu earthquake and its foreshock of magnitude 𝑀-6.8 and 
6.1, respectively, that failed to jump a 6 km step. According to this diagram, the Yushu earthquakes fails 
to jump at probabilities above 95% (𝑃./01 <5%) for 𝜎! above 2.1 MPa (i.e. pseudo depth>120 m), 
assuming slip of 0.2 m. 

 


