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a b s t r a c t

Fundamental spatiotemporal field properties and particle velocity waveform signatures of sub-
Rayleigh and supershear ruptures were experimentally investigated through a series of la-
boratory earthquake experiments. We appeal to dynamic rupture theory to extract and high-
light previously unnoticed aspects and results, which are of direct relevance to our new ex-
periments. Kinematic relationships derived from both singular and non-singular solutions are
applied to analyze and interpret various features observed in these experiments.

A strong correspondence is demonstrated between particle velocity records obtained in lab
experiments and synthetic particle velocity waveform profiles derived from theory. Predicted
temporal profiles, sense of particle motion, and amplitude decay properties of sub-Rayleigh and
supershear particle velocity waveforms are experimentally verified. In a particular set of su-
pershear rupture experiments, the fault-normal (FN) and fault-parallel (FP) velocity waveforms
were simultaneously recorded at fixed, off-fault field points as a shear Mach front swept these
locations. Particle velocity records collected over a broad range of stable supershear rupture

speeds validate the predicted scaling relationship δ δ β̇ ̇ = − =u u V C/ / 1s s
r s s1 2
2 2 , between the FP

δ( ̇ )us
1 and the FN δ( ̇ )us

2 velocity jumps propagated by a shear Mach front. Additional experi-
mental findings include detailed rupture speed measurements of sub-Rayleigh and supershear
ruptures and the observation of a supershear daughter crack with vanishing shear Mach front.

Previously unappreciated scaling relations between particle velocity field components,
attributed to dilatational and shear waves, are also developed and experimentally verified. In

particular, the FP velocity jump δ ̇ ( )u x x,s
1 1 2 propagated by the shear Mach front, and the sliding

speed δ ̇ ( )+u x , 01 1 , measured at a field point positioned extremely close to the frictional fault

plane, are shown to obey a speed-dependent scaling relationship given by δ δ̇ ̇ = −+u u/ 1 2s Cs
Vr

1 1
2

2 ,

which was gleaned from a non-singular, steady state velocity field solution.
& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

There have been some seminal papers published over the past half century, which have all contributed to the current
theoretical understanding of dynamic mode II ruptures and the advancement of earthquake rupture models. The earliest
theoretical models trace back to the analysis of a steady state semi-infinite crack, subjected to a combined mode I and mode
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II loading by Craggs (1960) and Kostrov (1964), and a self-similar solution for a propagating mode II shear crack given by
Kostrov (1964). Each of these solutions is characterized by a singular crack front, with surrounding elastic fields, which
decay as the inverse square-root of the radial distance from the crack front. Craggs (1960) realized that stable crack growth
results as energy from the surrounding linear elastic field is drawn into the singular crack tip. Such a condition can only arise
if the rupture propagates at speeds below the Rayleigh wave speed (CR) of the surrounding medium, i.e., ( <V CR). Kostrov
(1964) recognized that energy must radiate out from the crack tip if the rupture speed lies between the Rayleigh wave speed
and shear wave speed (Cs) of the surrounding linear elastic medium, i.e., ( < <C V CR r s). The latter scenario is rejected on
physical grounds thus implying that a mode II shear crack will tend to propagate in the sub-Rayleigh rupture speed regime
( <V Cr R), (Kostrov, 1964).

Burridge (1973) was the first to propose conditions under which a plain-strain, self-similar mode II crack can bypass the
forbidden rupture speed regime ( < <C V CR r s) and propagate within the intersonic rupture speed regime ( ≤ ≤ )C V Cs r d ,
where (Cd) represents the dilatational wave speed. A simple Coulomb friction relation was assumed to model the interfacial
shear strength ahead of the primary (sub-Rayleigh) crack front. The approach assured that stresses would remain bounded
at the primary crack front but failed to account for the effects of inelastic (cohesive) energy losses at the singular crack tip. In
spite of this limitation, the analysis identified the presence of a peak in the shear stress field, which propagates ahead of the
primary crack front at the shear wave speed. This was a key finding, which revealed a natural mechanism for nucleating a
secondary (intersonic) rupture ahead of the primary crack front if the magnitude of the peak shear stress exceeded the
intrinsic fault strength. The analysis also concluded that the intersonic crack speed would rapidly approach the dilatational
wave speed (Cd) of the surrounding medium.

Andrews (1976) produced the very first numerical finite difference calculations, which successfully simulated a sub-
Rayleigh to supershear rupture transition. The model featured a linear slip-weakening failure criterion, which defined the
loss of frictional strength with increased slip over a characteristic length along the fault plane. The implementation of a
finite slip-weakening distance eliminated the crack tip singularity and provided an energy dissipation mechanism, which
was lacking in the earlier analysis by Burridge (1973). Numerical trials revealed a peak in the shear stress field positioned
just ahead of the primary (sub-Rayleigh) crack front, as noted by Burridge (1973), which nucleated a secondary crack when
the local fault strength was exceeded. The trailing edge of a newly spawned secondary shear crack was observed to merge
rapidly with the primary (trailing) sub-Rayleigh rupture while the leading edge raced ahead as an intersonic crack front. A
key outcome of this study was the identification of a mechanically stable portion of the intersonic rupture speed regime

≤ ≤C V C2 s R d, commonly referred to as the supershear rupture speed domain.
Burridge et al. (1979) revisited the problem of admissible rupture speeds by conducting a rigorous stability analysis of a

steady-state shear crack driven by a point load maintained at a constant distance behind the crack tip. Energy dissipation
was accounted for in the analysis through a Dugdale-type cohesive traction relation confined to a small region around the
crack tip. Conclusions regarding the stability of intersonic ruptures were in general agreement with the numerically based
findings of Andrews (1976). Specifically, (1) the intersonic velocity regime ≤ ≤C V C2 s R d was identified to be stable with a
unique local minima within this velocity domain and (2) the intersonic velocity regime ≤ <C V C2s R s was shown to be
unstable. Conclusions regarding the stability of sub-shear crack propagation were also consistent with the earlier findings by
Craggs (1960) and Kostrov (1964).

Ongoing work during this same period by Fossum and Freund (1975) and Freund (1979) was directed toward the in-
terpretation of crustal ruptures associated with natural earthquakes. The seminal work by Freund (1979) provided closed-
form analytical solutions for the singular elastic stress and particle velocity fields radiated by a 2D steady-state shear crack.
Sub-Rayleigh and intersonic crack field solutions were derived for the shear stress (s12) and fault-parallel velocity com-
ponent (u̇1). The amplitude of the resulting field expressions is modulated by a velocity-dependent “dynamic stress intensity
factor”, which characterizes the intrinsic strength of the fracture plane. Despite the singular nature of the steady state
dynamic shear crack model and the glaring lack of an intrinsic length scale, the stress and particle velocity field solutions
embody fundamental traits of a propagating mode II rupture, which are highly characteristic of natural earthquake ruptures.

Freund (1979) also examined the stability of sub-shear crack propagation by considering the relationship between the
normalized stress intensity factor and the crack tip speed. Results were consistent with those of Burridge et al. (1979), along
with the earlier stability analysis conducted by Fossum and Freund (1975), which considered the energy flux into a dynamic
shear crack. The stability of intersonic ruptures was also briefly addressed although no corresponding analysis was provided.

More realistic rupture models (either crack-like or pulse-like) should feature finite shear cohesive zones at the rupture
fronts as opposed to singularities, which imply infinite stress at the crack tip. The physical dimension of the cohesive zone also
introduces a natural length scale, which is otherwise lacking in the singular elastic model. In the earliest earthquake rupture
models, the rupture pulse was modeled as a propagating dislocation. Aki and Richards (1968) successfully applied this ap-
proach to the interpretation of near-source ground motion records gathered during the 1966 Parkfield earthquake. The sub-
Rayleigh dislocation model by Aki and Richards (1968) was generalized to the case of any arbitrary shear traction by Broberg
(1978) and then later extended to the case of intersonic rupture pulses (Broberg, 1989). Broberg's solutions focused upon the
on-fault and near-source properties of radiated rupture fields while off-fault field properties were only considered in the
limiting case of a vanishingly small breakdown zone. Broberg (1994) followed with an analysis of intersonic ruptures within
the context of self-similar expanding shear cracks with a cohesive zone. Dunham and Archuleta (2005) subsequently extended
the earlier solution by Broberg (1989), to obtain a non-singular analytical solution for the stress and particle velocity fields
radiated by a 2D steady-state intersonic slip-pulse, subject to a prescribed shear traction within a finite slip zone.
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2. Supershear earthquake ruptures

The past two decades have witnessed a veritable explosion of publications related to the theory of supershear earthquake
ruptures. Increased attention to this topic was partly motivated by the observations of supershear ruptures in the original
dynamic shear impact studies conducted by Lambros and Rosakis (1995) and in subsequent investigations using the “la-
boratory earthquake experiment” (LEQ) developed by Xia et al. (2004, 2005). Recent experimental work in this area by other
research groups includes laboratory observations of supershear ruptures during stick-slip experiments on Westerly granite
under high applied normal stress (Passelegue et al., 2013) and sliding friction investigations by Latour et al. (2011) and
Svetlizky and Fineberg (2014).

Increased attention on this topic was also spurred on by an ever-growing list of reported supershear earthquake ruptures,
where the crustal rupture speed was inferred to have exceeded the local shear wave speed along an identified segment of
the ruptured fault. In all cases, rupture speed estimates have been confined to the stable (supershear) rupture speed domain
( ≤ ≤C V C2 s R d). Supershear earthquakes have also generally been large-magnitude events, which occurred on long and
relatively straight strike-slip faults (Robinson et al., 2006). Three of the most notable supershear earthquake events were the
1999 M 7.6w (Izmit, Turkey) earthquake (Bouchon et al., 2001, 2002; Bouchon and Vallee, 2003; Bouin et al., 2004), the 2001
M 7.8w (Kokoxili, Tibet) earthquake along the Kunlun fault (Bhat et al., 2007), and the 2002 M 7.9w (Denali, Alaska) earth-
quake (Ellsworth et al., 2004; Dunham and Archuleta, 2004).

Theoretical and numerical models predict that a supershear rupture should be characterized by a fault parallel particle
velocity component, which dominates in magnitude over the fault normal component. This feature is in direct contrast the
ground motion waveforms resulting from sub-Rayleigh earthquake ruptures, where the fault-normal velocity component
dominates (Freund, 1979, 1998; Aagaard and Heaton, 2004; Dunham and Archuleta, 2004, 2005).

The 2002 M 7.9w Denali earthquake was an exceptionally well-characterized event due to an array of well-positioned,
near-field ground motion stations positioned along the Trans-Alaska Pipeline System (TAPS). Well-characterized ground
motion records acquired at Pump Station 10 (PS10), located ≈3 km north of the Denali strike-sip fault, bear the distinct
kinematic signatures of a leading supershear rupture pulse, followed by a (secondary) sub-Rayleigh rupture. Dunham and
Archuleta (2004) applied a spontaneous dynamic rupture propagation model with a slip-weakening friction law and built-in
healing mechanism, which simulated the supershear and trailing secondary (sub-Rayleigh) rupture pulses observed in the
PS10 ground motion records. Scaled particle velocity waveforms, which capture the PS10 supershear and trailing sub-
Rayleigh waveform signatures were also experimentally demonstrated by Mello et al. (2014) using a modified LEQ specimen
configuration, which featured a partially locked frictional fault.

Theoretical and numerical investigations of supershear ruptures in 2D conducted by Dunham and Archuleta (2004), Bhat
et al. (2007) and in 3D by Dunham and Bhat (2008) also predict that ground motion due to the passage of the shear Mach
front is virtually unattenuated at large distances from the fault. In 2D steady-state supershear rupture models, the shear
Mach front carries ground motion unattenuated, out to infinity. In reality, the amplitude of a radiated shear Mach front is
expected to decay as r1/ due to spatial dispersion of the expanding S waves, which coherently interfere to form the
expanding Mach front. By similar reasoning, one should expect the field strength of a 3D shear Mach cone to decay as r1/
due to the geometric dispersion of radiated spherical S waves. Bhat et al. (2007) reasoned that the velocity field carried by
the shear Mach front should, at least, be sustained out to distances comparable to the depth of the seismogenic zone.
Dunham and Bhat (2008) followed with a 3D numerical model, which demonstrated the effects of geometric dispersion
while also confirming the earlier estimation by Bhat et al. (2007). Theoretical attenuation estimates of supershear ground
motion are partially supported by field observations of anomalous ground cracks observed several kilometers from the main
fault following the 2001 Kokoxili (Kunlun) M 7.8w event in Tibet (Bhat et al., 2007). Clustering of aftershocks at off-fault
distances comparable to the depth of the seismogenic zone was also observed by Bouchon and Karabulut (2008), following
the 1999 moment magnitude, M 7.6w Izmit earthquake.

3. Steady state interpretation of laboratory Earthquake data

In the present paper, we present findings from a series of laboratory earthquake experiments (LEQ) designed to investigate
and systematically probe the velocity waveform signatures, attenuation characteristics, and spatiotemporal field properties of
sub-Rayleigh and supershear ruptures. The dynamic ruptures generated in our LEQ experiments are predominantly 2D in
character since they are constrained to propagate along the straight frictional fault formed by two compressed, 10 mm thick,
trapezoidal plates of a Homalite-100 laboratory test specimen. Just as in nature, the ruptures observed in our experiments also
tend to propagate in a self-similar way when viewed from a “large distance” from the fault plane. However, all measurements
presented in this paper have been concentrated at very small fault-normal distances (ξ2) from the fault of length (L¼174 mm).
As such, the vast majority of these experiments correspond to ( ξ< <L0 / 0.142 ) with the upper bound corresponding to
ξ = 24 mm2 in only one particular experiment. It is the very fact that we are conducting near fault measurements that make
steady state theories very relevant for comparison to our experiments. Indeed, as ξ →L/ 02 the steady state approximation
becomes increasingly accurate as demonstrated by Liu and Rosakis (1994) and Freund (1998).

Liu and Rosakis (1994) in particular, considered the case of a randomly transient, mixed-mode rupture propagating at
random sub-Rayleigh speeds along a randomly curved path under general transient loading. Self-similar shear ruptures
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propagating along a straight path with constant rupture speeds are a special transient case covered by this study. The study
by Liu and Rosakis (1994) scrutinizes the higher order asymptotic structure of the growing rupture tip as a function of the
radial distance from the tip. Results of this study clearly show that very near the rupture tip the asymptotically dominant
terms, which govern the rupture process, have the same radial and angular nature as those predicted by the equivalent
steady state asymptotic analysis. Specifically, the r1/ structure is recovered, while the predicted rupture speed functional
dependence is also recovered. The only difference is that the amplitudes of the dominant field terms, as well as the rupture
speed, now vary with time, i.e., = ( ) = ( )K K t V V t,II r r in the transient problem. It is only when the distance from the rupture tip
is increased that transient higher order terms change the actual nature of the field structure. During supershear rupture
events, the presence of characteristics in the form of shear Mach cones is expected to radiate the local steady state nature of
the shear field solution even further from the fault plane. The remarkable agreement between our near-fault particle ve-
locity records and the steady state rupture theories strongly support the above conclusions, most notably for off-fault field
point measurements conducted at FN distances ξ ≤ L/102 from the fault plane.

Bearing these points in mind, we appeal to 2D steady state dynamic rupture theory and extract previously unnoticed
aspects and results of relevance to our experimental findings. Kinematic relationships gleaned from both singular and non-
singular solutions are used as tools for analyzing and interpreting various aspects of our experimental observations. In
particular, we revisit the 2D singular elastic, steady state dynamic shear crack model by Freund (1979, 1998) and highlight
spatiotemporal properties and kinematic scaling relationships obtained from this solution, which are observed in LEQ ex-
periments. We also examine and expand upon the non-singular 2D steady-state intersonic slip pulse model by Dunham and
Archuleta (2005), and present a scaling relationship, gleaned from this model, which relates the rupture sliding speed at the
fault plane with the fault-parallel velocity jump propagated by the shear Mach front.

4. Spatiotemporal field properties and scaling relations gleaned from the 2D steady-state singular elastic shear crack
model

4.1. Overview of the 2D steady state, singular elastic solution for a dynamic shear crack: Sub-Rayleigh rupture speed regime
( < )V Cr R

Freund (1979, 1998) rigorously solved the 2D plane strain problem of a steady state dynamic (mode II) shear crack in a
linear elastic half-space. The problemwas posed under the assumption of plane strain, with the crack front oriented parallel
to the x3 axis of a Cartesian coordinate frame. A right-lateral/right-traveling shear crack was assumed to propagate along the
x1 axis in the global coordinate system, with crack-tip coordinates ( = ( ) )x l t , 01 and instantaneous crack tip speed ( ) = (̇ )V t l tr ,
where l(t) is a continuous function of time. A local coordinate system ξ ξ( ),1 2 was then introduced with the origin selected to
coincide with the crack tip, such that ξ = − ( )x l t1 1 and ξ = x2 2. A local polar coordinate system θ( )r, was also introduced,
whereby ξ ξ= +r 1

2
2
2 and θ ξ ξ= ( )−tan /1

2 1 . The derivation leads to a standard Hilbert problem in analytic function theory
which is then solved subject to the prescribed traction-free boundary conditions on the crack surfaces.

The sub-Rayleigh singular elastic (asymptotic) solutions for the (in-plane) particle velocity field components θ̇ ( )u r,1 and
θ̇ ( )u r,2 of a right-lateral/right-traveling, mode II shear crack are given by

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥
α

μ π

θ
γ α

θ
γ

̇ = ( ) − ( + )
( )

u
V K t

D r2
2

sin 1
2 1

sin 1
2

1

r s II
d

d
s

s

s
1

2

and

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥μ π
α α

θ
γ α

θ
γ

̇ = − ( ) − ( + )
( )

u
V K t
D r2

2
cos 1

2 1
cos 1

2 .

2

r II
d s

d

d
s

s

s
2

2

Here, KII(t) is the instantaneous mode II dynamic stress intensity factor, μ represents the shear modulus and the factors αs,
αd, γs, γd, θs, and θd are given by

θ α θ θ α θ= ( ) = ( ) ( )− −tan tan ; tan tan 3s s d d
1 1

γ θ γ θ= − ( ) = − ( ) ( )V C V C1 sin / ; 1 sin / 4s r s d r d
2 2

α α= − ( ) = − ( ) ( )V C V C1 / ; 1 / . 5s r s d r d
2 2

The factor D in the denominator of Eqs. (1) and (2) is the Rayleigh wave function given by
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α α α= − ( + ) ( )D 4 1 . 6s d s
2 2

The root of Eq. (6) corresponds to the Rayleigh wave speed over a homogeneous, linear elastic half-space (Graff, 1991).
Careful examination of Eq. (6) reveals that →D 0 as →V Cr R, while >D 0 corresponds to admissible sub-Rayleigh rupture
speeds <V Cr R, and <D 0, corresponds to the forbidden rupture speed domain < <C V CR r s. We note as well, how <D 0
implies that the sign of each motion component given by Eqs. (1) and (2) would both reverse if the forbidden rupture speeds

< <C V CR r s were admissible.

4.2. Spatiotemporal field properties and particle velocity waveform signatures of a 2D steady state sub-rayleigh shear crack:
( < )V Cr R

The particle velocity field expressions given by Eqs. (1) and (2) apply to a right-lateral/right-traveling ( )rl rt/ shear crack.
The expressions were adjusted to yield the solution for a right-lateral/left-traveling ( )rl lt/ shear crack in order to match the
rupture propagation direction and sense of particle motion observed in the LEQ experiments reported in this paper. The
adjusted particle velocity field solutions for a ( )rl lt/ shear crack are easily obtained by invoking ( ̇ ) = − ̇u url lt rl rt2 / 2 / and
θ θ( ) = − ( )( )rl lt rl rt/ / . The particle velocity vector field plot and synthetic particle velocity waveforms depicted in Fig. 1 corre-
spond to a ( )rl lt/ sub-Rayleigh shear crack. The plots were generated using a convenient and arbitrary choice of values for the
material constants corresponding to μ =K / 0.2 mmII

1/2, = μc 1.3 mm/ ss , and = μc 2.6 mm/ sd along with an arbitrary

Fig. 1. (a) Sub-Rayleigh velocity field plot for a right-lateral/left-traveling shear crack. (b) Normalized amplitude decay of the sub-Rayleigh velocity field
components. (c) Synthetic FN velocity waveforms at incremented distances from the fault. (d) Synthetic FP velocity waveforms at incremented distances
from the fault. Note: The crack tip singularity was excluded in (c) and (d) by normalizing with respect to the particle velocity ξ̇ ( )+u , 0i 1 , where ξ = +02 is
equivalent to ξ = 0.2 mm2 within the arbitrarily imposed length scale. (For interpretation of the references to color in this figure caption, the reader is
referred to the web version of this paper.)
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50 mm"50 mm field corresponding to a 2000"2000 point grid.

Fig. 1(a) represents the velocity vector field ξ ξ→̇( )u ,1 2 of a sub-Rayleigh shear crack propagating at =V C0.9r s. The dashed
black horizontal line in the figure represents the fault plane (ξ = 02 ). The colors displayed by the plot legend correspond to the

magnitude of the particle velocity (|→̇| = ̇ + ̇ )u u u1
2

2
2 , while the white arrows of varying length represent the relative magnitude

and direction of the particle velocity vectors. The velocity field is characterized by a dominant fault-normal particle motion
component ( ̇ )u2 , as revealed by the steeply inclined and downward directed velocity vectors within the half-space ξ < 01 .

The curve displayed in Fig. 1(b) depicts the normalized amplitude decay of the FN particle velocity component plotted
versus the normalized distance (ξ ξ/ max

2 2 ). The horizontal axis is normalized with respect to the maximum off-fault distance
(ξ = 25 mmmax

2 ), which was assumed in the analysis. The amplitude decay curve was generated by computing the ratio
δ ξ ξ δ ξ̇ ( )) ̇ ( )+u u, / , 02 1 2 2 1 , where δ ξ ξ̇ ( )u ,2 1 2 represents the amplitude of the maximum velocity swing occurring along ξ = c2 , and
δ ξ̇ ( )+u , 02 1 is the amplitude of the velocity jump at a “near-fault” point ξ( )+, 01 . The same amplitude decay curve could have
been generated by conducting a similar analysis of the FP component (u̇1). The near field point ξ( )+, 01 was carefully selected
in order to exclude the crack tip singularity. In this case ξ → +02 corresponds to a fault-normal distance ξ = 0.2 mm2 within
the arbitrarily imposed length scale. The curve in Fig. 1(b) depicts an amplitude decay, which is proportional to ξ ξ1/ / max

2 2 in
accordance with Eqs. (1) and (2). Fig. 1(c and d) represent synthetic particle velocity waveforms corresponding to the fault-
parallel ( ̇ )u1 and fault-normal ( ̇ )u2 motion components, computed at various distances (ξ2) from the fault plane. Line plots
were extracted from the adjusted particle velocity field expressions for a ( )rl lt/ rupture and replotted with an equivalent
time axis ( ξ=t V/ r1 ) in accordance with the steady state assumption. The curves plotted in red highlight the “near-fault”
velocity waveforms while the blue curves correspond to particle velocity waveforms plotted in fault-normal distance in-
crements of ξΔ = 2 mm2 , plotted out to a distance ξ = 6 mm2 within the arbitrarily defined length scale.

Two distinct and fundamental spatiotemporal properties of a steady state (sub-Rayleigh) rupture velocity field are re-
vealed: (1) the particle velocity waveforms are characterized by a prominent fault-normal component, as previously noted,
which clearly dominates in magnitude over the fault-parallel component, and (2) sharp velocity waveforms at the fault
plane are very quickly stripped of their frequency content and undergo a rapid amplitude decay with increased fault-normal
distance (ξ2), as described by the normalized attenuation plot in Fig. 1(b).

In a later section of this paper a strong correspondence is demonstrated between sub-Rayleigh particle velocity records
obtained in LEQ experiments and the general profile and predicted sense of particle motion of the synthetic waveforms
depicted in Fig. 1(c and d).

4.3. Overview of the 2D steady state, singular elastic solution for a dynamic shear crack: intersonic rupture speed regime
( ≤ ≤ )C V Cs r d

Freund (1979, 1998) also considered the problem for the stress and particle velocity fields radiated by a steady-state
shear crack propagating in the intersonic rupture speed domain ( ≤ ≤ )C V Cs r d . The problemwas posed under the assumption
of plane strain with traction-free boundary conditions imposed on the crack faces. A right-lateral/right-traveling shear crack
was assumed to propagate along the x1 direction, with the crack front oriented parallel to the x3 axis of a global Cartesian
coordinate frame. A Cartesian coordinate frame ξ ξ( ),1 2 is again introduced, with its origin at the crack tip, which is

equivalently expressed in polar form θ( )r, , whereby ξ ξ= +r 1
2

2
2 and θ ξ ξ= ( )−tan /1

2 1 .
The derivation leads to a standard Hilbert problem in analytic function theory which is then solved subject to the

prescribed traction-free boundary conditions on the crack surfaces. The intersonic, singular elastic (asymptotic) solutions for
the (in-plane) particle velocity field components θ̇ ( )u r,1 and θ̇ ( )u r,2 corresponding to a right-lateral/right-traveling, mode II
shear crack are given by

̇ = ( ̇ + ̇ ) = ( )u AV u u i; 1, 2 7i r i
s

i
d

where μ=A K /II represents an effective dynamic stress intensity factor, as previously defined, and Vr is the rupture speed
( ≤ ≤ )C V Cs r d .

The shear field contributions of Eq. (7) are given by

⎛
⎝⎜⎜

⎞
⎠⎟⎟ξ

π

ξ β ξ ξ β ξ̇ = − ( )
− ( )

( − − | |) ( − − | |)
( )

u

V
C

q

Hsgn

2 sin

2 8
s

r

s

s
q s1 2

2

2

1 2
1 2

and

⎛
⎝⎜⎜

⎞
⎠⎟⎟ π

β ξ β ξ ξ β ξ̇ =
− ( )

( − − | |) ( − − | |)
( )

u

V
C

q

H

2 sin

2 9
s

r

s

s s
q s2

2

2

1 2
1 2

where the variables βs and q are given by
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β = ( ) − ( )V C/ 1 10s r s
2

⎡
⎣⎢

⎤
⎦⎥π

α β
=

( − ) ( )
−q

V C
1 tan

4

2 / 11
d s

r s

1
2 2 2

and ξ( )sgn 2 represents the sign function, which is equal to þ1 for ξ > 02 and $1 for ξ < 02 . Eqs. (8) and (9) represent the
velocity components propagated by the shear Mach fronts which extend from the rupture tip and envelope the radiated
shear field.

The dilatational velocity field components in Eq. (7) are given by

θ α θ̇ = ( ) ̇ = − ( )
( )

u
q

r
u

q
r

sin
;

cos
12

d d

d
q

d
d

d

d
q1 2

where the variable rd is given by

ξ α ξ= + ( ) ( )r 13d d1
2

2
2

with θd, αd given by Eqs. (3) and (5), respectively. The forms presented here for u̇d
2 and u̇ s

2 correct a minor typographical error

Fig. 2. (a) Supershear velocity field plot for a right-lateral/left-traveling shear crack. (b) Normalized amplitude decay of the dilatational velocity field
components. (c) Synthetic FN velocity waveforms at incremented distances from the fault. (d) Synthetic FP velocity waveforms at incremented distances
from the fault. Note: The crack tip singularity was excluded in (c) and (d) by normalizing with respect to the particle velocity ξ̇ ( )+u , 0i 1 , where ξ = +02 is
equivalent to ξ = 0.2 mm2 within the arbitrarily imposed length scale.
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in equation 4.3.31 in Freund (1998).
Examination of Eq. (11) reveals that ≤ ≤q0 1/2. A maximum value =q 1/2 is approached as →V C2r s whereas →q 0 as

→V Cs or →V Cr d. The singularity −rd
q is thus generally weaker than the −r 1/2 singularity, which implies that the dilatational

field will tend to decay more slowly compared to the fields radiated by a sub-Rayleigh rupture field. Interestingly, the −r 1/2

singularity remerges only in the limiting case →V C2r s, corresponding to the lower bound of the supershear rupture speed
regime.

4.4. Spatiotemporal properties of a supershear crack velocity field: 2D steady state, singular elastic solution ( ≤ < )C V C2 s r d

The particle velocity vector field plot and synthetic particle velocity waveforms depicted in Fig. 2 correspond to a right-
lateral/left-traveling ( )rl lt/ supershear shear crack. The adjusted particle velocity field solutions were obtained by invoking
( ̇ ) = − ( ̇ )u us

rl lt
s

rl rt2 / 2 / , θ θ( ) = − ( )( )rl lt rl rt/ / , and adjusting the characteristic equation from ξ β ξ( − − | |)s1 2 , for the (rl/rt) rupture to
ξ β ξ( − | |)s1 2 for the (rl/lt) rupture. The plots were generated using a convenient and arbitrary choice of values for the material
constants corresponding to =A 0.45 mm1/2, = μc 1.3 mm/ ss , and = μc 2.6 mm/ sd , along with an arbitrary 50 mm"50 mm
field constructed of a 2000"2000 point grid.

Fig. 2(a) displays the particle velocity field ξ ξ→̇( )u ,1 2 of a right-lateral/left-traveling supershear crack propagating with
rupture speed =V C1.6r s. The supershear rupture tip is enveloped within an elliptically shaped field lobe, characterized by a
velocity field which circulates about the rupture tip. A prominent shear Mach cone extends from the rupture tip and bounds
the radiated shear field. The velocity field, which extends beyond the shear Mach fronts, is thus exclusively dilatational since
all shear radiation emitted by the rupture is confined, by default, within the region bounded by the shear Mach cone. The
leading concentrated field lobe is henceforth referred to as the “dilatational field lobe”. The velocity vector field is char-
acterized by a dominant fault-parallel particle velocity component ( ̇ )u1 as revealed by the relatively shallow inclination
(θ π< /4) of the velocity field vectors both within the dilatational field lobe and along the shear Mach fronts.

Fig. 2(b) represents the amplitude decay of the radiated dilatational field components (u̇d
1 ) and (u̇d

2 ), plotted as a function
of the normalized distance ξ ξ/ max

2 2 . The dilatational field components decay as ξ ξ( )1/ / max q
2 2 in accordance with Eq. (12). Note

that the amplitude decay will be generally slower than the r1/ decay observed by the sub-Rayleigh velocity field com-
ponents, since ≤ ≤q0 1/2.

Fig. 2(c and d) represent synthetic supershear particle velocity waveforms corresponding to the fault-parallel ( ̇ )u1 and
fault-normal ( ̇ )u2 motion components. The near-fault velocity waveforms ξ̇ ( )+u , 0i 1 exhibit a pronounced particle velocity
jump coinciding with the arrival of the rupture front, which results from the superposition of the dilatational and shear field
contributions. The shear and dilatational fields propagate at their respective, characteristic elastic wave speeds and proceed
to separate with increased distance and time as depicted in the off-fault waveforms. Each off-fault waveform is distinctly
characterized by a pronounced velocity swing, attributed to the leading dilatational field lobe, which arrives in advance of
the shear Mach front. The fault-parallel component of the dilatational field lobe exhibits a positive velocity swing (δu̇d

1 ) that
dominates in magnitude over the velocity swing (δu̇d

2 ) of the fault-normal component.
The sharp, step-like velocity jumps in the off-fault synthetic waveforms coincide with the shear Mach front. The ratio

between the FP and FN velocity jumps at any point along the shear Mach front remains constant and is given by

δ
δ β ξ̇

̇ = ( ) ( − − )
( )

u
u

sgn ; right lateral/left traveling .
14

s

s s
1

2
2

Examination of the factor βs (Eq. (10)) reveals that δ δ̇ ̇ ≥u u/ 1s s
1 2 when ≤ ≤C V C2 s r d. The motion propagated by shear Mach

front is thus generally characterized by a pronounced fault-parallel velocity jump, which dominates in magnitude over the
corresponding fault-normal velocity jump.

Dividing Eq. (8) by Eq. (9) yields a similar expression for a right-lateral/right-traveling supershear rupture, in which case,
the ratio between the fault-parallel and fault-normal velocity jumps along the shear Mach fronts is given by

δ
δ β ξ̇

̇ = − ( ) ( − − )
( )

u
u

sgn ; right lateral/right traveling .
15

s

s s
1

2
2

The 2D steady state solution predicts that the shear field velocity jumps ( ̇ )ui
s along the shear Mach front are sustained out to

infinity. This property is demonstrated by the sharp velocity jumps of equal magnitude in the stacked off-fault velocity
waveforms. Any observed differences in the magnitudes of the velocity jumps in Fig. 2(c and d) are a plotting artifact related
to numerical sampling of the grid points used to generate the field plot. The constant amplitude of the shear field velocity
components is in stark contrast to the pronounced broadening and rapid amplitude decay exhibited by the dilatational field
components ( ̇ )ui

d .
In a later section of this paper, a strong correspondence is demonstrated between the particle velocity records obtained

from supershear LEQ experiments and the general profile and predicted sense of motion of the synthetic waveforms de-
picted in Fig. 2(c and d). The rapid spatiotemporal separation between the dilatational and shear fields is also experi-
mentally observed and exploited to probe the velocity field components u̇ s

1 and u̇ s
2 propagated by the shear Mach front.
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4.5. Predicted sense of particle motion for right-lateral and left-lateral supershear rupture velocity fields

The superposition of shear wavelets emitted by a steady-state, intersonic rupture front leads to the formation of a shear
Mach cone, which stems from the advancing rupture tip and envelopes the surrounding medium along either side of the
fault. The resulting Mach cone half-angle, measured with respect to the fault plane, is given by the familiar relation

θ = ( ) ( )− C Vsin / 16s r
1

Inspection of Eq. (16) reveals that the Mach angle domain θ π( ) ≤ ≤− C Csin / /4s d
1 corresponds to the maximum

stable (supershear) rupture speed regime ≤ ≤C V C2 s r d, while π θ π< ≤/4 /2 corresponds to the unstable rupture speed
domain ≤ <C V C2s r s. Special cases of interest that set a lower bound for θ = ( )− C Csin /min s d

1 (as →V Cr d) are (1) =C C3d s,
often a good approximation for crustal rock, in which case supershear Mach angles are restricted to θ π( ) ≤ ≤−sin 1/ 3 /41 ,
and (2) ≈C C2d s, applicable to Homalite-100 laboratory earthquake test specimens, in which case the supershear Mach
angles are restricted to π θ π≤ ≤/6 /4.

The diagrams in Fig. 3 enable quick determination of the expected sense of particle motion of the dilatational field lobe
and shear Mach fronts of a left-bilateral or right-bilateral supershear rupture propagating in the stable rupture speed regime

≤ ≤C V C2 s r d. The velocity fields predicted by Eqs. (8) and (9) describe a right-lateral/right-traveling rupture and thus
correspond to the right-half of the diagram in Fig. 3(b).

The large circle in each diagram represents a hypothetical S wavelet emitted by the rupture tip at an earlier time. The
dashed black lines oriented at ϕ = ± °45 with respect to the fault plane intersect the S wavefronts at the nodal points where
→̇ =u 0

s
and the sense of particle motion reverses. The shear Mach fronts arise from the constructive superposition of a

continuum of S wavefronts emitted by the propagating rupture at earlier times. The blue lines stemming from the rupture
tip and oriented at an angle θ with respect to the fault represent the shear Mach fronts. As previously noted,

θ π( ) ≤ ≤− C Csin / /4s d
1 in the case of a stable supershear rupture. A shear Mach front must therefore lie tangent to the ex-

panding S wavefront at a point located within the angular domain π ϕ π≥ ≤ − ( )− C C/4 /2 sin /s d
1 , as depicted in Fig. 3. The

point of tangency is simply dictated by the rupture speed Vr in accordance with Eq. (16). The red arrows lying tangent to the
circular S wavefront indicate the sense of particle motion at the point of tangency in accordance with the far-field S wave
radiation pattern produced by a shear dislocation (Aki and Richards, 2002). The magnitude and sense of particle motion
along a shear Mach front is decomposed into fault-parallel and fault-normal particle velocity components (u̇ s

1 and u̇ s
2), which

are represented by the green arrows in Fig. 3.
The smaller black circles with tangent vectors, centered around the hypothetical rupture tips in each diagram, represent

the dilatational velocity field (u̇d), which circulates around the rupture tip in accordance with the kinematic condition
∇ × =u 0d . Careful examination of the sense of motion corresponding to the right-lateral/left-traveling rupture in Fig. 3
(b) shows it to be in full agreement with the velocity field plot and synthetic waveforms depicted in Fig. 2.

The signs of the velocity components given by Eqs. (8) and (9) for a (rl/lt) supershear rupture may be readily adjusted in
order to describe all other rupture scenarios portrayed in Fig. 3, i.e., (1) the left-lateral/right-traveling rupture corresponding
to the right-half of the diagram in Fig. 3(a), (2) the left-lateral/left-traveling rupture corresponding to the left-half of Fig. 3
(a), and (3) the right-lateral/left-traveling rupture corresponding to the left-half of the diagram in Fig. 3(b). The latter case
was previously considered to generate the plots depicted in Fig. 2.

Fig. 3. (a) Sense of particle motion for (stable) left-lateral, right and left traveling, supershear rupture velocity fields. (b) Sense of particle motion for
(stable) right-lateral, right and left traveling, supershear rupture velocity fields. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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4.6. Vanishing of the S wave field at =V C2r s

As the rupture speed →V C2r s, the Mach angle approaches θ π= /4 in accordance with Eq. (16). The shear Mach front
must, therefore, vanish at this rupture speed since it is formed along a locus of nodal points positioned at ϕ π= /4 on the
radiated S waves. This feature is a fundamental wavefront superposition property, which must occur as →V C2r s, irre-
spective of whatever dynamic rupture model is invoked. Indeed, the vanishing Mach front condition naturally emerges from
the 2D steady state singular elastic solutions given by Eq. (7). Fig. 4 depicts velocity field of a right-lateral/left-traveling
supershear crack, propagating with rupture speed =V C2r s. The dilatational field is now prominently displayed, with the
shear Mach fronts conspicuously absent at this rupture speed. High speed images and particle velocity traces of a supershear
rupture observed propagating at ≈V C2r s are presented and analyzed in a later section of this paper.

5. Spatiotemporal velocity field properties derived from 2D steady state (non-singular) cohesive zone models

5.1. Steady state cohesive zone models

The underlying assumption in the singular elastic crack models is that the rupture process is assumed to occur at a
mathematically singular crack tip. A major weakness of this model is that it fails to account for a finite process zone and
cohesive strength, which varies along the length of the rupture zone. Non-singular, slip-weakening models for shear, or
Mode II cracks, incorporate a description of the shear tractions within a finite breakdown zone (Barenblatt, 1962; Ida, 1972;
Palmer and Rice, 1973). The shear traction is characterized by a peak strength just ahead of the crack tip, which decreases
with increased distance behind the crack tip and then levels off to a residual shear strength level. The incorporation of a
cohesive zone in these models introduces a characteristic length scale into the analysis, which is distinctly missing in the
singular elastic models. The resulting length scale is proportional to the size of the breakdown zone.

5.2. 2D steady-state intersonic slip-pulse with prescribed shear traction within a finite slip zone

Dunham and Archuleta (2005) extended an earlier solution given by Broberg (1989), to obtain non-singular analytical
solutions for the stress and particle velocity fields radiated by a 2D steady-state intersonic slip-pulse with an arbitrarily
prescribed shear traction within a finite slip zone. The solution to the mixed boundary value problem is obtained by in-
voking linear superposition of the constant far field stresses σ ξ ξ σ σ τ( ) = + +,ij

f
1 2 11

0
22
0

0, imposed upon the fault at all times, and
the local stress field problem, which is solved, subject to the prescribed traction τ ξ τ( ) −1 0 across the slip zone.

The mixed boundary value problem leads to a non-singular solution for the particle velocity field components of a (rl/rt)

Fig. 4. Particle velocity field of a right-lateral/left traveling supershear crack propagating at =V C2r s. Shear Mach fronts vanish leaving only the dilata-
tional velocity field lobe, characterized by a field amplitude, which scales as r1/ , at this rupture speed.
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intersonic slip pulse are given by
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where the variables zd, zs are given by

ξ α ξ ξ β ξ= + = ± ( )z i z; 19d d s s1 2 1 2

Solutions for the stress and particle velocity fields are expressed in terms of a single integral expression for τ ξ( )1 over the
slip zone, given by

∫π
π

τ τ( ) = − ( ) ( + ) ( ) −
( − ) ( + ) ( − ) ( )

−
− −N z q z z L

w
w w L w z

dwsin
20

q q

L q q
1

0
0

1

which corresponds to a complex integral solution of a Hilbert problem. The function N(z) provides the link between the
shear traction τ ξ( )1 within the slip zone and the explicit form of the stress and particle velocity fields radiated by the 2D
steady state intersonic slip pulse. In the case of a sliding mode II rupture, τ ξ( )1 represents the frictional resistance (cohesion),
which stems from a governing friction law. N(z) is analytic everywhere, except along the branch cut ( ξ− < <L 01 ) corre-
sponding to the slip zone. Careful examination of Eq. (20) at points very close to the fault (letting →z 0I ) reveals that N(z) is
a complex function only within the interval ξ( − < < )L 01 (Dunham and Archuleta, 2005). This implies that S wave radiation
is confined within a region of space bounded by pairs of leading and trailing characteristics ξ β ξ= ± =z cs s1 2 , (c¼constant),
corresponding to the shear Mach fronts, which extend from the leading and trailing edges of the slip zone, as depicted in
Fig. 5. In the case of a right-lateral/right-traveling slip pulse, the characteristic defined by ξ β ξ= + =z 0s s1 2 describes the
leading, negatively sloped shear Mach front within the upper half-space (ξ > 02 ), while the characteristic ξ β ξ= − =z 0s s1 2
corresponds to the leading positively sloped shear Mach front within the lower half-space ξ( < )02 .

The “sign function” ξ( )sgn 2 in Eq. (18) accounts for the anti-symmetry of ( )N zsI with respect to the fault plane and extends
the solution into the lower half-space (ξ < 02 ). The fault-normal velocity component would otherwise abruptly reverse sign
across the fault, which is prohibited in the case of a mode II rupture. Numerical solutions for Eqs. (17) and (18) were
obtained by Dunham and Archuleta (2005) using a linear distance-weakening model for τ ξ( )1 , originally formulated by
Palmer and Rice (1973). Due to the finite crack-tip stresses and finite width of the process zone, the resulting particle
velocity waveforms are of finite width and magnitude, unlike the waveforms, which emerge from the singular elastic so-
lution. Indeed, the singular elastic solution given by Freund (1979) emerges as a special case of the 2D steady state slip pulse
model in the limit ( →R L/ 0). Also, in stark contrast to the singular models, the crack-tip energy flux is non-zero and finite in
the supershear regime (Broberg, 1989; Samudrala et al., 2002a,b; Rosakis et al., 2007).

The dilatational and shear field contributions are each uniquely represented by separate terms in the solutions given by
Eqs. (17) and (18). The first term in each equation corresponds to the dilatational field contribution, expressed in terms of
the real and imaginary parts of ( )N zd and is evaluated at points ξ α ξ= +z id d1 2 in the complex plane, i.e., ( )N zdI in Eq. (17) and

( )N zdR in Eq. (18). The shear field terms are both functions of ( )N zsI , and are evaluated exclusively along the family of
characteristics defined by ξ β ξ= ± =z cs s1 2 .

Fig. 5. S wave radiation field bounded by shear Mach fronts extending from the leading and trailing edges of the supershear slip zone.
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We may also consider the limiting case, where the dilatational field contribution has decayed away, leaving only the
unattenuated fault-parallel and fault-normal shear field velocity components, which are propagated into the far field along
the shear Mach fronts. Dividing the shear field term of Eq. (17) by the corresponding shear field term of Eq. (18) recovers the
previously noted scaling relationship given by Eq. (15) between the FP and FN velocity components propagated by the shear
Mach front of a (rl/rt) rupture. The relationship is now expressed in terms of the complex (characteristic) variable

ξ β ξ= ±zs s1 2, and given by

δ
δ ξ β̇ ( )

̇ ( ) = − ( ) ( − − )
( )

u z
u z
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21

s

s
s

1

2
2

In the case of a (rl/lt) supershear rupture, such as those observed in our experiments, the ratio between the fault-parallel
and fault-normal motion components propagated by the shear Mach fronts is given by

δ
δ ξ β̇ ( )

̇ ( ) = ( ) ( − − )
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22

s

s
s
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2
2

which recovers Eq. (14).

5.3. Scaling relationship between the frictional fault sliding speed and the fault-parallel components of the dilatational field and
shear Mach front

The slip function along the fault ξ( = )02 is defined as

ξ ξ ξΔ ̇ ( ) = ̇ ( ) − ̇ ( ) ( )+ −u u u, 0 , 0 , 0 231 1 1 1 1 1

where ξ̇ ( )+u , 01 1 and ξ̇ ( )−u , 01 1 represent the fault-parallel velocity components at two infinitesimally separated points posi-
tioned just above and below the fault. We note that since ξ= =z zd s 1 as → +x 02 , Eq. (17) then assumes the form
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is a complex expression containing a real integral, which is evaluated within the slip zone ξ( − < < )L 01 . We note the
presence of the familiar rupture speed dependent factor q given by Eq. (11), which continues to govern the rate at which the
field strength decays with increased distance from the fault plane. Invoking mode II anti-symmetry of the fault-parallel
component, i.e., ξ ξΔ ̇ ( ) = ̇ ( )+u u, 0 2 , 01 1 1 1 , in combination with Eq. (24), leads to an alternate expression for the slip function
given by
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Similarly, since ξ ξΔ ̇ ( ) = − ̇ ( −u u, 0 2 , 01 1 1 1 ) and since ξ ξ( ) = − ( )+ −N N1 1I I (mode II antisymmetry), it follows that
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and thus,
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The somewhat ambiguous form given by Eq. (28) is cast into a more compact expression by invoking ξΔ ̇ ( ) = Δ ̇ ( )u u z, 0 s1 1 1 and
ξ( ) = ( )+N N zs1I I , where ξ β ξ= ± =z cs s1 2 defines the characteristics (shear Mach fronts), which extend to infinity within each

respective half-space. We may then write
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where the function ξ( )sgn 2 is introduced in order to preserve the sign of Δ ̇ ( )u zs1 regardless of which characteristic is assumed.
Experimental estimates of the frictional fault sliding speed are obtained in our supershear experiments by focusing a

laser vibrometer beam at nearly grazing incidence onto a point positioned within 200 μm above frictional fault plane. The
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near-fault sliding speed is directly compared to the FP velocity component propagated by the shear Mach front, measured at
an off-fault field point as the Mach front sweeps past this location. Details of the vibrometer probe configurations are
provided in the experimental methods section. The experiments as mentioned above provide the motivation to recast Eq.
(17) into an alternative “near-fault form”, which will prove very useful in the analysis and interpretation of the on-fault and
off-fault particle velocity waveforms obtained in these experiments.

Eq. (24) indicates that a temporally resolved “on-fault” record of the frictional fault sliding speed ξ̇ ( )+u t, 0 ,1 1 is equivalent
to measuring ξ( )+N t,1I . Substituting for ξ( )+N 1I in Eq. (24), using the slip function relation given by Eq. (26), and invoking
anti-symmetric slip function relation ξ ξ̇ ( ) = Δ ̇ ( )+u u, 0 , 01 1

1
2 1 1 leads to
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We note that the first and second terms to the right of the equality symbol must still correspond to the dilatational and
shear field contributions, respectively. Eq. (30) thus reveals how the frictional fault sliding speed ξ̇ ( )+u , 01 1 is partitioned
between the dilatational and shear field radiation terms in accordance with the rupture speed dependent amplitude scaling
factors appearing in parentheses. Hence we may define,
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as the fault-parallel amplitude scaling factor that dictates howmuch of the frictional fault sliding speed ξ̇ ( )+u , 01 1 is converted
into the fault-parallel component of the dilatational field and subsequently radiated away.

A second fault-parallel amplitude scaling factor given by
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is similarly defined, which governs how much of the frictional fault sliding speed ξ̇ ( )+u , 01 1 is converted into the fault-parallel
component of the shear field ̇ ( )u zs

s1 and subsequently propagated out into the far field along a shear Mach front.
Eqs. (31) and (32) represent a non-singular, 2D steady-state, scaling relationship between the sliding component induced

by the supershear rupture at the fault plane and the fault-parallel component propagated by the shear Mach front. A similar
relation naturally applies on the opposite side of the fault plane, between the frictional fault sliding speed ξ̇ ( )−u , 0d

1 1 and the
shear field velocity component ̇ ( )u zs

s1 , where ξ β ξ= −zs s1 2 corresponds to the shear Mach front within the lower half-space
ξ < 02 .

Alternative and simplified forms for rs and rd, given by
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Fig. 6. Non-singular scaling relationships between the frictional fault sliding speed ξ̇ ( )+u , 01 1 and the fault-parallel velocity components of the dilatational
field ξ ξ̇ ( )u ,d

1 1 2 and shear Mach front ξ ξ̇ ( )u ,s
1 1 2 .
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are obtained by substituting for βs through Eq. (10), where + =r r 1s p is naturally observed.
Fig. 6 depicts the graphical relationship between the amplitude scaling factors rd, rs given by Eq. (31) and Eq. (32) and the

normalized rupture speed V C/r s. A plot of the rupture speed dependent factor, q, given by Eq. (11) is also included in the
figure. The vertical dashed line at =V C/ 2r s denotes the boundary between the unstable and stable rupture speed domains.

The maximum normalized rupture speed =V C/ 2r s in Fig. 6 corresponds to the limit →V Cr d, for a material with =C C2d s

such as the Homalite-100 material used in LEQ experiments. The dilatational scaling factor is bounded between ≤ ≤r0.5 1d

within the stable rupture speed regime, reaching a maximum value rd¼1 when =V C/ 2r s and decreasing with increased
rupture speed toward a minimum value of =r 0.5d as →V Cr d. The shear field scaling factor ( = −r r1s d) is bounded between

≤ ≤r0 0.5s within the stable rupture speed regime, and ranges from a minimum value rs¼0 when =V C/ 2r s to a maximum
value =r 0.5s as →V Cr d.

The fact that ̇ =u 0s
1 as →V C/ 2r s , implies that ̇ =u 0s

2 in light of Eq. (21) or Eq. (22). Thus, there are no S waves radiated at
this unique rupture speed, which is consistent with the heuristic S wave nodal point argument given earlier that the shear
Mach front must vanish as →V C/ 2r s . We also note that =q 1/2 at →V C/ 2r s thus revealing that the dilatational field will
decay as r1/ , in accordance with Eq. (12). Energy, which would otherwise be radiated by shear waves, is instead consumed
by fracture at this rupture speed.

The portion of the curves corresponding to the unstable rupture speed regime ( ≤ <C V C2s r s) appears somewhat odd
and confusing at first glance, since − ≤ <r1 0s and < ≤r1 2d within this domain. The situation is best understood by re-
ferring back to Fig. 3 and noting that the shear Mach front will be tangent to the S wavelets along points corresponding to

ϕ π( < ≤ )0 /4 when ≤ <C V C2s r s. The fault-normal component is now directed upward and dominates in magnitude over
the fault-parallel component, which is directed opposite to the assumed direction of slip. Thus ̇ ( ) <u z 0s

s1 even though the
sliding speed ξ̇ ( )+u , 01 1 is positive. The negative range of values exhibited by rs simply reflects the fact that ̇ ( ) <u z 0s

s1 when
≤ <C V C2s r s. The corresponding positive range of values < ≤r1 2d for the dilatational field contribution ̇ ( )u zd

s1 offset the
negative contribution of the shear field so as to satisfy + =r r 1s d within the unstable rupture speed domain.

Finally, we note that there is also no known counterpart of Eq. (30), which applies to sub-Rayleigh rupture field com-
ponents, nor is there an analogous scaling relationship, which applies to the fault-normal component ξ̇ ( )+u , 02 1 of a super-
shear rupture. The presence of ( )N zdR in the dilatational field term and ( )N zsI in the shear field term of Eq. (18) (and no anti-
symmetry relation for u̇2) prohibits the types of substitutions and algebraic manipulations that were adopted in the case of
the fault-parallel component (u̇1).

Thus, Eqs. (31) and (32) represent unique scaling relationships, which emerge from the 2D state slip pulse solution and
strictly apply to the fault-parallel velocity (and normal stress s11) component of a supershear rupture field. The result is
readily extended to the analysis and interpretation of crack-like velocity profiles such as those observed and recorded in LEQ
experiments. In such cases, the crack-like rupture is viewed as a very broad slip pulse in the limiting sense →R L/ 0, with a
finite rupture zone R and a very large slip zone (i.e., → ∞L ). When viewed in this limiting sense one may then apply Eqs.
(31) and (32) to the analysis of the leading edge of recorded fault-parallel and fault-normal velocity waveforms obtained in
supershear experiments.

Fig. 7. Contour and velocity vector field plots corresponding to right-lateral/left-traveling and right-lateral/left-traveling supershear ruptures. Field plots
were generated by the finite element code ABAQUS, using a slip-weakening friction law in a numerical simulation of the Burridge–Andrews mechanism.
Contour plot colors scale with the magnitude of the velocity field, while the streak plot vectors reveal the sense of particle motion throughout the field. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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6. Unsteady cohesive zone models and the spontaneous nucleation of supershear ruptures

Space and time are essentially equivalent in 2D steady-state rupture models. Such models implicitly assume that a
rupture has existed for all time and thus cannot account for the rupture history and dynamic mechanisms that lead to the
emergence of the supershear rupture in the first place. Various supershear rupture transition mechanisms have been
proposed and examined using self-similar analytical models and numerical simulations. Such models typically rely upon an
initial sub-Rayleigh rupture, which spontaneously nucleates and spawns an intersonic “daughter-crack” as a consequence of
a critical dynamic stress condition. In the original Burridge–Andrews model (Andrews, 1976; Burridge, 1973; Burridge et al.,
1979), a peak in the S wave field positioned just ahead of the sub-Rayleigh rupture front steadily increases in magnitude
until it overcomes the frictional fault strength. Once this occurs a so-called “daughter crack” is formed, which is mo-
mentarily dissociated from the original ruptured portion of the fault. The leading front of the daughter crack begins as an
unstable intersonic rupture, which then rapidly accelerates and transitions into a stable supershear rupture.

Alternative and equally plausible models for the nucleation of supershear ruptures consider the dynamic interaction of
the sub-Rayleigh rupture with an inclusion or a local patch of higher strength along the frictional fault. The presence of
these features can also directly lead to dynamic stress concentrations and localized instabilities, which can give rise to a
supershear rupture (Dunham et al., 2003; Dunham and Archuleta, 2004; Liu and Lapusta, 2008). Each of the aforementioned
supershear rupture transition mechanisms has been experimentally demonstrated and observed in LEQ experiments (Mello
et al., 2010, 2014).

The graphical illustration in Fig. 7 depicts the velocity fields and sense of particle motion in the immediate region
surrounding a pair of left- and right-traveling (right-lateral) supershear ruptures. The analysis was conducted using the
commercial Finite Element code, ABAQUS. The field plots were generated by assuming a slip-weakening friction law in a
numerical simulation of the Burridge–Andrews mechanism (Andrews, 1976). Secondary sub-Rayleigh ruptures, shown
trailing in the wake of the shear Mach cones are commonly observed in LEQ experiments. The left panel in Fig. 7 corre-
sponds to the velocity field of a right-lateral/left-traveling supershear rupture while the panel on the right represents a
right-lateral/right-traveling supershear rupture velocity field. The colors of the contour plot scale with the magnitude of the
velocity field, while the streak plot vectors indicate the sense of particle motion throughout the field. Finally, we note how
the particle motion of the numerically simulated right-lateral/left-traveling, trailing sub-Rayleigh and supershear ruptures
in Fig. 7 correlates with the predicted sense of particle motion of the sub-Rayleigh and supershear rupture fields depicted in
Figs. 1 and 2.

Fig. 8. Laboratory earthquake experimental configuration featuring an integrated photoelastic interferometer and high-speed gated intensified cameras for
full-field visualization of photoelastic interference patterns. Three fiber-optic laser vibrometers enable simultaneous monitoring of the in-plane ( ̇ ̇ )u u,1 2 and
out-of-plane ( ̇ )u3 surface velocity components at fixed field points on the surface of the Homalite-100 test specimen.
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7. Materials and methods

7.1. The laboratory Earthquake experiment (LEQ)

The traditional LEQ experiment (Xia et al., 2004) features a transparent, 150 mm"150 mm square test specimen formed
by two statically compressed, 10 mm thick, trapezoidal sections of Homalite-100, a linear elastic, and stress-birefringent
polymer. The mating fault surfaces are each initially polished to a flat, and nearly optical-grade surface finish to remove all
machining-induced surface defects. The surfaces are then uniformly roughened to a nominal RMS surface roughness of
1.5 μm using a prescribed and repeatable micro-bead blasting procedure. The inclined frictional interface formed by the
mated surfaces of the statically compressed test sections mimics a tectonic fault plane within the Earth's crust. Other
frictional fault configurations have also been developed and implemented in recent years, which emulate partially locked
strike-slip faults and normal thrust faults within the Earth's crust (Mello et al., 2014; Gabuchian et al., 2014).

The Homalite-100 LEQ test specimen is initially subjected to a static compressive load s0 using a mechanical, hydraulic
press such as the one pictured in Fig. 8. The compressive load translates into a normal traction σ σ α= cos22

0
0

2 and resolved
shear traction σ σ α α= sin cos21

0
0 along the frictional fault plane, where α represents the inclination angle of the fault plane

with respect to the horizontal. Interfacial sliding is initially prevented by the fact that the resolved shear stress does not
exceed the peak (static) frictional strength τ σ= fp s 22

0 of the interface, where fs represents the static coefficient of friction.
Rupture nucleation is triggered by the rapid ablation of a thin NiCr wire filament ( ≈ μdiameter 80 m), which is fed through a
small cylindrical cavity formed by a pair of matching semicircular cylindrical grooves machined onto each of the mated fault
surfaces (Mello et al., 2010).

A unique advantage of the LEQ experiment is the flexibility it offers to nucleate sub-Rayleigh or supershear ruptures
depending upon the initial static compressive load (s0), frictional fault angle (α), and other properties such as the RMS
surface roughness, and cohesion between the mated fault surfaces. Spatially resolved photoelastic images recorded by high-
speed cameras enable direct visualization and frame-by-frame tracking of critical features of sub-Rayleigh and supershear
rupture fields. Fig. 9 contrasts a sub-Rayleigh experiment and a supershear experiment. The photoelastic image in Fig. 9
(a) depicts a right bi-lateral sub-Rayleigh rupture, which was nucleated at the point labeled ( )0, 0 . Fig. 9(b) reveals a pair of
supershear ruptures; a right-lateral/left traveling rupture and a right-lateral/right traveling rupture, each of which transi-
tioned at an earlier time from the (labeled) trailing sub-Rayleigh ruptures.

7.2. Laser vibrometer configurations applied to current LEQ experiments

Fiber optic laser vibrometers are applied to obtain temporally resolved particle velocity waveforms of the in-plane ve-
locity components ( ̇ ̇u u,1 2) at fixed field points on the surface of the Homalite-100 test specimen. The three primary laser
vibrometer configurations utilized for the experiments discussed in this paper are depicted and briefly described in Figs. 10
(a–c). The out-of-plane velocity component (u̇3) may also be monitored as depicted in Fig. 8.

Fig. 10(d) depicts a small (3 mm"4 mm) rectangular strip of retro-reflective tape with its upper left corner coincident
with the field point ξ ξ( ),1 2 . Vibrometer beams are focused down to a 150 μm spot size onto a corner of the tape strip as
shown. Scattered laser light is collected by each respective fiber-optic probe and directed by optical fiber to Polytec OFV-511

Fig. 9. (a) High-speed photoelastic image of a right-bilateral sub-Rayleigh rupture and expanding S wavefront. Red arrows depict how vibrometer beams
are focused at an of-fault field point to monitor u̇1 and u̇2 as the rupture field sweeps past this location. (b) Right-bilateral supershear rupture characterized
by prominent shear Mach fronts, with leading dilatational field lobes, and trailing sub-Rayleigh ruptures. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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and OFV-551 heterodyne interferometers and an OFV-5000 modular controller (not depicted) where the interference sig-
nals are processed and converted into the recorded particle velocity waveforms. A common electrical trigger derived from
the rupture nucleation circuit ensures temporal synchronization between the laser vibrometers and high-speed cameras.
High-speed images showing the arrival of the propagating rupture front and its surrounding stress field at the measurement
station are thus directly correlated to sharp jumps in the recorded particle velocity waveforms. Additional details of the
electronic instrumentation, optical diagnostics, and LEQ experiment test procedures are contained in Mello et al. (2010).

8. Results and discussion

8.1. Investigation of Sub-Rayleigh and supershear rupture velocity waveform signatures using the (FN:FP) laser vibrometer
configuration

The high-speed images and corresponding particle velocity waveforms depicted in Fig. 11 contrast the results obtained
from two independent laboratory earthquake experiments, one of which yielded a right-lateral/left-traveling (rl/lt) sub-
Rayleigh rupture and the other, which resulted in a (rl/lt) supershear rupture.

The position of the propagating rupture tip in the sub-Rayleigh rupture image (exp 0952), is identified by a dark, con-
centrated caustic zone positioned just behind the faint circular outline of the expanding S wavefront. In the supershear
rupture image (exp 0947), the supershear rupture tip is flanked by shear Mach fronts, which extend to either side of the
fault plane. An expanded view of the image reveals a localized fringe concentration, positioned just ahead of the supershear
rupture tip, which coincides with the leading dilatational field lobe. A trailing sub-Rayleigh rupture with extended field
lobes is also clearly visible and labeled in the image along with the circular outline of an expanding S wavefront.

The particle velocity waveforms obtained during the sub-Rayleigh and supershear experiments are each plotted out to
t¼65 μs. The red triangles denote the time ( = μ )t 41 s when the displayed photoelastic images were acquired. Dashed blue

Fig. 10. Laser vibrometer configurations: (a) (FN:FP) for simultaneous measurement of fault-normal and fault-parallel velocity components at a fixed field
point. (b) (FN1:FN2) for simultaneous measurement of fault-normal velocity components at a pair of -on and off-fault field points. (c) (FP1:FP2) for
simultaneous measurement of fault-parallel velocity components at a pair of on- and off-fault field points. (d) Use of retro-reflective tape corner for
efficient scattering of focused laser beam.
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vertical lines labeled tp and ts mark the anticipated arrival times of the nucleated P wave and S wavefronts at the mea-
surement station located at ( − )55, 10 mm. Dashed blue vertical lines labeled tsR in each plot denote the arrival time of the
sub-Rayleigh (sR) rupture in exp 0952 and the arrival time of the trailing sub-Rayleigh rupture in exp 0947. The dashed blue
vertical line labeled tMach in the supershear particle velocity record marks the anticipated arrival of the shear Mach front at
the off-fault measurement station.

The synthetic curves, with the left and right panels, correspond to the particle velocity waveforms of right-lateral/left-
traveling sub-Rayleigh and supershear ruptures, respectively, as predicted by the steady state singular elastic sub-Rayleigh
shear crack solution. The time and velocity axes of the synthetic waveforms are dimensionless, and we make no attempt at a
directly quantified comparison between theory and experiment. The primary aim is to demonstrate the strong corre-
spondence between the form and polarity of the synthetic velocity waveforms and the corresponding particle velocity
records obtained from each experiment.

Careful inspection of the photoelastic image sequence and particle velocity records obtained during the sub-Rayleigh

Fig. 11. Left column (exp 0952): high-speed image of sub-Rayleigh rupture stress field at = μt 41 s, particle velocity waveforms acquired at ( − )55, 10 mm,
and corresponding synthetic particle velocity waveforms derived from the steady state, singular elastic, (sub-Rayleigh) shear crack solution. Right column
(exp0947): dynamic rupture stress field at = μt 41 s, particle velocity waveforms acquired at ( − )55, 10 mm, and corresponding synthetic particle velocity
waveforms from the steady state, singular elastic, (intersonic) shear crack solution.
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rupture experiment (exp 0952) confirms that the segment →D E in the FN velocity record correlates with the time during
which the extended sub-Rayleigh rupture field lobe swept through the off-fault measurement station at ( − )55, 10 mm. The
experimental particle velocity records bear a strong correspondence with the form and polarity of the synthetic sub-Ray-
leigh waveforms and thus exhibit the distinct kinematic signatures induced by the upper field lobe of a (rl/lt) sub-Rayleigh
rupture at this location. We also note the dominance of the FN component in the sub-Rayleigh velocity records as expected.

The FN and FP velocity records obtained during the supershear experiment (exp 0947) embody distinct and fundamental
waveform signatures, which are characteristic of a leading supershear rupture and trailing sub-Rayleigh rupture. The seg-
ment →A C of the FP component and ′ → ′A C of the FN component in the ss particle velocity records bear an obvious and
strong resemblance to the displayed synthetic waveforms derived from the steady state singular elastic supershear crack
solution. In particular, we note the positive initial velocity swing →A B of the FP component and sharp negative swing

′ → ′A B of the FN component attributed to the leading dilatational field lobe as it swept the off-fault measurement station.
This feature is immediately followed by the sharp positive velocity jumps, →B C in the FP component, and ′ → ′B C in the FN
component, commensurate with the arrival of shear Mach front. The finite rise time exhibited by the recorded supershear
velocity jumps compared to the virtually instantaneous step-like jumps in the synthetic waveforms reflects the structure
and spatial variation of the velocity field attributed to a finite rupture process zone.

The FP and FN velocity components records in (exp 0947) exhibit a precipitous drop following the passage of the shear
Mach front and remain quiescent for a short period until the arrival of the trailing Rayleigh rupture coinciding with segment

′ → ′D E in the FN waveform. We conclude by noting the dominance of the FN component during this time span and the
strong resemblance between segment ′ → ′D E and segment →D E in the FN waveform of the sub-Rayleigh experiment (exp
0952), as expected.

8.2. Experimental estimates of the average rupture speeds and elastic wave-speeds in Sub-Rayleigh and supershear rupture
experiments

The plots displayed in Fig. 12 represent position versus time curves of the rupture tip and elastic wavefronts obtained
from sub-Rayleigh experiment (exp 0952) and supershear experiment (exp 0947). Distance is taken to be positive in the
plots for the sake of convenience even though the measurement station was located at ( − )55, 10 mm. The colored circular
symbols represent the measured distance from the nucleation site obtained through a frame-by-frame analysis of photo-
elastic images using well-documented procedures as outlined in Mello et al. (2010). Dashed lines passing through the circle
symbols represent a best linear curve fit to the raw data. A linear equation describing the best-fit line is displayed beside
each respective curve. The excellent linear fit observed in each case reveals how steady the elastic-wave and rupture speeds
remained throughout the duration of the experiments.

Analysis of the elastic wave speeds and rupture propagation speeds using the sub-Rayleigh high-speed images from exp
0952 yielded an estimated P wave speed of = μC 2.53 mm/ sd (slope of the dashed green line) and S wave speed

= μC 1.28 mm/ ss (slope of the dashed red line). An average sub-Rayleigh rupture speed ¯ = μV 1.12 mm/ sr , corresponding to
¯ =V C/ 0.88r s , is obtained from the slope of the best fit line (dashed blue line). The dashed violet line labeled “near field”
disturbance corresponds to a faint, expanding circular front, which is often seen in photoelastic images and propagates at
the dilatational wave speed. Extrapolation of this curve back to the time axis reveals that the near field disturbance

Fig. 12. Distance–time plots of the rupture tip and elastic wavefronts obtained from photoelastic images for the sub-Rayleigh experiment (exp 0952) and
supershear experiment (exp 0947). The intersection between the supershear rupture “best-fit line” and the S wave “best-fit line” provides a precise
estimate of the location and time of the sub-Rayleigh to supershear transition in (exp 0947). (For interpretation of the references to color in this figure
caption, the reader is referred to the web version of this paper.)
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originated well after rupture nucleation, which suggests that it may be a release wave resulting from the dilatational
contraction of the cylindrical cavity, which surrounds the NiCr wire.

A similar analysis applied to the photoelastic image sequence corresponding to the supershear experiment (exp 0947)
yielded a P-wave speed estimate of = μC 2.56 mm/ sd (slope of the dashed green line), and an S-wave speed estimate of

= μC 1.28 mm/ ss (slope of the dashed red line). An average sub-Rayleigh rupture speed ¯ = μV 1.16 mm/ sr , corresponding to
V̄ C/r s¼0.91, is obtained from the slope of the best fit line (blue dashed blue line). We note the same sub-Rayleigh rupture
speed was observed before and after the supershear transition. An average supershear rupture speed of ¯ = μV 2.27 mm/ sss ,
corresponding to V̄ C/ss s¼1.77, is directly inferred from the slope of the best-fit line (dashed violet line). The intersection of
the S wave curve and the supershear rupture curve at (17.8 mm, 18.2 μs) provides a precise estimate of the location and time
of the sub-Rayleigh to supershear transition.

The S wave, P wave, and sub-Rayleigh rupture curves in Fig. 12 extrapolate back to a set of closely spaced points, which
intercept the time axis. The time axis intercepts reveal an inherent rupture delay time between the instrumentation trigger
( = )t 0 (oscilloscope and high-speed camera are triggered), and the time at which elastic waves were first emitted from the
rupture nucleation site. The noted time delay is repeatedly observed in LEQ experiments and is related to the rupture
nucleation process, as opposed to being an artifact of the electronic diagnostics. The time axis intercept for the sub-Rayleigh
rupture curve is not physically meaningful since the rupture tip is never located at the origin, but is instead initiated at a
critical-crack-length distance located to the left and right of the origin. Time axis intercepts derived from the P-wave curves
are unreliable due to a greater uncertainty of the P-wave speed. The rupture delay time is best determined from the S wave
time axis intercept, and is always taken into account when determining the elastic wave arrival times with respect to the
rupture arrival times in the recorded particle velocity waveforms.

8.3. Determination of the instantaneous supershear rupture speed from Mach angle measurements

Fig. 13 corresponds to an expanded view of the photoelastic image acquired at time = μt 41 s during the supershear experi-
ment (exp 0947). An independent estimate of the instantaneous supershear rupture speed is obtained by measuring the shear
Mach angle and applying the familiar Mach cone half-angle relation Eq. (16), which is restated here for the sake of convenience :

θ = ( )C Vsin / 34s ss

Sharp cusps in the fringe pattern, such as those labeled in Fig. 13, reveal the location of the steepest stress gradient and thus
provide a natural fiducial for extending a line from the rupture tip when estimating the Mach angle. Lines were drawn from the
supershear tip to each of the sharp cusps highlighted in Fig. 13 to determine the shear Mach angle. Mach angle measurements of
θ = °33.751 and θ = °33.972 were obtained. A measurement uncertainty of 70.25° in the measurement of the Mach angle
translates to an error bound of 70.01 in the normalized rupture speed estimate. Application of Eq. (34) to the average value of
these two values yields an instantaneous normalized rupture speed estimate of = ±V C/ 1.79 0.01ss s , ( = ± μ )V 2.29 0.01 mm/ sss ,
which is in excellent agreement with the average supershear rupture speed estimate ( ) =V C/ 1.77r s ave as determined from the
slope of the best-fit line in Fig. 12.

Fig. 13. Expanded view of supershear rupture field with measured Mach front angles for determination of instantaneous supershear rupture speed.
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8.4. High-speed images and particle velocity signatures of an emerging supershear daughter crack propagating at =V C2r s and
the onset of a supershear transition

The photoelastic image sequence and particle velocity records displayed in Fig. 14 bear the collective signatures of an
emerging supershear daughter crack and the onset of a sub-Rayleigh to supershear transition. The supershear rupture is
trailed by a “crack-like” sub-Rayleigh (sR) rupture, which correlates with the large amplitude swings in the recorded particle
velocity records.

A magnified view of the image frame recorded at = μt 49 s (Fig. 14(a)) reveals a dark, curled fringe (labeled in the image),
which appears to terminate at the fault plane. The magnified image also reveals a dark, straight fringe concentration, aligned
with the fault, which juts out from the sub-Rayleigh rupture tip and extends out to the circular boundary of the leading S
wavefront. These 2 noted features within the photoelastic interference pattern reveal an emerging supershear daughter
crack and signal the onset of a Burridge–Andrews supershear transition Mello et al. (2010). The point where the dark curled
fringe intersects the fault plane coincides with the leading tip of the supershear daughter crack. The trailing, dark fringe
concentration aligned with the fault is a precursor to the shear Mach fronts, which form at a later time.

Calibrated distance measurements of the daughter crack positions in the sequential image frames recorded at = μt 49 s
(Fig. 14(a)) and = μt 53 s (Fig. 14(b)) yield a relative distance of Δ =x 7.33 mmss

1 , which translates to an average normalized
rupture speed of =V C/ 1.43r s during the 4 μs time interval. The other noted fringe concentration, which is aligned with the

Fig. 14. (a and b) Supershear daughter crack with average rupture speed ¯ = μV 1.43 mm/ sr between the 2 sequential image frames. (c and d) Supershear
crack with average rupture speed ¯ = μV 1.84 mm/ sr between the 2 sequential image frames. (e) Particle velocity records recorded at ( − )+55, 0 reveal a
pulse-like disturbance in the FP component attributed to the emerging supershear daughter crack crossing the on-fault station at =V C2r s. This is
followed by the signature crack-like rupture velocity profile of the trailing sub-Rayleigh rupture.
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fault, and trails the daughter crack tip, has transformed at = μt 53 s and provides an early hint of the shear Mach fronts,
which are just beginning to form at this time. The image frame recorded at = μt 57 s (Fig. 14(c)) reveals the rapidly accel-
erating supershear rupture tip flanked by shear Mach fronts, which are now quite evident. Analysis of the supershear crack
tip positions in the sequential image frames recorded at = μt 57 s and = μt 60 s reveals a relative distance of Δ =x 7.08 mmss

1 ,
which translates to an average normalized rupture speed of =V C/ 1.84r s during the μ3 s time interval. Measurement of the
shear Mach angle in the image recorded at = μt 60 s yields an instantaneous normalized rupture speed estimate of

=V C/ 1.83r s , which agrees very well with the average normalized rupture speed measurement. Calibrated distance mea-
surements of the sub-Rayleigh crack tip position in the sequential images recorded at = μt 49 s and = μt 57 s yield a relative
distance of Δ =x 9.14 mmsR

1 , which translates to an average normalized rupture speed of =V C/ 0.89r s during the μ8 s time
interval. The supershear rupture has now fully transitioned and is propagating at 2" the speed of the trailing sub-Rayleigh
rupture from which it was spawned.

We now focus our attention on the analysis and interpretation of the FP and FN particle velocity records depicted in
Fig. 14(e). The noted 4 μs pulse-like disturbance in the FP velocity record is attributed to the emerging supershear daughter
crack, which swept the near-fault station, between = μt 47 s and = μt 51 s, well in advance of the sub-Rayleigh rupture. The
positive velocity jumps exhibited by the FN and FP velocity components during the noted pulse period imply that the right-
lateral/left-traveling daughter crack was already propagating with a stable supershear rupture speed ( ≥ )V C2r s as it
crossed the on-fault station. This observation, coupled with the average normalized rupture speed estimate of =V C1.43r s
observed between the image frames recorded at = μt 49 s and = μt 53 s, conservatively bound the rupture speed interval to

≤ <V1.414 m/s 1.430 m/sr as the daughter crack tip swept the on-fault measurement station. The fact that the daughter
crack was accelerating leads to the conclusion that it was propagating with a rupture speed much closer to C2 s as it crossed
the measurement station between = μt 47 s and = μt 51 s. The conspicuous absence of any shear Mach fronts in the syn-
chronized image frame recorded at = μt 49 s only serves to bolster this hypothesis. The positive velocity swings exhibited by
each waveform component during the noted μ4 s pulse period are evidently attributed to the dilatational field, which
circulates about the supershear rupture tip, as depicted in Fig. 4.

The general profile and polarity corresponding to the sub-Rayleigh portion of the particle velocity records in Fig. 14
(e) correlate with the predicted sense of motion of a right-lateral/left-traveling sub-Rayleigh rupture. The particle velocity
waveforms are characterized by a dominant FN component, as expected for a sub-Rayleigh rupture, with the ratio between
the velocity components given by δ δ| ̇ | | ̇ | = ( ) ( ) =+ +u u/ 8.21 m/s / 5.48 m/s 1.52 1 . The resulting particle velocity waveforms bear the

Fig. 15. (a and b) Consecutive photoelastic image frames capture a shear Mach front crossing a particle velocity measurement station positioned at
( − )55, 5 mm. (c) Simultaneous FN and FP particle velocity records bear the distinct signatures of a leading dilatational field lobe followed by the sharp
velocity jump linked to the arrival of the shear Mach front, as portrayed by the synthetic waveforms displayed in Fig. 11.
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distinct signature of a “crack-like” sub-Rayleigh rupture, as revealed by the nearly constant sliding speed of ̇ =+u 1.4 m/s1 ,
which was sustained well after the rupture had crossed the measurement station.

The sub-Rayleigh rupture velocity waveforms gathered in (exp 0942) are representative of a broad range of sub-Rayleigh
rupture experiments, which were conducted using the (FN:FP) laser vibrometer configuration. The dominance of the FN
component was observed in all cases, i.e. δ δ| ̇ | | ̇ | >u u/ 12 1 , without exception. The form and polarity exhibited by sub-Rayleigh
particle velocity waveforms in our experiments are always found to be consistent with the anticipated sense of particle
motion, as predicted by theory.

8.5. Investigation of the velocity component ratio δ δ̇ ( ) ̇ ( )u z u z/s
s

s
s1 2 along a shear mach front using the (FN:FP) laser vibrometer

configuration

A set of supershear rupture experiments were conducted using the (FP:FN) laser vibrometer probe configuration de-
picted in Fig. 10(a). Simultaneous particle velocity waveforms were recorded at a variety of off-fault field points, as a su-
pershear rupture and its surrounding field swept past the measurement station. Direct measurement of the particle velocity
jumps δ ̇ ( )u zs

s1 and δ ̇ ( )u zs
s2 along the shear Mach front were obtained by taking advantage of the increased spatiotemporal

separation between the leading dilatational field lobe and the shear Mach front, with increased FN distance from the fault
plane. The ratio β δ δ= ̇ ( ) ̇ ( )u z u z/s

meas s
s

s
s1 2 was determined for 10 independent supershear experiments conducted over a broad

range of stable supershear rupture speeds ( < <C V C2 s r d). Results were then plotted against the normalized rupture speed
(V C/r s), which was determined through direct measurement of the shear Mach front angle as previously outlined.

Fig. 15 summarizes the key results obtained from a representative supershear rupture experiment (exp 0939). The
consecutive high-speed image frames in Fig. 15(a and b) reveal the supershear rupture and its surrounding field as it
approached and subsequently swept the off-fault measurement station located at ( − )55, 5 mm. Fig. 15(a), recorded at

= μt 37 s, shows the dilatational field lobe just as it began to sweep the measurement station. Fig. 15(b) reveals the shear
Mach front just as it reached the measurement station at = μt 37 s.

Fig. 15c displays the synchronized FN and FP particle velocity records recorded at the off-fault station ( − )55, 5 mm. The
pronounced velocity jumps δ ̇ ( )u zs

s1 and δ ̇ ( )u zs
s2 attributed to the arrival of the shear Mach front are annotated in the figure.

We note a μ1.35 s offset between the corresponding peaks of the FP and FN particle velocity records in (exp 0939). The
observed offset stems from the longer rise time exhibited by δ ̇ ( )u zs

s2 in the FN record. The cause of this unusually long rise
time is not well understood. One possible explanation is that the maximum slew rate of the amplified signal was reduced
due to an incorrect (lowered) electronic bandwidth setting of the modular controller channel dedicated to the FN vib-
rometer signal. A measured velocity jump of δ ̇ =u 2.844 m/ss

1 in the FP record and a corresponding velocity jump of
δ ̇ =u 2.101 m/ss

2 exhibited by the FN signal leads to an experimental estimate of β δ δ= ̇ | ̇ =u u/ 1.354s
meas s s

1 2 for the ratio be-
tween the FP and FN jumps along the shear Mach front. The measured value may be compared to the theoretically predicted

value given by Eq. (22). i.e., β = = −δ
δ

̇
̇ V C/ 1s

u

u r s
2 2

s

s
1

2
assuming that the normalized supershear rupture speed is known. An

estimate of the instantaneous supershear rupture speed was obtained by measuring the acute angles subtended by the
shear Mach fronts in both image frames. The measured value of = ±V C/ 1.69 0.02r s agrees very well with the average

Fig. 16. Measurements of δ δ̇ ̇u u/s s
1 2 determined from supershear experiments plotted versus the normalized rupture speed V C/r s. Excellent agreement be-

tween theory and experiment is demonstrated across a broad range of rupture speeds, which nearly span the entire domain of the supershear speed
regime. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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normalized rupture speed ¯ =V C/ 1.66r s obtained through a frame-by-frame analysis of the rupture tip position spanning
3 image frames recorded between = μt 29 s and = μt 37 s. The measured normalized rupture speed translates to a theore-
tically predicted value of β = ±1.36 0.03s in accordance with Eq. (10). The measured value of β = 1.354s

meas is thus found to
be within 1% of the theoretically predicted value.

The supershear experiment (exp 0939) summarized in Fig. 15 is representative of a group of 10 similar supershear
experiments conducted over a broad range of rupture speeds, which were analyzed in a similar manner. Estimates for βs

meas

obtained from each of these experiments are plotted against the corresponding (measured) normalized rupture speed in
Fig. 16. The solid red curve in the plot corresponds to the theoretical value given by β = −V C/ 1s r s

2 2 . The individual data
points are color coded according to the FN distance (x2) of the measurement station in the experiment. The horizontal error
bars in Fig. 16 correspond to the measurement uncertainty of 70.01 in the normalized rupture speed estimate.

Eight out of the 10 supershear experiments represented in Fig. 16 yielded a value for βs
meas that was found to be within

3.44% of the theoretically predicted value. There are two noted “outliers”, in the plot corresponding to a 9% error in (exp
09110) and 15.6% error observed in (exp 0939). The larger error observed in these two experiments is attributed to the “near
field disturbance” discussed in Section 8.2, which was superimposed upon the supershear rupture field as the shear Mach
front swept the off-fault station. The commonality between the eight “known good” experiments is that they all exhibited
an early sR to SS rupture transition, which allowed the shear Mach front to sweep the measurement in advance of the near
field disturbance. Experiments featuring early sR to SS rupture transitions are essential to achieving reliable shear Mach
front measurements when using the electrical rupture nucleation scheme.

Bearing all of these points and observations in mind, we conclude that the experimental results summarized by the plot
in Fig. 16 demonstrate excellent agreement between theory and measurement. The results demonstrate that the observed
ratio between the magnitudes of the FP and FN components along the shear Mach front is governed by the theoretical
relationship given by Eq. (22). The relationship is preserved out to a considerable distance from the fault plane, approxi-
mately 2" the thickness of the slipping region. In natural faults, this would correspond to several 10's of kilometers.

8.6. Amplitude decay of sub-rayleigh rupture fields: experimental investigations using the (FN1:FN2) vibrometer configuration

A set of sub-Rayleigh rupture attenuation experiments were conducted using the (FN1:FN2) laser vibrometer

Fig. 17. (a and b) Consecutive photoelastic image frames reveal the sub-Rayleigh rupture and its surrounding stress field lobes as they approach and
subsequently cross the particle a pair of measurement stations located at ( − )55, 0 mm and ( − )55, 10 mm. (c) FN particle velocity traces simultaneously
recorded at the on-fault and off-fault stations obtained by a (FN1:FN2) vibrometer probe configuration as depicted in the inset. The FN record obtained at
( − )55, 10 mm has decayed to 48% of its corresponding on-fault value.
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configuration depicted in Fig. 10(b). FN particle velocity records were simultaneously recorded at an on-fault measurement
station ( +x , 01 ) and off-fault measurement station (x x,1 2) as a sub-Rayleigh rupture and its extended field lobes swept past
these locations. The amplitude decay of the sub-Rayleigh rupture velocity field was investigated by examining the ratio
δ δ| ̇ ( )| | ̇ ( )|+u x x u x, / , 02 1 2 2 1 of the corresponding velocity swings at each location and plotting this ratio as a function of the fault
normal distance ( )x2 . The primary goal of the study was to investigate whether the observed amplitude decay was governed
by a r1/ relationship as predicted by the singular elastic dynamic shear crack model and to note any observed departures
from this theoretical prediction.

Fig. 17 summarizes the key measurements obtained from a representative sub-Rayleigh rupture experiment (exp 0973).
A rupture arrival time estimate of = μt 51.88 s, corresponding to a normalized rupture speed of =V C/ 0.91r s , was determined
through a frame-by-frame analysis of the high-speed images. The noted rupture speed observed in (exp 0973) is re-
presentative of the range of normalized rupture speeds ≤ ≤V C0.88 / 0.91r s observed in this study.

The pair of photoelastic image frames acquired at = μt 50 s and = μt 55 s in Fig. 17(a and b) reveal a sub-Rayleigh rupture
field as it approached and subsequently swept the on-fault and off-fault particle velocity measurement stations located at
( − )+55, 0 mm and ( − )55, 10 mm, respectively. Fig. 17(a), acquired at = μt 50 s, depicts the sub-Rayleigh rupture tip as it
approached the on-fault measurement station ( − )+55, 0 mm while the leading edge of the extended field lobe approached
the off-fault station at ( − )55, 10 mm. Fig. 17(b), acquired at = μt 55 s, reveals the rupture tip just after it crossed the on-fault
station while the trailing edge of the extended field lobe is seen crossing the off-fault station. The FN velocity swings
observed in (exp 0973) are each annotated and labeled in Fig. 17. Measured velocity swings of δ ̇ =u 3.04 m/s2 at
( − )+55, 0 mm and δ ̇ =u 1.45 m/s2 at the off-fault field point ( − 55, 10 mm) translate to an amplitude decay of 48% at a
distance =x 10 mm2 from the fault plane.

Experiment (exp 0973) is representative of 10 independent dynamic rupture experiments, which were all monitored
using the (FN1:FN2) laser vibrometer configuration. Fig. 18 summarizes the results of these experiments by plotting the
normalized amplitude decay δ δ̇ ( ) ̇ ( )+u x x u x, / , 02 1 2 2 1 versus the FN distance ( )x2 . Note that although only nine symbols are
shown, there are two superimposed triangular symbols corresponding to the data point at =x 1 mm2 and so there are
actually 10 experiments represented in the plot. The cluster of data points stationed within ( ≤ ≤ )x1 mm 2.5 mm2 with an
amplitude decay ratio near unity are a direct manifestation of the rupture process zone. The slight drop in the normalized
amplitude decay to a value of 0.986 at =x 2.5 mm2 signals the boundary of this zone, beyond which the amplitude ratio is
observed to rapidly decay. A normalized curve of the form ( ) ∝f x x x x/ 1/ /max max

2 2 2 2 provides a reasonable fit of the data points
spanning the range ( < <x2.5 mm 10 mm2 ) but tends to significantly overpredict the amplitude decay values observed at

=x 15 mm2 and =x 24 mm2 .

8.7. Relationship between the rupture sliding speed and the fp velocity component propagated by a shear Mach front: experi-
mental investigations using the (FP1:FP2) vibrometer configuration

The particle velocity waveforms in Fig. 19(a) were obtained from 4 independent supershear rupture experiments. In each
case, a FP vibrometer probe beam was focused at a different off-fault field point as indicated. The peak velocity attained by
the leading dilatational field lobe and shear Mach front portions of each velocity record are labeled p and q, respectively. The

Fig. 18. Amplitude decay of a sub-Rayleigh particle velocity field revealed by the measured ratio δ δ̇ ( ) ̇ ( )+u x x u x, / , 02 1 2 2 1 plotted versus the FN distance x2.
Results were obtained using the (FN1:FN2) vibrometer probe configuration depicted in the inset. The normalized curve ( ) ∝f x x x x/ 1/ /max max

2 2 2 2 provides a
reasonable fit of the data points spanning the range ( < <x2.5 mm 10 mm2 ).
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progressive separation Δtpq between these two peaks reveals how rapidly the two fields begin to separate with increased
distance ( )x2 from the fault plane. Indeed, this very same field property was exploited in order to obtain the experimental
estimates of β = ̇ ̇u u/s

meas s s
1 2 summarized in Fig. 16. Another striking feature revealed in the experimental records is the

pronounced broadening and rapid amplitude decay of the dilatational field lobe, which is in stark contrast to the sharper
and more sustained velocity jump propagated by the shear Mach front.

In actuality, the experiments depicted in Fig. 19(a) were each characterized by unique stress drops, supershear transition
distances, and rupture speeds, and so the stacked velocity records are not equivalent to four simultaneous FP measurements
obtained from a single supershear experiment. The ideal experiment to demonstrate this effect would require a set of
simultaneous FP measurements conducted at different distances from the fault plane during a single supershear rupture
experiment. A limited number of laser vibrometers prohibited this approach, and so the results from 4 independent ex-
periments were collated to create as shown to visualize the spatiotemporal separation between the shear Mach fronts and
the dilatational field lobe.

Fig. 19(b) portrays a corresponding set of synthetic velocity records derived from the steady state singular elastic shear
crack model. As previously noted, the time and velocity axes of the synthetic waveforms are dimensionless, and we make no
attempt to conduct a directly quantified comparison between theory and experiment. The aim is to highlight universal
spatiotemporal properties, which emerge from the steady state dynamic rupture models such as singular elastic shear crack
model and note the presence of these very same features within our experimental particle velocity records. As such, there is
a striking similarity between the spatiotemporal features exhibited by the synthetic waveforms and those observed in the
experimental particle velocity records. In particular, we note the progressive decay of the dilatational field and the increased
separation between the dilatational field lobe and the shear Mach front with increased distance (x2) from the fault plane.
The slower rise time of the velocity jumps associated with the arrival of the shear Mach front in the experimental records
compared to the virtually instantaneous step-like velocity jumps predicted by the steady state singular model reflects a
spatial variation of the velocity field within the shear Mach cone attributed to a finite rupture process zone.

A set of supershear rupture experiments were conducted using the (FP1:FP2) vibrometer configuration (Fig. 10(a)) in
order to investigate the scaling relationship, given by Eq. (32), between the rupture sliding speed ̇ ( )+u x , 01 1 and the FP
velocity field component ̇ ( )u x x,1 1 2 propagated by the shear Mach front. The results from supershear experiment (exp 0962)
in Fig. 20 are representative of a broader group of experiments, which were conducted and analyzed in a similar manner
using the (FP1:FP2) laser vibrometer configuration.

The consecutive high-speed images in Fig. 20(a and b) display the supershear rupture field as the propagating rupture tip and

Fig. 19. Synthetic curves derived from the singular elastic model in the upper panel demonstrate the progressive decay of the dilatational field and the
increased separation between the leading dilatational field lobe and the shear Mach front with increased FN distance (x2) from the fault plane. Similar
features are observed in the FP particle velocity waveforms depicted in the lower panel, which were obtained from five independent supershear
experiments.
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Fig. 20. (a and b) Photoelastic image frames reveal the supershear rupture tip and the shear Mach front approaching the on-fault and off-fault mea-
surement stations. (c and d) Truncated FP particle velocity waveforms recorded at the on-fault station ( − )+55, 0 mm and off-fault station ( − )55, 24 mm as
the rupture tip and shear Mach front swept the two locations.

Fig. 21. Plot of the measured ratio ̇ ̇ ( )+u u x/ , 0s
1 1 obtained from 10 independent supershear experimental records plotted against the normalized wave speed

V C/r s. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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shear Mach front approached the on-fault and off-fault measurement stations positioned at ( − )+55, 0 mm and ( − )55, 24 mm.
Fig. 20(a), recorded at = μt 33 s, reveals the dilatational field lobe just as it began to sweep the on-fault measurement station
( − )+55, 0 mm. Fig. 20(b), acquired at = μt 45 s, reveals the shear Mach front as it approached the off-fault station
( − )55, 24 mm. Mach angle measurements yielded a normalized rupture speed of =V C/ 1.85r s , which was consistent with the
average rupture speed estimate obtained through a frame-by-frame analysis of the high-speed image sequence. Fig. 20(c and d)
display the on-fault and off-fault FP particle velocity waveforms obtained in the experiment. Each waveform has been truncated in
order to highlight the portion of the record attributed to the arrival of dilatational field and shear Mach front. The velocity jumps
labeled δ ̇+u1 and δu̇ s

1 in Fig. 20 correspond to δ ̇ = ̇ ( − ) − ̇ ( − ) =+ + +u u u55, 0 55, 0 7.000 m/smax min
1 1 1 and

δ ̇ = [ ̇ ( − )] − [ ̇ ( − )] =u u u55, 24 55, 24 2.898 m/ss s
max

s
min1 1 1 , respectively. The measured on-fault and off-fault velocity jumps in (exp

0962) yield a ratio δ δ( ̇ ) ( ̇ ) =+u u/ 0.414s meas meas
1 1 . Application of Eq. (32) using the measured normalized rupture speed estimate of

=V C/ 1.85r s predicts a ratio of δ δ̇ ̇ =+u u/ 0.416s
1 1 . The measured value of 0.414 is thus found to be within 0.36% of the theoretically

predicted value.
Fig. 21 summarizes the results obtained from 10 independent supershear rupture experiments, which were analyzed in a

similar manner. The inset in the upper left corner of the figure depicts the (FP1:FP2) laser vibrometer configuration, which
simultaneously monitored the FP velocity component at the on-fault and off-fault field points. The solid blue curve cor-
responds to the scaling factor (rs), plotted versus the normalized rupture speed ( < <V C2 / 2r s ) in accordance with Eq. (32).
The experimental estimates (rs

meas) represented by the colored circular symbols in the figure span across a considerable
portion of the stable rupture speed regime. The symbol legend in the lower right corner provides a key to the coordinates of
the on-fault and off-fault coordinates for each experiment. A high correlation is observed between the measured ratios
obtained from the experiments and the theoretical scaling ratio given by Eq. (32). The largest error applies to exp 0993 and
exp 0960, which deviate by 12% and 10.8% respectively, from the theoretical value. The larger deviation observed in these
two experiments is attributed to the previously noted near field disturbance. We also note the range of FN distances over
which the tests were conducted and how the results appear to be independent of the FN distance (x2).

9. Conclusions

Spatiotemporal field properties and particle velocity waveform signatures of mode II sub-Rayleigh and supershear
ruptures have been theoretically examined and experimentally verified. We have appealed to singular and nonsingular 2D
steady state dynamic rupture solutions (Freund, 1979; Dunham and Archuleta, 2005) and gleaned unique scaling re-
lationships between the FN and FP components of the shear and dilatational fields radiated by a supershear rupture. Near
field particle velocity measurements were analyzed and interpreted within the context of these 2D steady-state theories.

The following properties of sub-Rayleigh rupture velocity fields were identified and experimentally verified by LEQ
experiments using the (FN:FP) and (FN1:FN2) vibrometer probe configurations: (1) Sub-Rayleigh ruptures propagate with
stable rupture speeds, which asymptotically approach the Rayleigh wave speed, i.e., <V Cr R. (2) The particle velocity wa-
veforms of a sub-Rayleigh rupture are distinguished by a FN component ( ̇ ( )u t2 ), which always dominates in magnitude over
the FP component ( ̇ ( )u t1 ). (3) A strong correspondence was demonstrated between the predicted profile and polarity of
synthetic particle velocity waveform profiles and particle velocity records corresponding sub-Rayleigh ruptures observed in
LEQ experiments. (4) The amplitude decay of the FN velocity field was experimentally investigated using the (FN1:FN2)
vibrometer configuration. Measurements exposed the spatial extent of the rupture process zone and reveal an amplitude
decay, which was reasonably well modeled by a r1/ curve fit for field points extending from the outer boundary of the
rupture process zone out to a FN distance =x 10 mm2 from the fault plane.

The following properties of supershear rupture velocity fields were identified and experimentally verified by LEQ ex-
periments using the (FN:FP) and (FP1:FP2) vibrometer probe configurations: (1) a concentrated dilatational field lobe was
identified, which circulates about the supershear rupture and extends out well beyond the region bounded by the shear
Mach fronts. The dilatational field lobe induces a velocity disturbance in the FP and FN waveforms, characterized by a

dominant FP component (u̇d
1 ), which always arrives in advance of the shear Mach front. (2) The dilatational field (u̇d)

contribution is identified in supershear particle velocity records and observed to decay rapidly with increased FN distance,
albeit more slowly than the rate of decay of a sub-Rayleigh rupture field. (3) The shear and dilatational field contributions of
a supershear rupture field are predicted to separate rapidly with increased distance from the fault plane. The effect is
repeatedly observed in LEQ experiments and exploited to probe the particle velocity field components propagated by the
shear Mach front. (4) Motion propagated by the shear Mach front is characterized by a FP component ( ̇ ( )u ts

1 ), which

dominates in magnitude over the FN component ( ̇ ( )u ts
2 ) in the stable rupture speed regime ( ≤ ≤C V C2 s r d). (5) The ratio

between the particle velocity jumps propagated by the shear Mach front was shown to observe the fundamental re-

lationship β ξ= ( )δ
δ

̇
̇ sgn

u

u s 2

s

s
1

2
. (6) A peculiar circumstance arises when =V C2r s whereby the shear Mach front is predicted to

vanish. The effect was observed and analyzed during the investigation of a supershear daughter crack.
The non-singular solution for a steady state intersonic slip pulse (Dunham and Archuleta, 2005) was also discussed and

examined. The non-singular model recovers spatiotemporal field properties and scaling relations predicted by singular
elastic theory. The solution given by Dunham and Archuleta (2005) applies equally well to crack-like ruptures observed in

M. Mello et al. / J. Mech. Phys. Solids 93 (2016) 153–181180



LEQ experiments by considering the limiting case of a very long pulse length. New scaling relationships were gleaned from
the non-singular solution, which relate the supershear rupture sliding speed, measured at the fault plane, to the FP com-
ponents of the shear and dilatational fields radiated away from the fault plane. In particular, the speed-dependent kinematic

scaling relationship given by = = β
β

̇ ( )
̇ ( )

−
+

+
+rs

u x

u x

, 0

, 0

1

1

s
s

s

1 1

1 1

2

2 was derived and experimentally verified using the (FP1:FP2) vibrometer

probe configuration.
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