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Abstract

Major fault systems are inherently complex in their geometrical properties, such
as heterogeneous strike directions, discontinuities, and depth variations. The fault
geometry can be effectively reconstructed using a variety of geologic, geodetic, and
geophysical approaches; for instance, surface traces can be determined through field
surveys, while depth variations can be quantified by monitoring the distribution of
seismicity. Many geological and geophysical studies have shown that the geometri-
cal complexity of fault systems in nature decisively influences the initiation, arrest,
and recurrence of seismic and aseismic events. Nonplanar faults, with their multi-
scale roughness, introduce stress heterogeneity that determines earthquake size by
controlling rupture termination. Rupture jumps across fault step-overs can signifi-
cantly increase the size of earthquakes, heightening the risk and potential damage.

Therefore, to estimate earthquake magnitudes more accurately and unravel the
complexities of the rupture process, it is imperative to develop an earthquake cy-
cle model that can accurately capture the subtleties of fault geometry efficiently.
However, such a refined fault model often requires huge computational costs, with
problem size sometimes reaching up to a million degrees of freedom. Some previ-
ous models simplified the problem into two dimensions, unable to simultaneously
account for variations in geometry from both strike and depth directions. However,
in seismological observations study, Ross et al. (2020) revealed that the 3D varia-
tion in fault architecture significantly governs earthquake swarms, a critical factor
overlooked in 2D models. Additionally, traditional accelerated approaches for 3D
modeling are effective only for a single planar fault.

Here, we present an innovative 3D quasi-dynamic earthquake cycle model us-
ing the boundary element method accelerated by Hierarchical matrices. This ap-
proach allows us to account for elastic interactions among multiple fault segments
and heterogeneous stress fields arising from nonplanar fault planes over multiple
earthquake cycles. By using Hierarchical matrices, we reduce computational com-
plexity from O(N2) to O(N logN), where N represents the number of discretized
fault elements. For a fault discretized with 105 elements, the traditional algorithm
requires 1010 resources. In contrast, H-matrices reduces this to 1.16× 106.

We have cross-validated our code with analytical solutions for static cracks (such
as the penny-shaped crack and cracks with a cohesive zone) and compared it with
numerical solutions for planar fault dynamics from the Southern California Earth-
quake Center SEAS benchmark community.
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Weapply thismethod to a configurationwith two parallel planar faults. For a sin-
gle isolated fault under spatial uniform rate-weakening friction, regular earthquakes
occur if the fault length exceeds the nucleation length. However, when considering
the interaction between two faults, spatiotemporal complex slip events emerge due
to the stress perturbation from the neighboring fault. Various slow slip events, as
well as earthquakes having partial or full ruptures, are identified in the slip catalog.
We systematically investigate how geometrical and frictional properties influence
these complex seismic and aseismic sequences. By incorporating interactions from
the third dimension, our model allows for a broader range of parameters that sup-
port the coexistence of earthquakes and slow slip events compared to 2D models.
For moment-duration scaling of slow slip events, there has been an ongoing debate
in observational studies regarding the cubic and linear scaling relations. Our nu-
merical results suggest that this discrepancy may heavily depend on the chosen slip
rate threshold for identifying slow slip events.

We further demonstrate the practical application of our model on a realistic fault
system reactivated during the 2023 Kahramanmaraş doublet Turkey earthquakes. By
incorporating actual fault geometry and applying a stress field smoothed by geome-
try, we can accurately reproduce the bilateral rupture on the Eastern Anatolian Fault
and the delayed triggering on the Cardak fault. This real-world application of our
model underscores its potential to enhance our understanding of seismic events and
aid in earthquake risk assessment and mitigation strategies.
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Chapter 1

Introduction

1.1 The earthquake cycles

An earthquake occurs when there is a sudden movement between two blocks of the
Earth’s lithosphere. This movement is associated with the rapid release of energy
accumulated in the Earth’s crust. The interface along which the blocks slip is known
as the fault plane. During an earthquake, energy radiates outward from the fault,
causing ground shaking that can lead to significant loss of life and extensive property
damage.

Grove Karl Gilbert first recognized that strain accumulates in the Earth’s crust
due to tectonic processes until the stress exceeds the frictional resistance along fault
lines, prompting motion to relieve the strain (Gilbert, 1884). After a few decades,
Harry Fielding Reid developed the more quantitative "elastic rebound theory" after
analyzing displacement and geodetic data from the 1906 San Francisco earthquake
(Reid, 1910).

According to this theory, the lithosphere is divided into tectonic plates that move
slowly and build up stress along faults. This stress accumulates within the system
until it is released. The faults remain locked until the accumulated stress overcomes
this frictional resistance, releasing strain energy through earthquakes. This stress
accumulating and releasing process repeats over a geologic time scale. Research
indicates that the Earth’s crust cannot sustain elastic strain levels much beyond 10−5

without failure (Kanamori, 1977). Additionally, Byerlee (1967) demonstrated that
while friction along fault surfaces is generally consistent regardless of the type of
rock, factors such as rock type, the presence of gouge, asperities, and fluid pressure
can significantly influence the level of stress buildup before an earthquake. The
released strain energy during an earthquake is utilized in heating, fracturing, and
generating radiated seismic waves.
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Reid’s insights also led to predictive earthquake models, such as the character-
istic earthquake model, which suggests that large earthquakes occur periodically
and are predictable over time. This model has been observed in action along the
Parkfield section of the San Andreas fault in California, which has experienced at
least five earthquakes with magnitudesMw > 6 since 1857, at an average recurrence
interval of 22 years (Bakun and Lindh, 1985). However, due to the complex and het-
erogeneous nature of the Earth’s crust, actual earthquake sequences are often more
intricate than predicted by this model (Scholz, 2019).

In laboratory experiments, alternating locking and slipping between two sur-
faces in contact is known as stick-slip behavior, a recognized mechanism for earth-
quakes (Brace and Byerlee, 1966). The "stick" phase corresponds to the accumulation
of stress, while the "slip" phase refers to the sudden release of stress. The tempo-
ral evolution of stress during an earthquake cycle includes four phases: preseismic,
where stress builds up to the rupture threshold; coseismic, where the fault suddenly
slips and releases energy; postseismic, where aftershocks occur, and stress is redis-
tributed; and interseismic, where stress begins to accumulate once more until the
next earthquake. This complete cycle has been observed in the Parkfield (Murray,
2006).

1.2 Fault geometrical complexities

Seismic hazard assessment is crucial for societal safety and infrastructure resilience,
as it aims to quantify seismic risks for informed decision-making and preparedness.
The maximum magnitude of earthquakes, influenced by the complexity of fault sys-
tems, is a critical aspect of this assessment. The geometrical complexity of fault
systems in the natural environment decisively influences the initiation, propagation,
and arrest of seismic events (King and Nábělek, 1985; Nakata et al., 1998;Wesnousky,
2006). With their multi-scale roughness, nonplanar faults introduce stress hetero-
geneity that can determine earthquake size by controlling rupture termination. Rup-
ture jumps across fault step-overs can significantly increase the size of earthquakes,
heightening the risk and potential damage. Therefore, considering fault geometry is
essential for understanding fault dynamics and accurately assessing seismic hazards.

1.2.1 Refined fault structure

In order to more accurately estimate earthquake magnitudes and unravel the com-
plexities of the rupture process, it is imperative to develop refined fault models that
accurately capture the subtleties of fault geometry. The realistic fault system’s ge-
ometry can be comprehensively reconstructed using various techniques. Field sur-
veys directly observe surface ruptures, while satellite imagery offers a broad view
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Figure 1.1: 3D representation of active faults in Southern California, plotted
data from Southern California Earthquake Center (SCEC) Community Fault Model
(CFM)(Plesch et al., 2007), color-coded by different fault segments.
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Figure 1.2: 3D representation of active fault zone in New Zealand from GNS science
CFM. Color represents the depth of faults. From Seebeck et al. (2023).
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Figure 1.3: (a) A fault zone consists of a fault core, where strain is highly localized,
surrounded by a fractured damage zone. The density of fractures decreases with
distance from the fault core. (b) A global view of the conceptual structure of a fault
zone. From Cocco et al. (2023).

of affected areas. Interferometric Synthetic Aperture Radar (InSAR) offers precise
surface geometry mapping by detecting surface displacement discontinuities (Mas-
sonnet and Feigl, 1998; Bürgmann et al., 2000). Advanced technologies like 3D terres-
trial laser scanning (TLS) and drones can give us detailed fault geometries (Wilkin-
son et al., 2010; Liu-Zeng et al., 2022). Fault depth information, which is difficult to
measure from the surface, can be inferred from the distribution of seismicity with
high resolution (Ross et al., 2020, 2022). Other approaches like Global Positioning
System (GPS) and Interferometric Synthetic Aperture Radar (InSAR) inversion, seis-
mic reflection profiles, and geological cross section can also help to constrain fault
depth. By combining these approaches, we gain valuable insights into the geometry
of fault systems. A combined approach has been successfully used in places such as
Central Apennines (Faure Walker et al., 2021), Turkey (Emre et al., 2018), Southern
California (Plesch et al., 2007), and New Zealand (Seebeck et al., 2023). The latter
two regions, Southern California and New Zealand, are illustrated in Figure 1.1 and
Figure 1.2, respectively.

The geological understanding of fault zones recognizes their inherent complexity
rather than viewing them as a single fault plane. Typically, a fault zone consists of
one or multiple fault cores surrounded by a fractured damage zone (Mitchell and
Faulkner, 2009; Cocco et al., 2023). As illustrated in Figure 1.3, the damage zone is
highly fractured, and the density of fractures decreases with distance from the fault
core. Fault slips occur in the principal slip zone within the fault core, which is often
simplified as a fault plane in earthquake modeling.
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Figure 1.4: Summary of subduction zone structure inferred from seismicity. Earth-
quakes occur on a network of subparallel faults that are meters-thick. From
Chalumeau et al. (2024).

Recent seismological studies in Ecuador have conceptualized the subduction zone
as a network of meters-thick, subparallel, anastomosing faults at the plate interface
(Chalumeau et al., 2024). With a double-difference algorithm, these studies have
provided an unprecedentedly detailed image of the subduction interface seismic-
ity in Ecuador, revealing that earthquakes occur on several meters-thick subparallel
planes rather than a single planar fault. This geometrical complexity influences the
spatiotemporal evolution of seismic and aseismic slip. Fluid diffusion cannot explain
these observations, as the aftershock area expansion did not follow the fluid diffu-
sion front. This finding is illustrated in Figure 1.4 and aligns with geological and
geophysical estimates of the active plate interface thickness.

1.2.2 The role of complex fault geometry on earthquakes

Geological and geophysical investigations have highlighted the interconnected rela-
tionship between fault geometry and seismic behavior. Local geometrical features,
such as bends and steps, have been studied through the analysis of surface rupture

– 6 –



CHAPTER 1. INTRODUCTION

traces from historical earthquakes (Biasi andWesnousky, 2016, 2021). For strike-slip
earthquakes, the probability of a rupture jumping across a jog is given by the formula
1.89−0.31×ds, where ds is the jogwidth in kilometers. Large steps, defined as greater
than 5 km for strike-slip faults and greater than 16 km for dip-slip faults, act as hard
barriers to rupture propagation. Previous earthquakes create stress shadow barriers,
which can terminate or decelerate the rupture process. Concurrently, mechanical
analyses emphasizing elastic interaction underscore the pivotal role of geometry in
fault mechanics (Segall and Pollard, 1980). In addition, observations from seismic
events challenge the notion of isolated fault behavior. For instance, the 1992 Mw 7.3
Landers earthquake illustrated the phenomenon of multiple faults being activated
simultaneously (Hauksson et al., 1993; Cohee and Beroza, 1994; Sieh et al., 1993).
Similarly, the 2001 Mw 8.1 Kokoxili earthquake showed rupture propagation across
two strike-slip segments via an extensional step-over, marked by a notable delay
(Antolik et al., 2004). The Kunlun Fault has experienced multi-segment ruptures in
over five historical earthquakes (Xu et al., 2002). The 2009 Mw 6.3 L’Aquila event in
the Central Apennines, involving the L’Aquila segment and the Campotosto listric
fault, serves as a case study for understanding the role of fault geometry, with the lat-
ter exhibiting dip variations with depth (Chiaraluce, 2012). The 2015 Mw7.8 Gorkha
earthquake in Nepal occurred on a gently dipping section of the Main Himalayan
Thrust (MHT), suggesting that fault geometry plays a primary role in controlling
the magnitude and location of seismic events (Hubbard et al., 2016). In the 2016
Mw 7.8 Kaikoura earthquake, an array of faults ruptured simultaneously (Hamling
et al., 2017; Cesca et al., 2017), underscoring the complex interactions within fault
networks and reinforcing the idea that the structural characteristics of faults deeply
influence seismic behavior.

Lee et al. (2024) investigates the impact of fault-network geometry on surface
creep rates in California. The study finds that simpler fault geometries correlate with
smooth fault creeping, whereas more complex geometries are prone to locking and
exhibit stick-slip behavior, leading to earthquakes. Traditional models, which rely
on laboratory-derived rate-and-state frictional parameters, often overlook the role of
fault-system geometry. The results indicate that accommodating regional stress due
to large-scale geometrical complexity is critical in determining faults’ seismogenic
nature. Moreover, unstable slip behavior is influenced by the entire fault system
rather than just individual fault properties. See Figure 1.5. However, quantitatively
determining the influence of fault geometry on slip behavior remains challenging.
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Figure 1.5: (a) Two different fault behaviors, creeping and seismogenic. (b) Tradi-
tional approach to explanation, rate and state friction law. (c) Fault network com-
plexities explanation. From Lee et al. (2024).
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1.3 Slip spectrum of faults in observations

1.3.1 Observation of slow slip events

It has long been recognized that earthquake-related slip accounts for only a frac-
tion of the overall slip budgets within plate tectonics. As continuous geodetic net-
works have improved, researchers have discovered slow slip events (SSEs) in var-
ious tectonic environments, for example in subduction zone: Cascadia subduction
zone (Hirose et al., 1999; Dragert et al., 2001), in continental strike-slip fault sys-
tems e.g., Haiyuan fault (Jolivet et al., 2013), San Andreas fault (Rousset et al., 2019).
These events involve episodic, slow shear motion along faults (a few orders of mag-
nitude faster than plate motion velocity) with no or minimal seismic activity. These
events can range from small to large magnitudes, sometimes comparable to earth-
quakes of the same magnitude. Although SSEs generate little seismic radiation,
large-magnitude events can still cause significant stress perturbations and accu-
mulated slip on the fault, affecting its behavior. They are closely linked spatially
and temporally with low-frequency earthquakes (LFEs), very low-frequency earth-
quakes (VLFEs), and tremors (Ito et al., 2007; Shelly et al., 2007; Michel et al., 2018),
exhibiting a lower frequency of seismic radiation compared to regular earthquakes of
same magnitudes. Therefore, seismological instruments can indirectly detect slow
slip events by tracking the migration of tremors, repeating earthquakes, or LFEs
(Kato et al., 2012; Bouchon et al., 2011; Uchida, 2019; Frank and Brodsky, 2019), which
improve detection capabilities for slow slip events (Figure 1.6).

Slow slip events are ubiquitous in subduction zones and exhibit a diverse range
of spatiotemporal complexities. Sometimes, they can be observed in shallow depths
or below the seismogenic zone (Figure 1.7). In Nankai Trough, short-term SSEs are
discovered with a duration spanning from days to weeks and 3-6 months recurrence
time (Obara et al., 2004; Hirose and Obara, 2006) and long-term SSEs are observed in
deep areas with around a 1-year duration and 6-year recurrence time (Ozawa et al.,
2001). Shallow SSEs, locked areas, long-term SSEs, and short-term SSEs are observed
from the shallow part to the down-dip extension. In Hikurangi, shallow SSEs are
accompanied by microearthquakes, and deep SSEs are long-term with a duration
of 2-3 months and a recurrence interval of 2 years with no tremors (Wallace and
Eberhart-Phillips, 2013).

Slow slip events (SSEs) have a complex relationship with earthquakes in space
and time. In the San Andreas fault, slow and fast rupture can coexist on the same sec-
tion of the fault (Shelly, 2009; Veedu and Barbot, 2016). Tremor signalswere observed
18 months prior to the 2004 Mw 6.0 Parkfield earthquake. There are also examples
of SSEs that can occur before earthquakes (Bürgmann, 2018; Martínez-Garzón and
Poli, 2024). Slow slip events can serve as a precursor to main earthquake (Bürgmann,
2018; Martínez-Garzón and Poli, 2024). The 1999 Mw7.6 Izmit earthquake was pre-
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Figure 1.6: Seismic and geodetic observation of slow phenomenon and earthquakes.
(a) Tremor in Japan. (b) Very low-frequency earthquake in Japan. (c) Low-frequency
earthquakes from Japan. (d) Mw1.9 Earthquake in Western Washington. (e) A slow
slip on Vancouver Island was observed on daily GPS. Slow slip is marked in a shaded
area. (f) A slow slip in western Washington was observed from strain measurement
(g) The 2001 Mw8.4 Peru earthquake was detected by GPS displacement. The large
offset represents the coseismic slip. From Peng and Gomberg (2010).

– 10 –



CHAPTER 1. INTRODUCTION

Figure 1.7: Slip behavior of strike-slip on a subduction thrust fault. (a) The schematic
illustration depicts seismic and aseismic slip on the Parkfield section of the San An-
dreas Fault. Both slow and fast slip can occur in the lower crust, with aseismic
slip predominantly occurring below the seismogenic zone. (b) A conceptual cross-
section of the strike-slip fault, highlighting the depth variation of temperature, rock
type, and deformation mechanisms, all of which influence different fault slip behav-
iors. From Bürgmann (2018).
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ceded by a 44-minute slow slip (Bouchon et al., 2011). A slow slip event in Guerrero
triggered the 2014 Mw 7.3 Papanoa earthquake (Radiguet et al., 2016). In the Casca-
dia subduction zone, GPS observations suggest that the merging of slow slip event
fronts, potentially leading to a major earthquake, maybe a possible mechanism for
earthquake occurrence (Bletery and Nocquet, 2020).

Earthquakes can also trigger SSEs. The 2016 Mw7.8 Kaikoura earthquake trig-
gered a slow slip on the southern Hikurangi subduction zone (Wallace et al., 2018).
The 2017 Chiapas earthquake in Mexico triggered a slow slip event on the southern
San Andreas Fault, located 3000 km away from the earthquake’s epicenter (Tymo-
fyeyeva et al., 2019). SSEs can also occur periodically without earthquakes, like in
Cascadia (Rogers and Dragert, 2003) and Hikurangi subduction zone (Wallace et al.,
2016). The relationship between earthquakes and SSEs is still unclear and needs
more studies and investigation.

Those slow phenomena significantly influence fault behavior by altering the
stress field and having intricate relationshipswith earthquakes (Avouac, 2015; Bürgmann,
2018; Obara and Kato, 2016). Understanding slow slip events is crucial for gain-
ing insights into earthquake mechanisms. There are several explanations for the
mechanism of SSEs. SSEs can emerge from the transition of rate and state friction
stability from velocity-weakening to velocity-strengthening (Liu and Rice, 2005; Ru-
bin, 2008). Heterogeneous frictional properties, such as varying the proportions of
velocity-weakening and velocity-strengthening patches, can produce stable, slow, or
dynamic slip events along the fault (Skarbek et al., 2012; Luo and Ampuero, 2017; Nie
and Barbot, 2021). Moreover, fault width plays a role in limiting rupture nucleation
and stabilizing the faults (Liu and Rice, 2007). Mechanisms like dilatant strength-
ening (Segall et al., 2010; Liu and Rubin, 2010) or frictional restrengthening at high
slip speeds (Kato, 2003; Shibazaki and Shimamoto, 2007; Im and Avouac, 2021) can
modulate fault stabilization and instigate slow slip events. Additionally, thermal
instabilities resulting from shear heating and temperature fluctuations can trigger
SSEs (Wang and Barbot, 2020). Furthermore, the brittle-ductile (frictional and vis-
cous deformation) transition (Nakata et al., 2011; Ando et al., 2023) and the presence
of fluids (Bernaudin and Gueydan, 2018; Cruz-Atienza et al., 2018; Bhattacharya and
Viesca, 2019; Gao and Wang, 2017) are factors that also contribute to the occurrence
of slow slip events.

1.3.2 Scaling and statistical laws

Seismological observations have revealed various statistical laws governing earth-
quake behavior. This section introduces three universal laws: Moment-Duration
scaling, Gutenberg-Richter’s law, and Omori’s law.
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Moment-Duration Scaling

Moment-duration scaling relates the seismic momentM to the duration of the earth-
quake. The seismic moment is given by:

M = µδA, (1.1)
where µ is the shear modulus, δ is the slip, and A is the rupture area.

Assuming a circular crack model (Kostrov, 1964) with a constant stress drop and
constant rupture velocity, the area A of the expanding circular crack is πV T 2, where
V is rupture velocity, T is the duration, and the slip δ is proportional to T . Thus, the
seismic moment scales as follows:

M ∼ T 3. (1.2)
Especially, for a 1D crack, where A = V T , the moment scales asM ∼ T 2.

For pulse-like ruptures, where the rupture saturates the width of the fault, the
area A is proportional to V T , and the slip δ remains constant. In this case, the mo-
ment scales as (Romanowicz and Rundle, 1993):

M ∼ T. (1.3)

Earthquakes typically adhere to the cubic scaling law (Kanamori and Anderson,
1975). However, the scaling relations for slow slip events (SSEs) remain a topic of
debate in observational studies. See Figure 1.8. Some research supports the cubic
law, such as the analysis of 10 years of GPS data from the Cascadia subduction zone
(Michel et al., 2018) and the tracking of SSEs inMexico through low-frequency earth-
quakes (Frank and Brodsky, 2019). Conversely, other studies propose a linear scaling
relation for slow earthquakes (Ide et al., 2007; Huang and Hawthorne, 2022; Ide and
Beroza, 2023).

A limitation in current studies is the observational gap and the limited range
of magnitudes covered by each study, making it challenging to resolve the scaling
behavior across all earthquake sizes fully.

Guternberg-Richter law and Omori law

The Gutenberg-Richter Law is a fundamental empirical relationship that describes
the frequency-magnitude distribution of earthquakes (Gutenberg and Richter, 1944).
It states that in a region, the number of earthquakes N of a given magnitude M or
greater is exponentially related to the magnitude:
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Figure 1.8: Summary of Moment-Duration scaling relations from various studies.
"Hidden" indicates limitations due to detectability. The blue wide band shows the
linear relationship between moment and duration. The red wide band shows the
cubic relationship between moment and duration. From Ide and Beroza (2023).
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N(M) = 10a−bM , (1.4)

where N is the number of earthquakes above a magnitude M , a is constant for a
region, b is the decay exponent, and in most cases, the value is 0.9 ∼ 1.5. The statis-
tics of slow slip events with tremors in the Cascadia subduction zone also follow
the Gutenberg Richters law (Michel et al., 2019). This law indicates that small earth-
quakes are far more common than large ones. for seismic hazard assessments. A
lower b-value suggests a higher probability of larger, potentially more damaging
earthquakes. In comparison, a higher b-value suggests that the seismic activity is
dominated by smaller, less destructive events.

TheOmori Law describes the decay of aftershock activity following amain earth-
quake. It states that the rate of aftershocks N decreases over time t following the
main shock (Omori, 1894; Utsu et al., 1995):

N(t) =
k

(c+ t)p
, (1.5)

where t is the time from mainshock, k, c are constant and p is the decay exponent,
ranging from 0.9 to 1.5 (Utsu et al., 1995). This law demonstrates that the frequency
of aftershocks decreases inversely with time after the mainshock.

These laws help seismologists understand and predict earthquake behavior, con-
tributing to hazard assessment and mitigation efforts.

1.4 Modelling of earthquakes

As discussed in the previous section, earthquakes occur when the shear stress ac-
cumulated along a fault reaches the frictional resistance at the fault interface. Un-
derstanding the mechanisms of fault friction is fundamental to comprehending the
various physical processes underlying earthquakes.

1.4.1 Fault friction in earthquake physics

Historical Development of Friction Laws

The concept of friction was first explored by Leonardo da Vinci in 1493 through his
experiments, though his findings were not published at the time. Approximately
200 years later, Guillaume Amonton formulated two foundational laws of friction:
friction is proportional to the applied load and independent of the contact area be-
tween two surfaces. In 1785, Charles-Augustin de Coulomb expanded on this by
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Figure 1.9: Illustration of the slip weakening friction law. After slip initiates, friction
coefficient µf decreases as slip increases, over a characteristic slip distance Ds, until
it reaches dynamic friction µd.

distinguishing between static and dynamic friction, noting that dynamic friction is
independent of the sliding velocity and is typically lower than static friction. The
Amonton-Coulomb model calculates frictional force as follows:

τ = fσn, (1.6)

where f is the friction coefficient and σn is the normal stress.

Rabinowicz (1958) experimentally distinguished static friction fromdynamic fric-
tion and introduced the concept of critical slip distance. Later, the slip-weakening
model, developed by Ida (1972), Palmer and Rice (1973), and Andrews (1976), became
widely used in modeling single earthquake rupture processes. When the fault starts
to slip, as the slip δ increases, the friction coefficient decreases linearly with slip over
a characteristic slip distance Dc until it reaches a lower steady-state value dynamic
friction µd and then keeps constant (Figure 1.9). The slip-weakening friction law is
given as

µf =

{
µs − (µs − µd) · δ

Dc
δ < Dc

µd δ ≥ Dc

, (1.7)

where µs is static friction coefficient, µd is dynamic friction coefficient and Dc is
characteristic slip distance.

The slip-weakening law can not describe the repeating stick-slip behavior and
models multiple earthquake cycles. Dieterich (1972) showed that with a slide-hold-
slide experiment, the static friction increases with the logarithm of the contact time
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Figure 1.10: (a) The static friction coefficient increases linearly with the logarithm
of hold time in slide-hold-slide experiments. Solid symbols are with bare rock; open
symbols are for fault gauges. (b) Friction coefficient as a function of displacement
in slide hold slide experiments (c) At a new steady state, with increasing velocity,
dynamic friction shows a logarithmic dependency on slip rate. (d) Friction coefficient
evolution with displacement in one velocity step experiment with direct effect and
evolution effect. From Marone (1998).
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Figure 1.11: The friction coefficient evolves with displacement. When the velocity
increases from V0 to V , the friction initially rises rapidly (red curve) in a process
known as the direct effect, with the increment characterized by parameter a. This
is followed by a reduction over a characteristic distance Dc (blue curve), known as
the evolution effect, with the decrease characterized by the parameter b. If a > b, the
friction at higher slip rates is greater, leading to velocity strengthening and stable
sliding. Conversely, if a < b, the friction at higher slip rates is lower, leading to
velocity weakening, which favors instability to produce earthquake-like events.

(Figure 1.10a). Dieterich (1979a) performed velocity step experiments and found that
the friction increases rapidly from a steady state following a velocity jump and then
undergoes a relaxation over a certain distance to another steady state, as seen in Fig-
ure 1.10d. The rate and state friction (RSF) law incorporates state-dependent friction
and considers healing effects, based on the above experiment evidence, which was
further refined by Ruina (1983) with the introduction of the state variable θ, rep-
resenting contact time of asperities (Dieterich and Kilgore, 1996). For dry friction,
Dieterich (1979b); Ruina (1983) presented the following RSF law:

f = f0 + a log

(
V

Vref

)
+ b log

(
θVref
Dc

)
, (1.8)

where a and b are constitutive parameters that represent "direct effect" and "evolution
effect" respectively (Figure 1.11 red and blue line), Dc denotes the characteristic slip
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distance, f0 is reference friction coefficient, and typical value is around 0.6, Vref is the
reference slip rate. The a− b is influenced by factors such as temperature, rock type,
and normal stress indicated by lab experiments (Blanpied et al., 1998). When a > b,
the steady-state friction increases with increasing velocity, a phenomenon known as
velocity strengthening. Conversely, when a < b, the steady-state friction decreases
with increasing velocity, known as the velocity weakening. See Figure 1.11. Regions
exhibiting velocity weakening are more prone to seismic slip, whereas regions with
velocity strengthening are more likely to experience aseismic slip. In experiments
of Blanpied et al. (1995), velocity weakening behavior was observed at temperatures
ranging from approximately 100oC to 300oC,while the velocity strengthening behav-
ior was noted at temperatures between 350oC to 600oC. Given the thermal gradient
within the Earth, a−b also varies with depth, indicating the range of the seismogenic
depth. The state variable θ evolves according to the aging law (Dieterich, 1972):

θ̇ = 1− V θ

Dc
. (1.9)

For steady state, the condition θ̇ = 0 is satisfied. Hence, the state variable at
steady state is given by θss = Dc

V . The steady-state friction coefficient is then fss =

f0 + (a− b) log
(

V
Vref

)
.

For the slip law (Ruina, 1983):

θ̇ = −V θ
Dc

ln
V θ

Dc
. (1.10)

The main difference between aging law and slip law is how they describe the
evolution of state variable, which represents the history of contact conditions on
fault surface. The aging law suggests that the state variable evolves with time, while
the slip law suggests that the state variables evolves with slip.

In the microphysical view, RSF is also believed to be controlled by a thermally
active Arrhenius process that represents the break of atomic bonds at junctions con-
necting the sliding surface (Rice et al., 2001; Nakatani, 2001).

The RSF law also has limitations, particularly in its ability to consistently repro-
duce laboratory results. The aging law within RSF reproduces time-dependent fric-
tion but shows asymmetry for increasing and decreasing velocities, which is not con-
sistent with observed laboratory results (Blanpied et al., 1998). On the other hand,
the slip law cannot reproduce time-dependent friction. However, Bhattacharya et al.
(2022) demonstrated that friction is more sensitive to slip than to time. From a lab-
oratory experiment perspective, the slip law fits the data better.
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Regularized Rate and State Friction Law

The rate and state friction law is empirically derived from laboratory observations.
Its logarithmic terms pose challenges in scenarios where the slip rate approaches
zero or becomes negative. This is particularly relevant in earthquake simulations of
complex earthquakes, where the sign convention can lead to negative slip rates, e.g.,
left lateral and right lateral slip.

The theoretical basis of the logarithmic form assumes that the direct velocity
effect results from stress biasing of the activation energy in an Arrhenius rate pro-
cess at contact junctions. This implies that forward jumps are more frequent than
backward jumps.

The slip rate V can be derived from Equations 1.6 and 1.8:

V = Vref · exp τ

−aσ′ · exp−
Ψ

a
, (1.11)

whereΨ = f0+b log
(
θVref

Dc

)
represents the current absolute offset of the friction. The

term exp
(

τ
−aσ′

)
reflects the frequency of forward microscopic jumps. However, this

classic RSFmodel does not account for backwardmicroscopic jumps as V approaches
zero.

To address this, the regularized form of RSF adds exp
(

τ
aσ′

)
to represent backward

jumps. This refinement enables the model to handle scenarios where V is zero or
negative.

The regularized form is given by:

V = Vref · (exp τ

−aσ′ − exp
τ

aσ
′ ) · exp−

Ψ

a
= 2Vref · sinh τ

−aσ′ exp−
Ψ

a
. (1.12)

The regularized RSF law is expressed as:

τ = −σ
′
· a · arcsinh

(
V

2Vref
exp

(
f0 + b log

(
Vrefθ/Dc

)
a

))
. (1.13)

where σ′ is the effective normal stress. σ′
= σ − p, where p is the pore pressure.

This regularized RSF law is widely used in numerical modeling of earthquake
processes (Rice and Ben-Zion, 1996; Lapusta et al., 2000; Rice, 2001). It is supported
by a thermally activated description of slip at frictional contacts for RSF.
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Limitations and Improvements of RSF Law

The RSF law typically applies to slip rates between 10−9 to 10−3 m/s, while seismic
slip rates are often above 10−3 m/s. At higher slip velocities, dynamic weakening
effects become significant (Wibberley et al., 2008; Di Toro et al., 2011). Improvements
to the RSF law include normal stress dependence (Linker and Dieterich, 1992), shear
stress dependence (Nagata et al., 2012; Bhattacharya et al., 2015), and temperature
dependence (Barbot, 2022). Other forms of state evolution and physics-based friction
mechanisms, such as dilatancy strengthening and thermal pressurization, have been
proposed (Rice, 2006; Schmitt et al., 2011; Segall and Rice, 1995).

RSF framework effectively reproduces and rationalizes a range of observed fault
slip phenomena, such as earthquake nucleation (Dieterich, 1992) and aftershocks
(Dieterich, 1994). The typically logarithmic time evolution of afterslip supports a
logarithmic dependency of fault friction on slip rate (Avouac, 2015), consistent with
RSF laws. The RSF model is widely used in numerical modeling of entire earthquake
cycles (Lapusta et al., 2000), enabling the reproduction of statistical laws such as the
Gutenberg-Richter law, Omori law, and Moment-Duration law based on synthetic
catalogs produced from numerical models. Moreover, there are many models to de-
rive RSF from microphysical perspectives (Chen et al., 2017; Perfettini and Molinari,
2017).

In conclusion, understanding fault friction through classic laws or improved em-
pirical models remains fundamental in studying earthquake mechanics and predict-
ing seismic events.

1.4.2 Modelling of earthquakes and stability analysis

In this section, I will present the different earthquake models in the RSF framework,
starting with the basic spring slider model and transitioning to the continuum fault
model. I will also analyze their stability.

Spring-slider model: Critical stiffness

The spring-slider model is a simple model that produces the stick-slip behaviors of
earthquakes. It consists of a spring with stiffness k representing the rock medium’s
elasticity and a block that can slip under the force τ subjected to the spring and
normal force σ subjected to the block, as seen in Figure 1.12a.

In the so-called quasi-dynamic assumption, we use radiation damping η to rep-
resent the instantaneous stress due to slip η = µ

2Cs , where µ is the shear modulus
and Cs is the shear wave speed (Rice, 1993). The friction is balanced with the shear
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(a) (b)

Figure 1.12: (a) In the spring-slider model, a block is connected to a spring with
stiffness k and is subjected to a normal stress σ. The block undergoes slipping along
a contact surface upon applying a force τ . (b) Stability phase diagram for a spring-
slider model: For small perturbation of slip rate, the system becomes unstable when
σ > σc (corresponding to k < kc), and remains stable when σ < σc (corresponding
to k > kc). The shaded area near the boundary between the two regimes represents
the oscillation regime, which indicates the transition from a stable to an unstable
state. For large perturbation of slip rate, even for σ < σc (k > kc), the system can be
unstable. From Scholz (1998).
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traction from the spring and the radiation damping.

k(v∞t− δ)− ηv = σn(f0 + a log(
V

Vref
) + b log(

θVref
Dc

)), (1.14)

where k is the stiffness of the spring, v∞ is the moving speed of the slider, δ is the
slip of the slider, η is the radiation damping term, σn is the normal traction, f0 is
the reference friction coefficient, a and b are parameters for rate and state friction,
representing the direct effect and evolution effect, respectively, V is the slip rate, θ
is the state variable, Vref is the reference slip rate, and Dc is the characteristic slip
distance.

Ruina (1983) ignores the loading and radiation damping term and analyzes the
stability of a spring slider system under small perturbations in either stress or slip
rate. The critical stiffness is

kc =
(b− a)σn

Dc
(1.15)

Both aging and slip laws have the same critical stiffness when slightly above a steady
state. For velocity strengthening, a− b > 0, the system is stable. For velocity weak-
ening friction a − b < 0, under quasi-static loading, the system is stable if k > kc
while the system is unstable if k < kc.

Nonlinear stability analysis determines the stability of solutions under large per-
turbations. For aging law, k > kc is always stable (Ranjith and Rice, 1999). Slip law
has a different behavior. Hopf bifurcation defines the critical points between stable
and unstable regions of the system. See Figure 1.12b. Instability can occur when
k > kc with large perturbation (Gu et al., 1984). Close to the boundary between sta-
ble and unstable regimes, oscillations occur. This oscillation regime was proposed as
a physical mechanism for slow slip events (Liu and Rice, 2007; Leeman et al., 2016).

Continuum model: Nucleation length

The spring-slider model only has a single degree of freedom and simplifies the ef-
fects of stress interactions. In contrast, the Burridge-Knopoff model involves multi-
ple blocks connected with springs(Burridge and Knopoff, 1967). Such a model can
reproduce statistics of earthquakes, but the slip at each block is influenced only by
neighboring springs and blocks. Therefore, these discrete models fail to accurately
represent the complex interactions occurring in the Earth’s crust (Rice, 1993). To
address this limitation, Tse and Rice (1986); Rice (1992, 1993) advanced earthquake
modeling by introducing a continuum approach. The governing equation is

τ∞ − µ

2π

∫ ∞

−∞

∂s/∂ξ

x− ξ
dξ − ηv = σn(f0 + a log(

V

Vref
) + b log(

θVref
Dc

)), (1.16)
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where τ∞ is the far-field shear stress, µ is the shear modulus, ∂s/∂ξ
x−ξ represents the

stress change at x due to the slip s at ξ, and x and ξ are points on the fault plane.

Earthquakes typically nucleate in frictional unstable regions. Nucleation lengths
are an important consequence of a friction law with characteristic slip distances.
Nucleation length is the critical dimension of a fault patchwhere stress accumulation
overcomes frictional resistance, initiating a slip that can potentially propagate. It is
the length of the initial zone of weakening that can grow and trigger a larger slip
event. The nucleation length can be estimated from the critical stiffness of a spring-
slider model. Dieterich (1992) estimated the critical stiffness of a spring-slider with
the rate-and-state friction (RSF) aging lawwhen the slip rate is well above the steady-
state speed, specifically when θv

dc
≫ 1:

kc =
bσn
Dc

. (1.17)

The effective stiffness of an elastic crack is inversely proportional to the nucle-
ation length and given by:

k =
∆τ

δ
=

µ′

2L
, (1.18)

where ∆τ is the stress drop, µ′ is µ for anti-plane strain or µ
1−ν for plane strain,

with ν being the Poisson’s ratio and L is the nucleation length. Consequently, the
nucleation length, known as the Dieterich length, is

Lb =
µDc

bσ
. (1.19)

This nucleation length has been verified through numerical analysis (Dieterich,
1992), indicating that the nucleation zone has a fixed length scaling with 1/b. This is
also consistent with experimental results provided by Dieterich and Kilgore (1996).

Rubin andAmpuero (2005) revealed two regimes for nucleation for the aging law.
In the first regime, where a/b < 0.3781, as instability is approached, vθ/Dc increas-
ing, allowing healing to be ignored. In this regime, the nucleation length is similar
to the observations of Dieterich (1992). The second regime applies to a/b > 0.3781

values and slow loading conditions, where vθ/Dc remains quasi-constant, approach-
ing 1. In this regime, fracture mechanics can be used to determine the critical length
when the energy release rate balances with fracture energy. Numerical simulations
validated this nucleation length, and it is much larger than the Dieterich length. In
summary, the critical nucleation lengths in these two regimes are:
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Lnuc =

{
2× 1.3774× Lb 0 ≤ a/b ≤ 0.3781

2× Lb

π(1−a/b)2
a/b→ 1

. (1.20)

The nucleation length for slip law is significantly different from aging law due to
the unidirectional growth of the nucleation slip pulse (Ampuero and Rubin, 2008).

The analysis of nucleation length above did not account for thermal or pore
pressure effects, although dilatancy can stabilize slip. It is also worth noting that this
nucleation length was estimated for a single flat crack under homogeneous friction.

1.4.3 Spatio-temporal complexities in earthquake cycle mod-
eling

Observations of fault behaviors reveal a broad spectrum of slip, including various
sizes of earthquakes and different slow and fast slip events, as discussed in sec-
tion 1.3. Discrete fault slip models, such as the Burridge-Knopoff model, can re-
produce the power-law decay of earthquake sizes. However, these models simplify
the elastic interactions among neighboring blocks and cannot describe stress con-
centration around the crack tip. Continuum earthquake cycle simulations on single
homogenous planar faults with lengths larger than Lnuc and proper mesh sizes pro-
duce characteristic earthquakes with regular recurrence intervals and magnitudes.
This discrepancy between observations and traditional models highlights the need
to explore the underlying complexities in earthquake cycles.

Rice (1993) introduced a discrete numerical system for modeling earthquake cy-
cles by solving rate-and-state frictional slip on a computational grid with radiation
damping. This model showed that complex slip behaviors and various event sizes
could emerge for oversized cells compared to the nucleation lengths. Such cells
can represent a geometrically disordered fault. Conversely, smaller cells can pro-
duce characteristic events. This indicated the inherent complexity of mechanical
fault systems that lack a well-defined continuum limit. The quasi-static continuum
method emphasized the generic complexity arising from discrete mechanical fault
models (Ben-Zion and Rice, 1995). A length scale nucleation length Lb (as discussed
in section 1.4.2) is adopted for rate and state friction stability to ensure numerical
convergence. Therefore, a well-defined quasi-dynamic continuum model can not
produce rich, complex slip behavior. The same conclusion is given with fully dy-
namic simulation (Rice and Ben-Zion, 1996; Ben-Zion and Rice, 1997).

Slow earthquakes emerge when the fault size is close to the critical nucleation
length or near the friction stability transition (Liu and Rice, 2005, 2007), similar to the
oscillation described in Scholz (1998), in the regime near k ∼ kc (see Figure 1.12b).
However, this contradicts the ubiquitous detection of slow slip events. Other mech-
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(A)

(B)

Figure 1.13: Spatio-temporal complex slip dynamics in earthquake modeling within
RSF framework (a) Snapshot of slip rate on a fault model with multiple asperities.
The spatially heterogeneous friction and interaction between asperities can ulti-
mately lead to a large rupture. From Dublanchet et al. (2013). (b) The full spectrum
of slip arises from varying friction conditions. Aseismic and seismogenic slow slip
occur near velocity-neutral conditions. From Nie and Barbot (2021).
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anisms, such as dilatancy strengthening, thermal pressurization, or pore pressure
changes, need to be considered in the model to stabilize the rupture (Segall, 2010;
Liu and Rice, 2007).

To effectively capture the complexities of fault behavior in continuum fault mod-
els with sizes larger than Lnuc under RSF law, it is crucial to consider two key types
of heterogeneities: frictional and geometric complexities.

Dublanchet et al. (2013) analyzed interactions among asperities, providing in-
sights into how frictional heterogeneity influences fault behavior and seismicity;
High asperity density can lead to large events that rupture multiple asperities (Fig
1.13a). Similarly, Kato (2004) investigated the impact of the distance between as-
perities and the inhomogeneous spatial distribution of friction parameters on fault
behavior. (Ben-Zion and Rice, 1995) demonstrated how regions with high stress drop
act as barriers, contributing to power-law distributions of earthquake sizes. (Hillers
et al., 2006) showed that large critical distances could act as barriers, and hetero-
geneous critical distances play an important role in producing complexities of slip
events. Aochi and Ide (2009) examined pre-existing heterogeneity fields by varying
Dc. For slow slip, Nie and Barbot (2021) explored fault dynamics across different
frictional conditions, revealing variations in rupture behaviors ranging from slow to
fast events depending on near-neutral weakening friction, as seen in Figure 1.13b.
(Luo and Ampuero, 2018) performed a spatial heterogeneous friction fault model and
demonstrated stability of a heterogeneous fault controlled by the relative length and
frictional properties of strong and weak interfaces. Geometric factors such as fault
roughness and nonplanarity also significantly affect earthquake cycles. Ozawa and
Ando (2021) studied the role of fault roughness and subsidiary fault in reproducing
aftershocks following Omori-Utsu law. Li and Liu (2016) investigated the role of
nonplanar geometry on slow slip events in the Cascadia subduction zone. Addition-
ally, Romanet et al. (2018) discussed how interactions between neighboring faults
can lead to complex slip dynamics, contributing to the observed variations in slow
and fast earthquakes (Figure 1.14).

Frictional and fault geometrical heterogeneity can produce a rich complexity of
slip events. However, even for a single isolated fault with homogeneous friction,
partial ruptures can occur for large fault lengths if the faults are loaded at a con-
stant plate motion rate (Cattania, 2019; Erickson et al., 2011; Wu and Chen, 2014).
Homogeneous planar faults can also exhibit complex rupture lengths and interevent
times. On large faults, nucleation can occur near boundaries or on both sides. Due
to the stress barriers generated by previous earthquakes, these sequences tend to
be less characteristic, and we observe statistical features such as Omori decay and
power-law distributed rupture lengths. Additionally, scale-dependent phenomena
such as small repeaters and partial ruptures can be observed on these faults (Chen
and Lapusta, 2009; Michel et al., 2017).

Our study aims to explore the spatio-temporal complexities in 3D earthquake
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Figure 1.14: Spatio-temporal complexity of slip dynamics on a step-over in antiplane
shear. The left panel shows the time evolution of slip rate on two faults, while the
right panel shows the spatial distribution of slip rate on each fault. Warm colors
indicate earthquake events and cool colors indicate slow slip events. In a fault system
with two parallel faults under uniform friction conditions, interactions between two
faults can result in both slow slip events and earthquakes. From Romanet et al.
(2018).
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cycle modeling, providing a comprehensive framework for understanding the intri-
cate behaviors of complex earthquake sequences and slow and fast earthquakes. By
incorporating geometric complexities and fault interaction in our numerical model,
we aim to improve our understanding of slip dynamics on the various faults.

1.4.4 Numerical method to model earthquakes

Numerical modeling emerges as a powerful tool for studying the complexities of
slip dynamics within fault systems. Different from statistical models of seismicity
Epidemic Type Aftershock Sequences (ETAS) to represent earthquake occurrences
(Ogata, 1988), physics-based numerical models offer a comprehensive understand-
ing of earthquake processes by solving the evolution of slip on pre-existing fault sys-
tems governed by friction laws. The precise definition of the fault geometry is cru-
cial for accurate modeling. Dynamic rupture modeling, with its accurate, fully dy-
namic solution, primarily focuses on the coseismic process for a single event (Aochi
and Fukuyama, 2002; Duan, 2012; Ando et al., 2017; Taufiqurrahman et al., 2023),
where the fault is governed by slip weakening friction. However, it only covers part
of the earthquake cycle due to the high computational cost. Seismic cycle simula-
tions are capable of modeling the entire earthquake cycle, encompassing interseis-
mic, preslip, coseismic, and afterslip phases, over large time scales. They usually
use a quasi-dynamic approach to handle the complexity of long-time scales. Wave
propagation effects are neglected in favor of a radiation damping term (Rice, 1993).
Various computational methods are developed for seismic cycle modeling. Bound-
ary discretized methods, exemplified by the Boundary Element Method (BEM), fo-
cusing on fault planes and assumption of homogeneous material properties, exhibit
superior computing performance and adaptability to arbitrary fault shapes (Li and
Liu, 2016; Moore et al., 2019). In contrast, volume-discretized methods, including
Finite Difference Method (Li et al., 2022), Finite Element Method (Liu et al., 2019),
and Discontinuous Galerkin method (Uphoff et al., 2022) have their advantage for
incorporating the inelastic deformation and elastic heterogeneity.

Geological faults, spanning a vast range of lengths, pose a computational chal-
lenge for seismic cycle simulations. Simulating the earthquake cycle in 3D fault
networks by embedding 2D faults within a 3D medium incurs significantly higher
computational costs than 2D simulations. It is a challenge for computing. How-
ever, observational studies, such as those by Ross et al. (2020), have revealed that
earthquake swarm behavior is profoundly influenced by the three-dimensional fault
structure, a detail overlooked by 2D models. This highlights the urgent need for
an efficient tool capable of simulating 3D earthquake cycles within complex fault
geometries to comprehend slip sequences accurately.

3D earthquake modeling often involves a vast number of variables, sometimes
reaching up to a million degrees of freedom. While methods like the spectral bound-
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ary integral elementmethod using Fast Fourier Transform (FFT) offer efficiency, they
are typically limited to single planar faults (Lapusta et al., 2000). Recent advance-
ments, such as the work by (Romanet et al., 2021), aim to address mildly nonplanar
faults, but these methods have yet to be extended to full 3D. Barbot (2021) explored
the dynamics of interaction on multi-parallel faults by solving corresponding elas-
tostatic Green’s functions. The Fast Multipole Method and Hierarchical Matrices
provide alternatives for efficient matrix-vector multiplication. The Fast Multipole
Method, as elucidated byGreengard and Rokhlin (1987) and implemented by Thomp-
son and Meade (2019) in earthquake cycle simulation, serves as a powerful tool for
approximating far-field elements within a dense matrix, which is constructed from
discretized elastic kernels. However, its application necessitates the computation of
multipole expansions for various kernel types, introducing a layer of intricacy. In
contrast, Hierarchical matrices present an efficient strategy for compressing dense
matrices in a purely algebraic manner (Hackbusch, 2015). By selectively approx-
imating specific far-field elements based on predefined conditions, these matrices
accelerate matrix-vector multiplication in earthquake cycle modeling (Ohtani et al.,
2011; Luo and Ampuero, 2018; Ozawa et al., 2022). Integrating Hierarchical Ma-
trices in quasi-dynamic simulations substantially reduces computational complexi-
ties, scaling down from N2 to a more manageable N logN , where N is the number
of elements. Nevertheless, recognizing the advantages of triangular elements over
rectangular ones, especially in adapting to complex fault planes, suggests potential
avenues for further refinement in earthquake modeling techniques.

1.5 Organization of this manuscript and contribu-
tions

This thesis aims to investigate the impact of complex 3D fault geometry on both
seismic and aseismic slip sequences.

In Chapter 2, I introduce FASTDASH (FAult SysTem Dynamics: Accelerated
Solver usingH-mat), a novel quasi-dynamic earthquake sequence simulationmethod.
This 3D model is developed to simulate slip sequences across complex fault sys-
tems, including both planar and nonplanar faults. By utilizing Hierarchical matri-
ces, FASTDASH efficiently manages the complexities of fault networks, enabling
detailed simulations within a feasible computational timeframe. To validate FAST-
DASH, I compare its outputs with analytical solutions for static penny-shaped cracks
and benchmark them against the SCEC Sequences of Earthquakes and Aseismic Slip
(SEAS) Benchmark problem BP4-QD, which addresses a 3D planar fault.

In Chapter 3, I focus on the fundamental geometry of step-over faults, exam-
ining stress interactions between two faults and the emergence of spatiotemporal
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complex slip events. We quantify the influence of geometrical parameters on the
distribution of slow slip events and earthquakes. Additionally, we reproduce the
Moment-Duration scaling law and demonstrate its sensitivity to the slip rate thresh-
old used to identify slow slip events.

In Chapter 4, we discuss the implications and perspectives of our research. Due
to its universal applicability, our model can be extended to more realistic fault ge-
ometries. We simulated the 2023 Kahramanmaraş – Türkiye earthquakes. This high-
lights its ability to generate complex earthquake sequences based solely on the ge-
ometrical intricacies of fault systems without considering rheology, friction prop-
erties, or fluid interactions. This approach is particularly relevant in regions where
fault geometry is well-defined. It also easily accommodates friction heterogeneity,
depth-dependent normal stress, and various loading methods, highlighting the high
flexibility of our code. Moreover, the development of this efficient numerical tool for
studying earthquake cycles sets the stage for future work involving fluid injection.

This thesis comprises two papers to be submitted:

1. For Chapters 2: "FASTDASH: An Implementation of 3D Earthquake Cycle
Simulation on Complex Fault Systems with Boundary Element Method Accelerated
by H-matrices." Cheng, J., Almakari, M., Peruzzo, C., Lecampion, B., Bhat, H.S.

2. For Chapter 3: "Step-Over Fundamental Fault Geometry: The Effect of 3D
Fault Interactions on Slow and Fast Earthquakes." Cheng, J., Almakari, M., Peruzzo,
C., Lecampion, B., Bhat, H.S.

Regarding my contributions, in Chapter 2, I developed the quasi-dynamic earth-
quake sequence simulation method, implemented proper meshing techniques for
complex fault geometry, and validated the model with static and dynamic solutions.
I benchmarked results and determine the best numerical parameters for H-matrices
and ODE solver. In Chapter 3, I conducted simulations and analyzed stress interac-
tions and spatio-temporal slip events in step-over faults. In Chapter 4, I applied the
method to a real earthquake scenario in Turkey, including setting up the model ge-
ometry, friction parameters, initial stress field, and loading conditions. I developed
future research directions, explored potential applications of the model to different
geological settings, and outlined the integration of fluid injection processes into the
earthquake cycle simulations by combining a numerical modeling approach with
laboratory experiments.

This work advances our understanding of the interplay between fault geometry
and slip dynamics, offering valuable insights for future research and practical appli-
cations in earthquake modeling and hazard assessment. By integrating geological,
geophysical, and mechanical perspectives, we aim to enhance the understanding of
both seismic and aseismic activities within complex fault systems.
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Method

Avant-propos

Dans la nature, les systèmes de failles présentent des structures géométriques com-
plexes, telles que des décrochements, des branches et des rugosités. De nombreuses
études géologiques et géophysiques ont montré que la complexité géométrique des
systèmes de failles dans la nature influence de manière décisive le déclenchement,
l’arrêt et la récurrence des événements sismiques et asismiques. Cependant, la grande
majorité des modèles de dynamique de glissement sont réalisés sur des failles planes
en raison de limitations algorithmiques. Nous développons unmodèle de dynamique
de glissement quasi-dynamique en 3D pour surmonter cette restriction. Le calcul de
la réponse élastique due au glissement est une multiplication matrice-vecteur, qui
peut être accélérée par l’utilisation de matrices hiérarchiques. La complexité de cal-
cul est réduite de l’ordre de O(N2) à O(N logN ). Nous validons notre code avec la
solution analytique de la fissure statique et l’exercice de référence/validation SEAS
du Southern California Earthquake Center.

2.1 Boundary element method

For the boundary element method (BEM), only the fault planes need to be discretized
and solved under the assumption of a homogeneous and isotropic medium. The
elastic equilibrium equation is

∇ · σ = 0, (2.1)

where σ is the stress tensor. The components σij represent stress along xi axis on
the plane that is perpendicular with xj . i, j ∈ 1, 2, 3 for a 3D problem. Body force and
inertial terms are ignored here for simplification and quasi-dynamic assumption.
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Hooke’s law describes thematerial’s constitutive law and relates strain and stress
relations linearly as follows:

σij = Cijklϵkl, (2.2)
where Cijkl are elastic constants, and ϵkl are strain tensor components calculated
with displacement u as:

ϵij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (2.3)

To derive the BEM formulation for elastic interactions, we need to introduce the
representation theorem, which is derived from the reciprocity theorem. If we know
the green function of the medium, we can calculate the elastic displacement at any
point inside the volume as follows,

ui(x) =
∫
Σ

KU
ij (x, ξ)tj(ξ)dΣ−

∫
Σ

KT
ij(x, ξ)uj(ξ)dΣ, (2.4)

whereKU andKT are the displacements and the traction kernels in Kelvin’s funda-
mental solution individually (Bonnet, 1999; Mogilevskaya, 2014).

Considering two internal surfaces Σ+ and Σ− that represent the upper and lower
side of a fault plane, the representation theorem gives the displacement at x∗ on the
boundary by taking the limit from integration:

ui(x∗) = lim
x→x∗

∫
Σ−+Σ+

KU
ij (x, ξ)tj(ξ)dΣ− lim

x→x∗

∫
Σ−+Σ+

KT
ij(x, ξ)uj(ξ)dΣ, (2.5)

where displacement u and t are the displacement field and traction field, respectively.

For a crack problem, we consider two planes merged to one surfaceΣ = Σ−+Σ+.
We define the displacement discontinuity ∆u = u− − u+ and traction t+i + t−i = 0

due to continuity of traction.

Then, the displacement can be simplified as follows:

ui(x) =
∫
Σ

KT
ij(x, ξ)∆uj(ξ)dξ. (2.6)

We substitute into Hooke’s law Equation 2.2, and the traction integral becomes

Ti(x) =
∫
Σ

Hij(x, ξ)∆uj(ξ)dξ, (2.7)

where traction T = (T1, T2, T3), and H is one of the hypersingular kernels in Kelvin
solution (Bonnet, 1999; Mogilevskaya, 2014). See it in Figure 2.1a.
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(a) (b)
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Figure 2.1: Schematic diagram of (a) boundary integral equation for traction-slip
relations (b) discretized form for traction-slip relations.

Until now, we had an analytical solution for displacement and traction due to
dislocation over the crack surface. For the numerical implementation, the fault plane
needs to be discretized into planar triangular or rectangular elements. Our method
allows both triangular and rectangular elements, but triangular elements are more
flexible for nonplanar geometry.

In the simple case, the slip is defined uniformly over each element. Traction is
given at the centroid and is the summation of the linear systems over all elements:

Ti(x) =
N∑
q=1

∫
Σq

Hij(x, ξ)dξ∆uqj , (2.8)

where q is the index of each element, uqj is the displacement in j direction for qth
element, Σq is the surface for qth element. See it in Figure 2.1b.

In Equation 2.8, Hij is a hyper-singular integral over element q. The traction
kernel is proportional to r−3, where r is the distance between source and receiver
(Hills et al., 2013). The singularity comes out when the source and receiver points
are overlapped. Numerical calculation of the integral is unstable in the vicinity of
singularities. There are different techniques to remove the singularity. For a 2D
kernel, Tada and Yamashita (1997) integral by parts and address by Cauchy principal
values. For a 3D problem, to solve elastic fields induced by a triangular dislocation
loop (which is the discontinuity displacement method), we use explicit formulae
for the 3D hyper-singular integral equation of elastostatics from Fata (2011). In Fata
(2011), the surface integral is simplified to contour integral with Stokes theorem, and
the hypersingular term is reduced to a weakly singular term that can be evaluated
in terms of Cauchy principle values. The explicit formula is written in recursive
format with regard to each edge of the triangles, which makes it easy to implement
numerically.
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Finally, the elastic traction in discretized form has a matrix-vector format:

Ti =

N∑
j=1

Aij∆uj , (2.9)

where Ti is the i component of traction, contributed by each components of ∆u
individually. j is the index of the element. A is a densely populated matrix of size
N × N . Each entry of that matrix is an integral equation over the corresponding
element.

2.2 Governing equation

The numerical modeling of the earthquake cycle for BEM is governed by the force
equilibrium equation on the discretized fault plane. On each element, the total trac-
tion on the fault is balanced with force resistance. However, this leads to unbounded
traction. We use quasi-dynamic BEM, the inertial term is removed and approximated
by a radiation damping term (Rice, 1993):

τ rad = − µ

2Cs
V , (2.10)

where V is (Vs, Vd), slip rate in shear and dip direction. Only slip rate in the fault
plane is allowed with no opening slip in our model. µ is shear modulus and Cs is
shear wave velocity.

Total traction includes three ingredients, elastic shear traction τ el, far field load-
ing τ load and radiation damping τ rad. For elastic shear traction, it can be recast to a
matrix-vector format in BEM (as discussed in section 2.1). For far-field loading, we
allow constant plate rate loading (backslip approach) or stress rate loading in the
same principle directions as background stress. For radiation damping, it only exists
in the plane constructed by the fault plane.

The force resistance τf is normal traction Tn (compression is negative and ex-
tension is positive) times friction coefficient f :

τf = −Tn ∗ f. (2.11)

We assume the fault is governed by rate and state friction (RSF) law (Dieterich,
1979a; Ruina, 1983), and regularized form of friction is (Lapusta et al., 2000; Rice
et al., 2001)

f = a · arcsinh( V

2 ∗ Vref
exp

f0 + b log (Vrefθ/Dc)

a
), (2.12)
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where a and b are friction parameters, Dc is characteristic slip distance, Vref is the
reference slip rate, f0 is the reference friction.

With aging law to describe the evolution of state variables θ:

dθ

dt
= 1− V θ

Dc
. (2.13)

Rake angle λ is defined as the angle between the slip vector and the strike vector.
We assume that the slip vector is parallel with the traction vector, and we allow rake
angle rotation. The 3D force equilibrium equation in a fault-based coordinate system
can be written as:

τf cosλ = τ els + τ loads + τ rads for direction s⃗ (2.14)

τf sinλ = τ eld + τ loadd + τ radd for direction d⃗ (2.15)

Tn = τ eln + τ loadn for direction n⃗. (2.16)

By coupling Equation 2.14, Equation 2.15 and Equation 2.16 with rate and state
friction law and state variable evolution from Equation 2.12 and Equation 2.13, we
have five equations to describe the physical variables’ changes on the fault with time
in order to ensure the satisfaction of the force equilibrium. We differentiate each of
them with time and get a set of explicit ordinary differential equations (ODEs):

{
dy
dt

}
= [M ] {y} , (2.17)

where y = (V, λ, Tn, τ, θ), and M ∈ R5×5. Please refer to Appendix 2.A for more
details on the derivation of the ODE system.

There are 5 unknowns in this system, including slip rate, rake angle, normal
traction, shear traction, and state variable. We solve this system for every element
with the Runge-Kutta45 method (Feblberg, 1969; Winkler, 1993). Runge-Kutta45 is
an adaptive time-stepping method, and the time step is error-controlled, given by
the relative difference between fifth-order and fourth-order Runge-Kutta solutions.
For coseismic phases, time steps can be very small in order to capture the rapidly
changing slip rate and traction in the solution. More details on the implementation
and verification of Runge-Kutta45 are shown in section 2.4.4.
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2.3 Hierarchical matrices

For problems that can be solved with a two-dimensional model, the computational
cost increases rapidly once the third dimension is added. Here, we give an example.
To simulate the fault system for the 2023 Turkey earthquakes presented in Chapter
3, 103 elements are required for a 2D simulation, while 105 elements are required for
a 3D model. More importantly, the most time-consuming part is the calculation of
elastic traction, which is a matrix-vector multiplication in BEM (see Equation 2.9)
that needs to be called at every time iteration. The computational complexity of the
classic matrix-vector product isO(N2). Large model-size simulations require greater
memory size and computational time. Therefore, it is necessary to use efficient com-
putational tools to accelerate the 3D earthquake sequence simulator.

The off-diagonal elements of the matrix A in Equation 2.9 decay quickly with
r−3, where r is the distance between the source and receiver. Thanks to the decay-
ing nature, we can use Hierarchical Matrices (H-matrices) to accelerate the simula-
tion. The idea of H-matrices is to decompose the dense matrix into sub-blocks and
approximate some of the blocks that satisfy the admissibility condition. For the ele-
ments close to the diagonal blocks, we use full rank. For far off-diagonal blocks, we
can approximate by using low-rank approximation.

The H-matrices we use is a C++ library Boundary InteGral equations With Hi-
erArchical Matrix (BigWham) (Ciardo et al., 2020; Sáez, 2023). For a given fault ge-
ometry, H-matrices only need to be constructed once before the time step. For every
time step, we apply H-matrices vector multiplication to compute the elastic traction
in Equation 2.9.

H-matrices is an efficient computation tool that can reduce memory storage for
the dense matrix and reduce the computational complexity of matrix-vector multi-
plication from O(N2) to O(NlogN).

2.3.1 Structure of H-matrices

To create the compressed representation of a dense matrix, we first construct a bi-
nary cluster tree TI based on the partition of the domain, as shown in Figure 2.2a
and Figure 2.2b. For the root of the cluster tree I , all the elements are in a box B,
and then each box is divided by a separation plane recursively. Each node of the
cluster tree TI is defined by the sub-domain partition. The stopping criterion for
subdivision is the number of elements in the sub-domain is less than the number of
leaves Nleaves, which corresponds to a leaf of the cluster tree.

To construct the H-matrices, we decompose the dense matrix into sub-blocks
recursively by going through the cluster trees. Each node in the cluster trees contains
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a pair of row clusters τ and column clusters σ, which determines a block of matrixA,
as seen in Figure 2.2c and Figure 2.2d. After each subdivision, we examine the sub-
blocks for admissibility conditions. If the sub-blocks meet the criteria for low-rank
approximation, the subdivision stops; otherwise, it continues further subdivision
until the sub-blocks are formed by the leaves of the cluster tree.

The admissibility condition is to determine if the blocks can be approximated or
not,

min(diam(Bτ , Bσ)) ≤ η · dist(Bτ , Bσ), (2.18)

where diam is the diameter of the cluster, and dist is the distance between the row
and column clusters, as seen in Figure 2.2c. This condition indicates that relatively
distant clusters can be approximated, but relatively close clusters cannot. H-matrices
property η can control the strictness of the admissibility condition. For larger η, more
clusters are defined as distant clusters that can be approximated, and the calculation
will be less accurate but more rapid. For elastic kernels, usually, η = 3 yields the best
performance but varies for different geometries.

Finally, we show one example of H-matrices structure for a problem with 36,000
elements in Figure 2.2e.

2.3.2 Adaptive cross approximation

For the submatrix ALRA that satisfies the admissibility condition, we compress with
rank approximation.

Singular value decomposition is the optimal low-rank approximation for the
Frobenius norm. However, it requires assembling the complete entries. Thus, the
computation cost is expensive, in the order of O(max(M,N)min2(M,N)).

Adaptive Cross Approximation (ACA) is an iterative method that gives a quasi-
optimal low-rank approximation. ThematrixALRA = Sk+Rk, where Sk is the k-rank
approximation and Rk is the residual. At each step k, the outer product of pivot row
uk and column vk is calculated and subtracted from the residual Rk and added to the
approximation Sk. Fully-pivoted ACA requires the assembly of the entire matrix,
but Partially-Pivoted ACA assembles one row or column per iteration. The stopping
criterion is

||uk+1||2||vk+1||2 ≤ ϵACA||Sk+1||F , (2.19)

where ϵACA controls the accuracy of the low-rank approximation.

In this way, we decompose the submatrixALRA into sum of vector multiplication
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(a) Division of domain (b) Cluster tree of 

(c) Bounding box  (d) Corresponding block in matrix

(e) Example of H matrices structure
      for SEAS BP4-QD benchmark

TI
AMatrix

Block cluster 

Bounding box

Figure 2.2: Illustration of Hmatrices structure (a) Division of domain (b) Cluster tree
of TI (c) Initial matrix A can be written as a block cluster representation TI×I , and
each cluster is enclosed into a bounding box B. For cluster τ and σ, the distance
between the two and each diameter are shown in the dashed lines with arrows (d)
The cluster pair (τ , σ) represents the row and column cluster, and define the corre-
sponding block in matrix.
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Figure 2.3: Computational complexities

for k-rank approximation:

ALRA ≈ Ak =

k∑
n=1

unv
T
n (2.20)

Ak
ij =

k∑
n=1

univ
T
nj . (2.21)

For the submatrices with low-rank approximation, the matrix-vector multiplica-
tion can be performed as:

N∑
j=1

Aij∆uj =

N∑
j=1

k∑
n=1

univ
T
nj∆uj =

k∑
n=1

uni

(
N∑
j=1

vTnj∆uj

)
. (2.22)

The computation for the product of matrix and vector is O(MN), and the submatri-
ces with ACA are reduced to O(k(M +N)). For the submatrices that do not pass the
admissibility check, we calculate the traction using the regular method. The total
traction vector is the summation of all the submatrix-wise matrix-vector multiplica-
tion.

The total computational complexities theoretically areO(NlogN) and practically
are shown in Figure 2.3. For a simulation that require one day, with H-matrices
acceleration, it will finish in one hour.
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2.4 Implementation

FASTDASH is written in Python and can efficiently solve slip dynamics on com-
plex fault systems. The H-matrices library we used (BigWham) is multithreaded
and implemented in C++. We present the workflow of this method in Figure 2.4.
Before delving into this model, we first introduce the coordinate system and sign
convention in section 2.4.1. We discretize the natural fault system into triangular or
rectangular elements, as shown in section 2.4.2. The fault is governed by rate and
state friction law, as we discussed in section 2.2. Before the time step, we assign
initial conditions and loading conditions, shown in section 2.4.3. We present the
ODE solver Runge-Kutta45 in FASTDASH, and we verified the results with different
models in section 2.4.4. In section 2.4.5, we describe how to choose the numerical
parameters. In the end, we have post-processing for the slip catalog, seen in section
2.4.6.

2.4.1 Coordinate system and sign convention

There are three coordinate systems in this method: global system (x1, x2, x3), lo-
cal system (e1, e2, e3), and fault system (s, d, n). For a global coordinate system,
(x1, x2, x3) is a right-handed coordinate system, where the surface of the Earth is
in the x1 x2 plane, and the x3 axis points vertically upwards from the Earth’s sur-
face (Figure 2.5a). We take the real fault geometry from nature and discretize it in
the global systems with triangular (or rectangular) elements by using an automatic
mesh generator, CUBIT, or GMSH. The mesh file with fault geometry information is
written in the global system. H-matrices Library (BigWham) works on local coordi-
nate system (e1, e2, e3), which is based on the triangle elements (Fata, 2011). There
are three nodes y1,y2,y3 in one triangle element, and here it requires the connec-
tivity of the elements is anti-clockwise. The orthogonal basis of the local coordinate
system is:

e1 =
y2 − y1

||y2 − y1||
, e⃗t = y3 − y1, e3 =

e1 × e⃗t
||e1 × et||

, e2 = e3 × e1, (2.23)

as seen in Figure 2.5b. y1, y2, y3 are three nodes of the triangles in anti-clockwise
direction. ξ⃗ is the slip vector, and the rake angle in the local system is α, defined as
the angle between e1 and ξ⃗.

A fault-based system is themost intuitive system for analyzing results. The strike
direction s is chosen along the surface trace of the fault plane and points towards
the slip direction for a right lateral fault. d is perpendicular with s and n, and points
towards slip direction for a normal fault. n is the unit normal to the fault plane
directed from the negative surface to the positive surface. Rake angle λ is the an-
gle from the strike direction to the slip vector, where anti-clockwise is positive. In
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Figure 2.4: Workflow of FASTDASH.
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.

FASTDASH, all the analysis is based on the negative surface, which is the footwall
for a dipping fault. The slip vector ξ⃗ = u− − u+ is taken as the displacement of the
footwall relative to the hanging wall.

The ordinary differential equation system is written in a local coordinate system,
and it is easy to implement BigWham to calculate the elastic traction. To assign the
initial conditions of slip rate and traction, we need to transform the coordinates from
the fault-based system to the local system. To output the slip rate and traction, we
need to transform from the local system to the fault-based system.

The fault-based system and the local system are both element-wise and spatially
varying coordinate systems, especially for nonplanar faults. For the fault-based sys-
tem and the local system, n is equal to e3, which will simplify the 3D coordinate
transformation to a 2D coordinate transformation. The details for the coordinate
transformation are given in Appendix 2.B (Equation 2.54, Equation 2.55, Equation
2.61 and Equation 2.62).

2.4.2 Mesh generation

For complex fault systems, achieving high spatial resolution and effectively captur-
ing geometrical properties can be challenging. Unstructured triangle meshes of-
fer particular advantages in adapting to intricate fault geometry systems, providing
greater flexibility. In Southern California and New Zealand, there are community
fault models that provide a 3D representation of the fault system directly.
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When dealing with arbitrary shapes that require mesh generation, we employ
automatic mesh generators to discretize the fault plane into triangular or rectangular
elements. For fundamental complexities such as step-overs and dipping faults, we
recommend using GMSH (Geuzaine and Remacle, 2009). It allows the inclusion of
bounded points, lines, and surfaces with specified shapes and desired grid sizes.

For realistic fault geometry, we suggest usingCUBIT,which can produce a higher-
quality mesh for complex fault geometries. Mesh quality controlled parameters (sur-
face gradation, sizing function, the condition number of mesh smoothing, etc., see
details in Appendix 2.C) can improve the shape quality of elements, which reduces
the error for benchmark exercises.

2.4.3 Initial conditions and loading conditions

We establish the pre-stress field as the initial condition. It could be given in the sense
of principle stresses or background stress tensor σ. We can get traction along strike
direction Ts, traction along the dip direction Td and normal traction Tn by projecting
onto the fault system:

T = σ · n (2.24)
Ts = T · s (2.25)
Td = T · d (2.26)
Tn = T · n. (2.27)

Because we assume the slip vector is parallel with the traction vector, the rake angle
can be determined by traction net vector T and its strike component Ts.

To initiate the first event, we impose a large slip rate in a circular patch in the
center of the fault to initiate the rupture nucleation. The slip rate outside of the
nucleation patch is constant V0. At steady state, θ = θss = Dc

V . Therefore, we have
the steady-state initial condition of 5 unknowns [V, λ, Tn, τ, θ] for the ODE system
mentioned in section 2.2.

In FASTDASH, we have two approaches to apply to the far field time-dependent
loading. The first approach is to consider a constant plate rate loading by using the
back slip method:

τ̇ loadi = −Vpl
N∑
j=1

Aij , (2.28)

where Vpl is plate motion velocity. Faults are embedded by the creep region. The
traction is calculated based on the relative slip rate. The final equivalent change in
fault stress will be heterogeneous, increasing at the edge of the fault. In the second
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approach, we consider a constant stress loading rate, which has the same principle
direction as the Initial background stress tensor. Stress loading is directly projected
onto the fault.

2.4.4 ODE solver: Runge-Kutta45

One powerful tool for solving ordinary differential equations (ODEs) in earthquake
cycle simulations is the Runge-Kutta45 (RK45) solver.

The RK45 solver is an adaptive step-size solver that adjusts the step size based on
local error estimates, efficiently handling the stiffness and nonlinearity in fault slip
models. In earthquake cycle simulations, the RK45 solver integrates the equations of
motion describing fault slip evolution. Its adaptive step-size control ensures accurate
capture of rapid slip rate changes during seismic events and slower processes during
interseismic periods (aseismic slip).

We implemented the RK45 solver in FASTDASH for computational efficiency.
The solver operates in a local coordinate system, which saves time by construct-
ing H-matrices in this system. Coordinate transformation is only performed when
assigning initial conditions and outputting results, which is more effective in a fault-
based system.

We verified the results using the spring-slidermodel, the Burridge-Knopoffmodel,
and a 2D fault model.

For spring-slider model, the results were comparedwith those obtained using the
Python package pyodesys, which solves systems of ordinary differential equations
with various numerical integration methods, including RK45 (Haugene, 2016). The
comparison is shown in Figure 2.6a.

For the Burridge-Knopoff model (This model was previously discussed in Chap-
ter 1), we simulated a 20-block system and successfully reproduced the displacement
on the 10th slider, in accordance with the findings of Erickson et al. (2011) (see Figure
2.6b).

For the 2D planar fault, we compared themaximum slip ratewith results from the
Virtual Earthquake Generator: Accelerated (VEGA), a 2D quasi-dynamic earthquake
cycle modeling code developed by Pierre Romanet and Harsha S. Bhat (Romanet,
2017). Additionally, we compared the computational time among VEGA (written
in Fortran), FASTDASH with Arrayfire for GPU computation (Yalamanchili et al.,
2015), and FASTDASH with NumPy for CPU computation (Harris et al., 2020). We
found that for systems with more than 2,000 elements, FASTDASH demonstrated
better computational efficiency than VEGA, with GPU computation yielding the best
performance. See Figure 2.6c.
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F

FASTDASH

pyodesys

FASTDASH

pyodesys

Spring slider model

Burridge-Knopoff model

(a)

(c) 2D fault

(b)

Figure 2.6: (a) Comparison of the spring-slider model results using the RK45 solver
implemented in FASTDASH (blue solid line) and the Python package pyodesys (red
dashed line). The left panel shows the slip rate evolution, while the right panel de-
picts the state variable evolution. The results exhibit excellent agreement, validat-
ing the RK45 solver implementation in FASTDASH. (b) The left panel illustrates the
Burridge-Knopoff model setup. The right panel shows the displacement on the 10th
slider of a 20-block Burridge-Knopoff model system, modeled using FASTDASH.
These results (blue solid line) closely match the findings of Erickson et al. (2011) (red
dashed line). Both time and displacement are non-dimensionalized. (c) The left panel
compares the maximum slip rate for a 2D planar fault model using FASTDASH and
the Virtual Earthquake Generator: Accelerated (VEGA). The right panel compares
computational times for varying problem sizes among VEGA (Fortran), FASTDASH
with Arrayfire (GPU computation), and FASTDASH with NumPy (CPU computa-
tion). The results show that for systems with more than 2000 elements, FASTDASH,
especially with GPU computation, demonstrates the best computational efficiency.
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2.4.5 Choose the numerical parameters

In order to choose the grid size, it is necessary to have a sufficient number of elements
to resolve the process zone Lb. We already discussed Lb in Section 1.4.2. The grid size
plays a pivotal role in achieving spatial convergence, while the time step is error-
controlled through the Runge-Kutta45 method with a specified tolerance. Three
Hmat parameters (Number of leaves Nleaves, parameter for admissibility condition
η, tolerance for low rank approximation ϵ ) were employed, and a convergence test
for the SEAS Benchmark was conducted and will be discussed in Section 2.5. VTK
files are utilized to save information at a given frequency to obtain output full-field
data.

2.4.6 Post processing for catalog analysis

We identify slow slip events and earthquakes by using threshold values to determine
the maximum slip rate. Slip rate thresholds for slow slip events and earthquakes are
10−8 m/s and 10−3 m/s, respectively. When the maximum slip rate exceeds a specific
threshold, we identify it as an event. The duration during which the sliding rate
exceeds the threshold is defined as the duration of the event T . We usually choose a
slow slip threshold one order ofmagnitude greater than the plate rate. The indicators
of seismic slip in experiments and geology is 10−3 m/s (Rowe and Griffith, 2015).
We then do a mechanical and numerical check by ignoring the events in which the
rupture area is smaller than the process zone size (Dieterich length Lb =

µDc

σb , where
µ is shear modulus, Dc is the characteristic slip distance, σ is normal stress and b is
friction parameter for RSF that represents evolution effect (Dieterich, 1992)) and are
resolved by less than 5 time steps.

The stress drop ∆τ at location ξ is calculated as

∆τ(ξ) = τafter(ξ)− τ before(ξ). (2.29)

The moment rate Ṁ and momentM are calculated:

Ṁ(t) =

∫
A

µV (ξ⃗, t)dA (2.30)

M =

∫
T

Ṁ(t)dt, (2.31)

where A is the rupture plane, µ is the shear modulus and V is the slip rate.

Then themomentmagnitude is calculated followingHanks and Kanamori (1979):

Mw =
2

3
log10(M)− 6.06. (2.32)
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2.5 Benchmark/Verification

In this section, we discuss and analyze a series of benchmark problems to verify
the method’s capabilities. Static benchmark validates the elastostatic solver, and
dynamic benchmark validates the time-stepping solver.

2.5.1 Static benchmark

Penny shaped crack

To validate our code, we first compare our results with an analytical solution for a
static crack, which is BigWham-related. To solve the elastic crack subjected to re-
mote uniform stress loading, we superpose an uncracked body subjected to uniform
far-field stress and a crack loaded by internal traction. In the case of the simplest
axisymmetric crack, which is a penny-shaped crack under uniform remote stress
loading, the problem can be solved analytically using the Green and Collins method,
which is a method to solve boundary problems for a harmonic function. Sneddon
(1946) gives the analytical solution for the penny-shaped crack under tensile load-
ing. Based on that, Segedin (1951) gives the analytical solution under shear stress
loading:

∆u(r) =
8(λ+ 2µ)T

πµ(3λ+ 4µ)

√
R2 − r2, r < R, (2.33)

where u is the displacement discontinuity u = u+−u−. r is the radius distance with
the centroid. T is the remote shear stress loading, R is the radius of the crack. λ is
the Lamé’s parameter and µ is the shear modulus.

With FASTDASH, we can discretize the same penny-shaped crack with the trian-
gular element (see Figure 2.7a), apply the displacement distribution from the analyt-
ical solution (see Figure 2.7b) and solve the traction numerically. Figure 2.7c showed
the convergence of the result. The root mean square error reduces with increasing
the number of elements.

Dugdale crack

According to the linear elastic fracture mechanism, there are stress singularities at
the edge of the crack. Therefore, we also compare our result with the Dugdale crack
model, which involves an elastic circular crack surrounded by a plastic zone. See
Figure 2.8a. Dugdale crack is loaded by a uniform remote tension. For the elastic
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(a) (b)

(c)

Figure 2.7: (a) A penny-shaped crack with a radius of 1, loaded by far-field shear
stress and discretized with triangular elements. (b) Displacement analytical solution
from Segedin (1951) along the crack radius shown in (a), with points representing the
displacement at each discretized triangle. (c) The root mean square error between
the calculated traction and analytical traction as the number of elements increases.
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Figure 2.8: Static crack benchmark (a) Dugdale crack: elastic penny-shaped crack
surrounded by cohesive zone (b) Analytical solution for Dugdale crack from Olesiak
and Wnuk (1968) (c) Grid convergence as a function of number of elements.

crack |x| < l, it is traction-free, but in the plastic zone l < |x| < a, traction is equal
to the yield stress σY . The size of plastic zone is given by Dugdale (1960), as follows:

l

a
=

√
1−

σ20
σ2Y

. (2.34)

The displacement is given by Olesiak and Wnuk (1968)

∆u(ρ) =
4(1− ν)lσY

µπ

1

m
×


σ0

σY

√
1− ρ2 −

√
1−m2

1−ρ2
+mE(ϕ1,

ρ
m
) 0 < ρ < m

σ0

σY

√
1− ρ2 −

√
1−ρ2

1−m2 + ρE(ϕ2,
m
ρ
)

−ρ2−m2

ρ
F (ϕ2,

m
ρ
) m < ρ < 1

,

where m = l/a, and ρ = r/a. ν is the Poisson’s ratio. And

ϕ1(ρ) = arcsin

√
1−m2

1− ρ2
, ϕ2(ρ) = arcsin

√
1− ρ2

1−m2
, (2.35)

E(ϕ, k) and F (ϕ, k) are elliptical integrals of the first kind and second kind.

F (ϕ, k) =

∫ ϕ

0

dα√
1− k2 sin2 α

,E(ϕ, k) =

∫ ϕ

0

√
1− k2 sin2 αdα. (2.36)

With superposition with remote tension σ0, the traction T = σ0 in the elastic crack
and T = σ0 − σY in the plastic zone.

We calculated the traction due to slip using the analytical solution and compared
it with the analytical loading traction (Figure 2.8b). Additionally, we verified that the
root mean square error between the numerical and analytical solutions decreases
and converges as the number of elements increases, as shown in Figure 2.8c.
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2.5.2 Dynamic benchmark

For dynamic fault problems, there is no analytical solution. Sequences of Earth-
quakes and Aseismic Slip (SEAS) is a project proposed by the Southern Califor-
nia Earthquake Center (SCEC) to validate different numerical implementations for
earthquake cycles. We validate FASTDASHwith SEAS Benchmark problem BP4-QD
(Jiang et al., 2022). It is a problem to solve a 2D fault subjected to constant plate load-
ing rate Vp embedded in a 3D homogeneous linear elastic whole space medium. See
Figure 2.9a. The fault plane consists of a velocity-weakening rectangle surrounded
by a strengthening patch, with a friction transition strip in between. The initial nu-
cleation zone (green square) is located at the bottom left with a higher initial slip
rate.

The use of boundary integral equations is widespread in the SEAS community.
We compare our results with Unicycle, which is a boundary element method for
earthquake cycle simulation without H matrices acceleration (Barbot et al., 2017).
Figure 2.9b and Figure 2.9c shows the stress and accumulated slip on the central
station. Figure 2.9d and Figure 2.9e shows the maximum slip rate for the entire fault
and rupture front contour for the first earthquake. Both local and global data show
good agreement with the results.

We also quantify the numerical errorwith the SEAS benchmark. We calculate the
root-mean-square error to quantify the difference in rupture arrival time by using the
maximum slip rate for the first six earthquakes between FASTDASH and Unicycle.
The time-accumulating error has already been taken into account and is shown as,

RRMSE =

√√√√ i=6∑
i=1

(∆ti)2/6/

√√√√ i=6∑
i=1

(tUi )
2, (2.37)

where ∆ti is the rupture arrival time difference between FASTDASH and Unicycle
for the ith (i ≤ 6) earthquake and tUi is the rupture arrival time calculated from
Unicycle for the ith (i ≤ 6) earthquake.

We did a parametrical study for H-matrices properties and tolerance for ODE
solver to test the convergence, as seen in Figure 2.10. With a larger number of leaves,
H-matrices have less compression and high accuracy but longer computing time. It
is not sensitive to η. The increase in time for N = 400 can be related to the structure of
H-matrices. The results converge at a tolerance of 10−4 for theODE solver, and errors
do not decrease further, suggesting the reference might use the same tolerance. The
smallest error occurs with a grid size of 500, which matches the reference results.
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Figure 2.9: SEAS SCEC benchmark (a) SEAS benchmark problem 4 (Jiang et al., 2022).
(b) and (c) Stress and slip in strike direction at station shown in (a). (d) Maximum
slip rate on the entire fault. (e) Rupture front contour for the first earthquake.
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.

Table 2.1: Best numerical parameters for SEAS BP4-QD

Parameters Description Value
N H-mat property: maximum leaf size 100
η H-mat property: distance between accepted blocks 3
ϵ H-mat property: accuracy for ACA 10−4

∆s Grid size Lb/4

ϵrk tolerance for RK 10−4
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The best numerical parameters for BP4-QD are listed in Table 2.1, where we have
the most time-efficient and accurate simulations.

Appendix 2.A ODE system

We differentiate the friction resistance in Equation 2.11,

τ̇f = −ḟ · (Tn − p)− f · (Ṫn − ṗ), (2.38)

where Tn is normal traction and p is pore pressure.

We differentiate the rate and state friction in Equation 2.12

ḟ =
∂f

∂V
V̇ +

∂f

∂θ
θ̇. (2.39)

Let

∂f

∂V
= A (2.40)

∂f

∂θ
= B. (2.41)

We differentiate Equation 2.14, Equation 2.15, Equation 2.16, Equation 2.11, Equa-
tion 2.13 and get a set of ODEs. It is important to note that our ODE solver operates
in a local coordinate system, so we transform the coordinates accordingly:

τ̇ cosα− α̇τ sinα = τ̇ el1 + τ̇ load1 + ηs(V̇ cosα− α̇V sinα)

τ̇ sinα + α̇τ cosα = τ̇ el2 + τ̇ load2 + ηs(V̇ sinα + α̇V cosα)

Ṫn = τ̇ el3 + τ̇ load3

τ̇ = −(AV̇ +Bθ̇) · (Tn − p)− f · (Ṫn − ṗ)

θ̇ = 1− V θ

Dc
,

where, τ1 and τ2 are tractions along e1 and e2 in local coordinate system, α is the
angle between e1 and the slip vector. These ODEs can be written in matrix-vector
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multiplication form as follows:
−ηs cosα ηsV sinα− τ sinα 0 cosα 0

−ηs sinα −ηsV cosα + τ cosα 0 sinα 0

0 0 1 0 0

A(Tn − p) 0 f 1 B(Tn − p)

0 0 0 0 1


∂

∂t


V

α

Tn

τ

θ

 =


τ̇ el1 + τ̇ load1

τ̇ el2 + τ̇ load2

τ̇ el3 + τ̇ load3

fṗ
dθ
dt

 .
(2.42)

We can write this ODE system explicitly

∂

∂t


V

α

Tn

τ

θ

 =


cosα
D1

sinα
D1

f
D1

− 1
D1

B(Tn−p)
D1

sinα
ηV−τ − cosα

ηV−τ 0 0 0

0 0 1 0 0
A cosα(p−Tn)

D1

A sinα(p−Tn)
D1

fη
D1

− η
D1

Bη(Tn−p)
D1

0 0 0 0 1




τ̇ el1 + τ̇ load1

τ̇ el2 + τ̇ load2

τ̇ el3 + τ̇ load3

fṗ
dθ
dt

 , (2.43)

where D = A(p− Tn)− η

For non-regularised rate and state friction law, friction is

f = f0 + a log(
V

Vref
) + b log(

θVref
Dc

) (2.44)

A =
∂f

∂V
=

a

V

B =
∂f

∂θ
=
b

θ
.

For regularized form

f = a · arcsinh ( V

2 ∗ Vref
exp

f0 + b ln (Vrefθ/Dc)

a
) (2.45)

z =
exp

f0+b log (
θVref
Dc

)

a

2Vref
(2.46)

A =
∂f

∂V
=

a√
1
z2 + V 2

(2.47)

B =
∂f

∂θ
=
∂f

∂V
· bV
aθ
. (2.48)
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Appendix 2.B Coordinate transformation

For the fault-based system:

s =
x3 × n

||x3 × n||
=

∣∣∣∣∣∣
i j k

0 0 1

e31 e32 e33

∣∣∣∣∣∣ /||x3 × n|| = 1√
e231 + e232

(−e32, e31, 0) . (2.49)

We define d to point downward:

d = n×s =
1√

e231 + e232

∣∣∣∣∣∣
i j k

e32 −e31 0

e31 e32 e33

∣∣∣∣∣∣ = 1√
e231 + e232

(
−e31e33,−e32e33, e231 + e232

)
(2.50)

n = e3 = (e31, e32, e33), (2.51)

which is written in the global system.

Slip rate vector V⃗ in local system is (Ve1 , Ve2 , Ve3), in fault based system is (Vs, Vd, Vn).
In global system, slip vector V⃗ can be written with the basis (e1, e2, e3), V⃗ = ⃗Vlocal =

Ve1e1 + Ve2e2 + Ve3e3.

With basis (s,d,n), V⃗ = ⃗Vfault = Vss+Vdd+Vnn. Considering the vector algebra
relation A · (B × C) = C · (A×B)

In the strike direction, we can write:

Vs = ⃗Vlocal · s = ⃗Vlocal ·
x3 × n

||x3 × n||
=

1√
e231 + e232

x3 · (n× ⃗Vlocal). (2.52)

Because e1, e2, e3 are orthognal, we can write e3 × e1 = e2, e3 × e2 = −e1

n× ⃗Vlocal = e3 × (Ve1e1 + Ve2e2+Ve3e3) = Ve1e2 − Ve2e1. (2.53)

Then,

Vs =
1√

e231 + e232
x3 · (Ve1e2 − Ve2e1) =

1√
e231 + e232

(Ve1e23 − Ve2e13). (2.54)

In the dip direction, we can write:

Vd = ⃗Vlocal ·d = ⃗Vlocal ·(n×s) = s·( ⃗Vlocal×n) =
1√

e231 + e232
(x3×n)·( ⃗Vlocal×n). (2.55)
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Considering the vector algebra relation (A×B) · (C ×D) = (A ·C)(B ·D)− (B ·
C)(A ·D). Slip rate vector has no opening component, so n · ⃗Vlocal = 0

Then,

Vd =
1√

e231 + e232
x3 · ⃗Vlocal =

1√
e231 + e232

(Ve1e13 + Ve2e23+Ve3e33). (2.56)

We can write the slip rate in matrix format as follows:

 Vs

Vd

Vn

 =


e23√

e231 + e232

−e13√
e231 + e232

0

e13√
e231 + e232

e23√
e231 + e232

0

0 0 1


 Ve1
Ve2
Ve3

 . (2.57)

The matrix transformation from local system to fault-based system R is

R =


e23√

e231 + e232

−e13√
e231 + e232

0

e13√
e231 + e232

e23√
e231 + e232

0

0 0 1

 . (2.58)

The inverse of R can help us transform from the fault-based system to the local
system:

R−1 =


e23
√
e231 + e232

e223 + e213

e13
√
e231 + e232

e223 + e213
0

−e13
√
e231 + e232

e223 + e213

e23
√
e231 + e232

e223 + e213
0

0 0 1

 . (2.59)

Thus, the slip rate can be written in the local coordinate system as follows:

 Ve1
Ve2
Ve3

 =


e23
√
e231 + e232

e223 + e213

e13
√
e231 + e232

e223 + e213
0

−e13
√
e231 + e232

e223 + e213

e23
√
e231 + e232

e223 + e213
0

0 0 1


 Vs

Vd

Vn

 . (2.60)

Therefore,

Ve1 =

√
e231 + e232
e223 + e213

(Vse23 + Vde13) (2.61)
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Ve2 =

√
e231 + e232
e223 + e213

(−Vse13 + Vde23) (2.62)

α = tan−1 (
Ve2
Ve1

) (2.63)

λ = tan−1 (
Vd
Vs

). (2.64)

Appendix 2.C Mesh subtleties

When performing static crack benchmarks for Dugdale cracks, we observe that high-
quality meshes result in lower errors. This indicates that the collocation method is
somewhat mesh-dependent, performing best with well-shaped elements. Therefore,
it is crucial to ensure high mesh quality when solving these problems.

Meshes should adapt to various geometric or user-defined properties (such as
heterogeneous friction) to accurately represent surfaces mathematically (see exam-
ple in Figure 2.11a). However, capturing these geometric properties sometimes re-
sults in variations in size and the presence of degenerate (non-convex or inverted)
elements, as shown in Figure 2.11b-d.

CUBIT provides several parameters to control mesh quality, such as surface gra-
dation, sizing functions, condition number smoothing, surface smoothing, and ge-
ometry approximation angle. Adjusting these parameters can significantly improve
the shape quality of mesh elements. We recommend using Trimesh, which uses the
third-party library MeshGems; Trimesh offers robust and fast automatic mesh gen-
eration. It optimizes mesh quality based on Tridelanunay principles.

Surface gradation controls how rapidly triangle sizes change when transition-
ing from small to larger sizes (Figure 2.11b and Figure 2.11c). The default setting
for gradation is 1.3. A smoother gradation (closer to 1.0) results in more elements,
especially around small features.

Sizing functions can be linear or constant, as shown in Figure 2.12. Variations
in grid size can cause oscillations. Therefore, it is better to control the grid size
uniformly to reduce errors.

Condition number enhances element shapes by optimizing the mesh condition
number, ensuring non-inverted, well-shaped elements. The value of beta is com-
pared at each iteration to the maximum condition number in the mesh. It ensures
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(a)

(b) (c)

(d)

Figure 2.11: (a) An example of a discretized mesh capturing two geometrical bound-
aries (outer and inner circles). (b) Mesh with large surface gradation. (c) Mesh with
small surface gradation. (d) Degenerate elements.
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(a)

(b)

Figure 2.12: Dugdale crackmeshedwith a constant size function. The traction shown
along the radius is superposed in all directions. Traction oscillates where the grid
size changes. (b) Dugdale crack meshed with a linear size function.

that the maximum condition number is less than the beta, resulting in better quality.
Specifies the number of cores to use for processing, typically set to 4 for balanced
performance.

Surface Smoothing is used to refine the mesh surface further to improve overall
quality.

There are also other parameters to control mesh quality. Different parameters
can be adjusted as needed to achieve better mesh quality. The Jacobian Ratio mea-
sures the deviation of an element’s shape from an ideally shaped element, ensur-
ing high-quality mesh elements. Geometry Approximation Angle can help cap-
ture curved features using linear edges of triangles. Adjusts triangle size on curved
boundaries so that the linear edges deviate from the geometry by no more than the
specified angle. This ensures smaller elements are placed in regions of higher curva-
ture, controlling element distribution and capturing geometric features accurately.

To achieve accurate and reliable results in static crack benchmarks for Dugdale
cracks, it is essential to use high-quality meshes. Utilizing Trimesh with optimized
settings in Cubit, including surface gradation, condition number smoothing, surface
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smoothing, and geometry approximation angle, ensures well-shaped elements and
minimizes errors. Adjusting these parameters appropriately, along with using the
beta and CPU optimization criteria, allows for better adaptation to geometric and
user-defined properties, resulting in superior mesh quality.
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Fundamental complexities:
step-over fault system

Avant-propos

Dans cette étude, nous examinons l’émergence d’événements sismiques lents et rapi-
des complexes, entraînés par des interactions élastiques et des champs de contraintes
hétérogènes sur plusieurs cycles sismiques au sein d’un système de failles 3D avec
deux failles planaires parallèles. Nous visons à comprendre comment la géométrie
complexe et multi-segmentée de ce système de failles 3D influence la dynamique
de glissement. Nous utilisons un modèle de cycle sismique quasi-dynamique en 3D
avec uneméthode des éléments de frontière accélérée par des matrices hiérarchiques
(Cheng et al., 2024b). Pour une faille isolée unique sous friction à taux de frag-
ilisation spatialement uniforme, des séismes réguliers se produisent si la longueur
de la faille dépasse la longueur de nucléation. Cependant, lorsque l’on considère
l’interaction entre deux failles, des événements de glissement spatio-temporels com-
plexes émergent en raison de l’interaction des contraintes de la faille voisine. Divers
événements de glissement lent, ainsi que des séismes ayant des ruptures partielles ou
complètes, sont identifiés dans le catalogue de glissement. Nous investiguons systé-
matiquement comment les propriétés géométriques et frictionnelles influencent ces
séquences sismiques et asismiques complexes. En incorporant les interactions de la
troisième dimension, notre modèle permet une gamme plus large de paramètres qui
soutiennent la coexistence de séismes et d’événements de glissement lent par rap-
port aux modèles 2D. Concernant la mise à l’échelle moment-durée des événements
de glissement lent, un débat persistant existe dans les études observationnelles con-
cernant les relations de mise à l’échelle cubique et linéaire. Nos résultats numériques
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suggèrent que le glissement lent a une mise à l’échelle linéaire, mais cette relation
de mise à l’échelle peut fortement dépendre du seuil de taux de glissement choisi
pour identifier les événements de glissement lent.

3.1 Introduction

Earthquake-related slip accounts for only a fraction of overall slip dynamics in plate
tectonics, with advancements in geodetic networks revealing slow slip events (SSEs)
in various tectonic environments such as the Cascadia subduction zone (Hirose et al.,
1999; Dragert et al., 2001), Haiyuan fault (Jolivet et al., 2013), and San Andreas fault
(Rousset et al., 2019). SSEs involve episodic, slow shear motion with minimal seismic
activity and are linked to slow earthquakes like low-frequency earthquakes (LFEs),
very low-frequency earthquakes (VLFEs), and tremors (Ito et al., 2007; Shelly et al.,
2007; Michel et al., 2018). These events exhibit diverse spatiotemporal complexities,
occurring at different depths and durations across regions likeNankai Trough (Obara
et al., 2004; Hirose and Obara, 2006; Ozawa et al., 2001) and Hikurangi (Wallace
and Eberhart-Phillips, 2013). SSEs can precede, trigger, or occur independently of
earthquakes, influencing fault behavior by altering the stress field (Avouac, 2015;
Bürgmann, 2018; Obara and Kato, 2016). Understanding SSEs is essential for gaining
insights into earthquake mechanisms, as they emerge from various factors including
frictional properties (Liu and Rice, 2005; Rubin, 2008; Skarbek et al., 2012; Luo and
Ampuero, 2017; Nie and Barbot, 2021), fault geometry, thermal instabilities (Wang
and Barbot, 2020), and the presence of fluids (Bernaudin and Gueydan, 2018; Cruz-
Atienza et al., 2018; Bhattacharya and Viesca, 2019; Gao and Wang, 2017; Garagash
and Germanovich, 2012).

For a long time, the geometry of subduction interfaces was assumed to be simple,
especiallywhen studying slow slip events (SSEs) through other physicalmechanisms
such as heterogeneous friction or considering fluid, as mentioned before. However,
the fault geometry has complex 3D structures. For example, recent imaging of the
Ecuadorian subduction zone by Chalumeau et al. (2024) reveals that earthquakes oc-
cur across multi-fault segments and subparallel planes, challenging this simplistic
view. This complexity emphasizes the need to account for complex fault geome-
tries when studying SSEs. Observations from Hikurangi, including drilling data and
seismic reflection images, further highlight the role of material heterogeneity and
geometric complexity in promoting slow slip events (Barnes et al., 2020; Kirkpatrick
et al., 2021). Similarly, in the Cascadia subduction zone, spatial variations along the
downdip direction of SSEs suggest a significant influence of geometric factors (Hall
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et al., 2018). Mitsui and Hirahara (2006) simulated slow slip events, demonstrating
the role of varying dip angle of geometry. Advanced simulations, such as those per-
formed by Li and Liu (2016) for Cascadia and Perez-Silva et al. (2021) for Guerrero,
indicate that non-planar fault geometries are pivotal in understanding SSEs. Funda-
mental complexities in fault geometry are also considered in SSE modeling, includ-
ing investigations into precursory slow slip influenced by fault roughness (Cattania
and Segall, 2021) and the emergence of slow slip events from two parallel faults
under spatial uniform rate-weakening friction in 2D models (Romanet et al., 2018).
Laboratory experiments by (Kwiatek et al., 2024) further underscore the complexity,
showing both fast and slow ruptures with varying fault slips on rough faults. The
effect of stress interaction between multiple faults on slow slip events in 3D models
is still unresolved.

In this work, we focus on a step-over configuration with two parallel faults un-
der spatially uniform rate-weakening friction conditions. We investigate how geo-
metrical and frictional parameters influence slip behaviors in a 3D model. Our study
identifies four slip regimes: only slow slip events (SSEs), SSE-dominant, earthquake-
dominant, and only earthquakes. In contrast, under the same model settings, a sin-
gle planar fault only produces earthquakes. We introduce a newmetric as a function
of fault width, fault length, overlap distance, and distance between faults to deter-
mine the geometric range conducive to the coexistence of earthquakes and slow slip
events. These complex spatiotemporal slip events naturally arise from traction het-
erogeneities (we call them traction asperities) evolving with space and time due to
fault interactions.

3.2 Method

Weused the recently developed numerical approach, FASTDASH (Cheng et al., 2024b),
which integrates a 3D quasi-dynamic earthquake cycle modeling using boundary
element methods accelerated by Hierarchical matrices. This technique significantly
optimizes computational efficiency, reducing complexity from O(N2) to O(N logN),
where N represents the number of discretized fault elements. Such efficiency is cru-
cial for solving complex 3D fault systems effectively. We analyzed a fault system
with two overlapping faults subjected to a far-field constant stress rate loading. Both
faults are governed by laboratory-derived rate and state friction (RSF) law with ag-
ing state evolution (Dieterich, 1979b; Ruina, 1983). Friction is spatially uniform rate
weakening. This model includes radiation damping, which is an approximation of
inertial effect (Rice, 1993). Therefore, the model neglects any elastic wave propa-
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gation. Both shear and normal traction can vary due to elastic interaction between
two faults. With this approach, we can calculate key information on faults, includ-
ing maximum slip rate, moment rate, duration, and the distributions of stress and
slip during multiple earthquake cycles.

In stability analysis, two important parameters are the process zone length (Lb)
and the nucleation length (Lnuc). Lb represents the region where the breakdown
energy is released and where traction and slip change rapidly. Numerical methods
require a sufficient number of grid points within this zone to capture these variations
accurately. In this study, we use a grid size of ∆s = Lb/3. On the other hand, Lnuc is
the critical length necessary for slip nucleation to occur. For faults that are governed
by rate and state friction with aging law, these parameters are defined as follows:
(Lapusta and Liu, 2009; Rubin and Ampuero, 2005; Viesca, 2016),

Lb =
µDc

bσn
(3.1)

Lnuc =
2Lb

π(1− a/b)2
a/b→ 1, (3.2)

where µ is shear modulus, Dc is the characteristic slip distance, and a, b are the rate
and state friction parameters to represent the direct effect and evolution effect. For
rate weakening friction, 0 < a/b < 1. σn is the normal traction.

We aim to understand how the geometrical parameters and frictional parameters
affect the fault behavior on a 3D extensional step-over fault configuration. The geo-
metrical parameters include fault widthW , fault length Lf , overlap distance L, and
distance between two faults D (see Figure 3.1a). All the length properties are scaled
by Lnuc, which is a function of friction properties a/b. We fix the aspect ratio of fault
Lf/W = 3 and vary fault widthW/Lnuc from 1.5 to 8, overlap distance L/Lf from 0
to 1, distance between two faults D/Lnuc 0.1 to 5. Friction a/b ∈ {0.4, 0.6, 0.8}. We
perform 61 simulations with different geometry and friction settings for our analy-
sis. The model parameters are shown in Table 3.1.

3.3 Result

For a single fault that is longer than Lnuc under spatial uniform rate-weakening
friction (a/b < 1), only periodic earthquakes will occur (Liu and Rice, 2005; Rubin,
2008). By considering a fault systemwith two parallel faults, spatiotemporal complex
slip events emerge due to the traction heterogeneity produced by fault interaction
(Figure 3.1).
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Table 3.1: Model parameters

Parameters Description Value
b RSF evolution effect parameter 0.01
Dc Characteristic distance 0.001 m
Vref Reference slip rate for RSF 10−6 m/s
f0 Reference friction coefficient for RSF 0.6
µ Shear modulus 3× 1010 Pa
ρ Density 2670 kg/m3

Cs Shear wave velocity 3464 m/s
ν Poisson’s ratio 0.25
V0 Initial slip rate 10−9 m/s
τ̇s Shear loading rate 0.05 Pa/s

Table 3.2: Friction and geometry parameters for Model 1 and Model 2

Parameters Description Value for Model 1 Value for Model 2
a RSF direct effect parameter 0.008 0.008
Lnuc Nucleation length 477.46 m 477.46 m
D Distance between two faults 47.746 m 47.746 m
W Width of the fault 954.92 m 1909.80 m
Lf Length of the fault 2864.80 m 5729.50 m
L Overlap distance 1432.40 m 2864.80 m
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We classify earthquakes and slow slip events based on their slip rates. An event
is considered an earthquake if its maximum slip rate is greater than 10−3m/s. This
threshold is chosen based on experiments and geology observation (Rowe and Grif-
fith, 2015). The slip rate of slow slip events is 1 or 2 orders higher than the plate rate.
In our study, if the maximum slip rate falls between 10−8m/s and 10−3m/s, it is clas-
sified as a slow slip event. Various slow slip events, as well as earthquakes having
partial or full ruptures, are identified in the slip catalog (Figure 3.1d). With various
combinations of geometry and friction parameters, we identify four regimes: only
slow slip events, SSE-dominant, earthquake-dominant, and only earthquakes. We
will present the spatial-temporal complex events we get from our simulations and
reproduce the moment-duration scaling law.

3.3.1 Spatial-temporal complex events

We demonstrate that a step-over configuration produces a wide range of spatio-
temporal complex events. To illustrate the transition between SSE-dominant and
earthquake-dominant regimes, we present two examples: Model 1 and Model 2. The
parameters are detailed in Table 3.2. By increasing the fault width (W ) from 2Lnuc

to 4Lnuc, we observe a shift from SSE-dominant to earthquake-dominant behavior.
In Model 1, slow slip events dominate the slip catalog, with only three earthquakes
on each fault during the period in which ten earthquakes occur on a single fault. In
Model 2, we observe periodic earthquakes with two slow events occurring during
the interseismic period. The evolution of slip for each event over time and space is
shown in Figure 3.1d.

We selected four events from these two simulations to display the slip distribu-
tion on the two fault planes, illustrating both SSEs and earthquakes occurring on the
same faults with partial and full ruptures. Especially in Model 2, events E, F, G, and
H form a chain of events, repeating on both faults. Additionally, the duration and
inter-event times vary significantly for these events.

In the SSE-dominant regime, we observe full-rupture SSEs (Event A). In contrast,
in the earthquake-dominant regime, SSEs are limited in extent (Events F and G),
resulting in fewer moments released by SSEs in the total catalog.

By increasing fault width, the increased interaction between the faults results in
larger stress perturbations, which in turn lead to more frequent earthquakes dom-
inating the sequence of slip events. However, the interaction strength is also con-
trolled by other geometrical parameters L,D and Lf . We discuss the effect of other
geometrical parameters in Section 4.1.

– 68 –



CHAPTER 3. FUNDAMENTAL COMPLEXITIES: STEP-OVER FAULT SYSTEM

Y

Z

X

L

W

D

Fault 1

Fault 2

First earthquake

nucleation patch

0 1 2 3 4 5 6 7 8 9 10

0 5 10 15 20 25 30 35

10
-10

10
-8

10
-3

10
0

0 1 2 3 4 5 6 7 8 9 10

Time normalized by recurrence interval for a single fault

0 5 10 15 20 25 30 35

Time (years)

10
-10

10
-8

10
-3

10
0

A

B

C

D

Duration:42.2 days Duration:44.3s Duration:53.6s Duration:46.7days

116.4days 304.1days 338.4.days

Duration: 44.7s Duration: 22 days Duration: 52.3 days Duration: 47.0s

A

B

C

D

a
lo

n
g

-d
ip

 (
k
m

)

along-strike (km)

E

F
G

H

E F G H

along-strike (km)

a
lo

n
g

-d
ip

 (
k
m

)

Fault 1

Fault 2

Fault 1

Fault 2

Fault 1

Fault 2

m
a

x
im

u
m

 s
lip

 r
a

te
 (

m
/s

)

Time (years)

Time normalized by recurrence interval for a single fault

483.9days 168.6days 156.3days

(a)

(b) (c)

(d)

10
-10

10
-8

10
-3

10
0

10
-10

10
-8

10
-3

10
0

Model

Model 1 Model 2

Figure 3.1: (a) Step-over fault configuration. Discrete mesh grids are exaggerated (b-
c) Example of SSE-dominant regime and earthquake-dominant regime: Time evolu-
tion of maximum slip rate. The green curve is on fault 1, and the yellow curve is on
fault 2. Grey dash lines are slip rate threshold for earthquakes and slow slip events
(d) Spatial distribution of normalized slip for slip sequences with selected Events A,
B, C, D in simulation showing in (b) and E, F, G, H in simulation showing in (c). Blue
represents slow slip events, and red represents earthquakes. Event A is a slow slip
event with full rupture. Events D, F, and G are slow slip events with partial rupture.
Events B and E are earthquakes with partial rupture. Events C andH are earthquakes
with full rupture. The red and blue color shows normalized slip for earthquakes and
slow slip events. Normalize slip is defined as (u− umin)/(umax − umin).
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3.3.2 Moment-duration scaling law

We perform seismic cycle simulations with various geometric and friction parame-
ters. We generate an extensive dataset in which slip events span several orders of
magnitude in rupture area, slip, moment, and duration.

In the fault system that is discretized with N elements, momentM for one event
is given by

M = µ

∫ T

0

(
N∑
i=1

Vi(t)Ai

)
dt, (3.3)

where Vi and Ai are the slip rate and the area for corresponding ith element respec-
tively, and T is the duration for this event.

We analyzed slip sequences from each simulation over an equivalent time pe-
riod (the duration required for a single fault to have 10 earthquakes). We gen-
erated moment-duration scaling plots for both slow slip events (SSEs) and earth-
quakes (EQs), revealing different scaling behaviors: earthquakes exhibit cubic scal-
ing, whereas SSEs follow linear scaling. See Figure 3.2.

Our findings indicate that the scaling of slow slip events (SSEs) is significantly
influenced by the criteria used to define them. Specifically, lower slip rate thresholds
for identifying SSEs result in a higher number of detected events, with both the dura-
tion and moment of each event increasing accordingly. This variability can alter the
scaling relationship between moment and duration. For instance, using a threshold
of 10−8 m/s, we identified 1925 SSEs with a scaling relationship ofM ∼ T 1.2. How-
ever, when the threshold was increased slightly to 10−6 m/s, the number of detected
SSEs decreased to 640, and the scaling relationship adjusted to M ∼ T 1.5. Notably,
cubic scaling behavior was observed for large SSEs. This highlights the sensitiv-
ity of SSE detection and scaling to the chosen slip rate threshold, underscoring the
importance of consistent event definition in studies of SSE dynamics.

In the 2D step-over models discussed by Romanet et al. (2018), the scaling rela-
tionship appears insensitive to the slip rate threshold for both SSEs and earthquake
identification. However, our 3D simulations introduce greater complexity to the
model, revealing a sensitivity to the slip rate threshold for SSEs. This may explain
the observed variations in scaling relationships for SSEs in real-world observations.
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tions in our simulations. Red triangles indicate simulations with only earthquakes,
while green circles indicate simulations with coexisting SSEs and EQs, with the size
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3.4 Discussion

3.4.1 The metric of fault interaction and SSEs ratio

The coexistence of slow slip events (SSEs) and earthquakes (EQs) is significantly in-
fluenced by stress perturbations from neighboring faults. When these interactions
are considered in a three-dimensional context, the complexity increases notably.
Currently, there is no quantified approach to explain how geometrical complexi-
ties—such as overlap distance (L), distance between faults (D), and fault dimensions
(width W and length Lf )—control the coexistence of slow and fast earthquakes. In
this study, we introduce a new metric, Λ, to quantify the maximum stress interac-
tion on a secondary fault due to a primary fault. This metric is geometrically derived
and inspired by fracture mechanics, assuming a unit stress drop and 2D framework.
We utilize Muskhelisvili-Kolosov complex potentials (Muskhelishvili et al., 1953) to
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obtain full-field solutions for cracks, making Λ a function of all relevant geometrical
parameters. Λ = f(L,D,W,Lf ) as derived in Appendix 3.A. The actual interaction
between two cracks is linearly proportional to the average stress drop.

Λ = max
{
−2ℑ

[
Φ′(z)

]
− 2yℜ

[
Φ′′(z)

]
+ 2fsyℑ

[
Φ′′(z)

]}
, (3.4)

where fs = 0.6, z ∈ [x1 + iD, x2 + iD] and x1 = (2L− 1)Lf/2, x2 = x1 + Lf and L is
the overlap.

For Λ = 0, indicating no interaction, two faults are very far from each other
and behave independently. For Λ → ∞, indicating strong interaction, the faults
are very close to each other, resulting in significant interaction. We quantified the
distribution of seismic and aseismic slip in the simulation results using the SSEs ratio
η, which represents the proportion of moment released by SSEs to the total moment
released in the slip catalog over ten earthquake cycles for a single fault with the
same friction properties.

When η = 0, there are only earthquakes; when η = 1, there are only slow slip
events. SSEs and EQs coexist when the 0 < η < 1. Specifically, SSEs are dominant
when 0.5 < η < 1, whereas EQs are dominant when 0 < η < 0.5.

Our results indicate that geometrical parameters significantly influence the dis-
tribution of seismic and aseismic slip (Figure 3.3a). When Λ is either too low (Λ ≲ 1)
or too high (Λ ≳ 4), faults predominantly host earthquakes. At the left boundary,
Λ ≈ 1, the primary controlling factor is the distance between two faults (D). Since
Λ is roughly proportional to 1/

√
D, the SSE ratio drops rapidly as Λ approaches this

boundary. At the right boundary, Λ = 4, fault width (W ) is the main controlling
factor. With Λ being roughly proportional to

√
W , the SSE ratio decreases slowly as

it nears this boundary. The low Λ values result in periodic earthquakes, while high
Λ values lead to complex earthquakes.

However, when Λ falls within an intermediate range (1 < Λ < 4), both earth-
quakes and SSEs can coexist. Within a more specific range (1.5 < Λ < 3.4), SSEs
dominate, shown in the grey area in Figure 3.3a. This is because SSEs are highly
sensitive to minor stress perturbations, as noted by Obara and Kato (2016). A proper
range of interaction is essential to favor slow slip events (SSEs). If the interaction is
too weak, the stress perturbation is insufficient to generate SSEs. Conversely, if the
interaction is too strong, SSEs cannot be sustained and will grow into earthquakes.

We also tested different friction parameters (see Figure 3.3a with different col-
ors). For high values of a/b, a slightly wider range of geometrical parameters needs
to be considered to identify SSE-dominated regimes. Despite these variations, ge-
ometry remains the primary controlling factor. The SSE ratio can potentially be

– 73 –



Chapter 3

inferred from these geometrical parameters. This framework provides a mechani-
cal interpretation of how different types of slip events are distributed based on fault
geometry.

For a given Λ, various combinations of geometrical parameters can yield the
same value. Figure 3.3b illustrates Λ as a function of the overlap and the distance be-
tween two faults, expressed as a fraction of the fault length. The value of Λ decreases
rapidlywith increasing distance between the faults. Λ increaseswith greater overlap,
but when the distance between the two faults is larger, the effect of overlap becomes
less significant. Figure 3.3b demonstrates these possible combinations. Most of our
simulation results, which feature the coexistence of SSEs and EQs, cover possible
combinations where 1 < Λ < 4. When the geometrical configuration approaches
the lower and upper Λ threshold boundaries (Λ = 1,Λ = 4), the SSE ratio gradually
decreases and transitions to only earthquakes. This provides a comprehensive view
of how different geometrical configurations influence fault interactions and the co-
existence of SSEs and EQs. Additionally, it helps us select appropriate geometrical
parameters based on the SSE ratio.

This study highlights the critical role of geometrical parameters in understand-
ing and predicting complex slip behavior emerging from fault interaction. The met-
ric Λ can be easily extended to other fault systems by modifying the geometry of
the second fault. For example, the second fault can be slightly oriented or have
roughness. Future research should focus on refining these metrics and exploring
additional realistic geometrical parameters to enhance further our understanding of
the interplay between slow and fast earthquakes in complex fault systems.

3.4.2 Traction asperities

Notably, our study is based on faults with spatially uniform rate-weakening friction
conditions. Previous studies (Lay et al., 2012; Veedu and Barbot, 2016) used the sin-
gle planar fault and demonstrated that slow slip events emerge in small asperities
with rate-weakening friction and earthquakes occur in large asperities with rate-
weakening friction within the context of friction asperities. Those friction asperities
are spatially and temporally stable. Here, we introduce the concept of traction as-
perities, which naturally arise from multiple fault systems due to stress interactions
and the history of events. These asperities can also determine the nucleation and
arrest of both slow and fast earthquakes.

Due to stress interactions from neighboring faults and previous ruptures, the
traction field exhibits spatial and temporal heterogeneity, as shown in Figure 3.4.
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We observe the evolution of the traction field on fault 2 during four events (E, F,
G, and H) in Model 2. Nucleation occurs at regions with a high ratio of shear trac-
tion to normal traction asperity (HRA). When the HRA is narrow, nucleation fails
to propagate dynamically within a single asperity, potentially leading to aseismic
events (e.g., Events F and G). Conversely, regions with a low ratio of shear trac-
tion to normal traction (LRA) possess higher strength and act as barriers to arrest
events nucleated from the HRA. For example, after nucleation, Event E prefers to
propagate towards the right HRA and arrests at the left LRA, resulting in a partial
rupture. Same for Events F and G, rupture arrests at LRA. The heterogeneity of trac-
tion asperities complicates the nucleation processes. The coalescence of slip fronts
and relatively homogeneous traction fields may lead to full rupture earthquakes, as
observed in Event H.

3.4.3 Compare with 2D models

Compared to the 2D method used in Romanet et al. (2018), our 3D method does
not rely on the assumption of a fixed rupture depth of 1 km when calculating the
moment to reproduce scaling laws. Because the 2D model lacks the third dimension,
they have to assume the length in that dimension, which is totally arbitrary. The
3D method allows for a more accurate understanding of scaling relationships. Our
results show that moment-duration scaling is sensitive to the slip rate threshold for
slow slip events, a sensitivity that previous 2D models did not reveal.

3.4.4 Comparisonwith a single planar faultwithheterogeneous
friction properties

In this work, we focus on a fault system with two parallel faults and examine the
stress interaction between them, leading to a spatio-temporal complex stress field
that causes slow slip events and earthquakes with partial and full ruptures. This
complexity arises from the dynamic interaction of the faults and their rupture his-
tory rather than from fixed fault parameters. In contrast, models focusing on friction
heterogeneity, such as those by Dublanchet et al. (2013) and Kaneko et al. (2010), sug-
gest that variations in frictional properties can significantly influence seismic behav-
ior. However, friction heterogeneity is static once set and does not evolve over time
and space, requiring parameter adjustments, such as changes in the sizes, densities,
and distances of asperities, to match the observed complexity. Our model demon-
strates that simple geometric configurations, like two parallel faults, can naturally
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Figure 3.4: Traction field evolution during four events (E, F, G, and H) on fault 2 in
Model 2. The colormap indicates the ratio of shear traction to normal traction. The
first column displays the traction field before the nucleation of each event, with red
stars marking earthquake hypocenters and blue stars indicating SSE hypocenters.
The second column shows the traction field after each event, with black contour
lines representing the slip distribution. The duration of each event and the inter-
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produce a wide range of moment-duration laws and complex nucleation patterns,
closely mimicking natural seismic and aseismic slip events. Geometric features can
be more readily measured using methods like surface rupture tracing and seismic
imaging, offering a practical advantage over frictional measurements. Thus, while
both geometric complexity and frictional heterogeneity contribute to understand-
ing seismic events, geometric complexity provides a more robust and dynamically
evolving framework. Future research should integrate these mechanisms to refine
predictive models and enhance our understanding of complex slip events.

3.5 Conclusion

In this study, we investigate the emergence of complex slow and fast seismic events
driven by elastic interactions and heterogeneous stress fields over multiple earth-
quake cycles within a 3D fault system with two parallel planar faults. We aim to
understand how the complex, multi-segmented geometry of this 3D fault system in-
fluences slip dynamics. We use a 3D quasi-dynamic earthquake cycle model with a
boundary elementmethod accelerated byHierarchical matrices (Cheng et al., 2024b).
For a single isolated fault under spatial uniform rate-weakening friction, regular
earthquakes occur if the fault length exceeds the nucleation length. However, when
considering the interaction between two faults, spatio-temporal complex slip events
emerge due to the stress interaction from the neighboring fault. Various slow slip
events, as well as earthquakes having partial or full ruptures, are identified in the
slip catalog. We systematically investigate how geometrical and frictional properties
influence these complex seismic and aseismic sequences. By incorporating interac-
tions from the third dimension, our model allows for a broader range of parameters
that support the coexistence of earthquakes and slow slip events compared to 2D
models. For Moment-Duration scaling of slow slip events, there has been an ongo-
ing debate in observational studies regarding the cubic and linear scaling relations.
Our numerical results suggest that slow slip has linear scaling, but the scaling rela-
tion may heavily depend on the chosen slip rate threshold for identifying slow slip
events.
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Appendix 3.A The definition of fault interactionmet-
ric Λ

The Muskhelisvili-Kolosov complex potentials for a shear crack of length 2a are
given by Scheel et al. (2021)

Φ′(z) = − 1

2i

[
z

(z2 − a2)
1/2

− 1

]
(3.5)

Φ′′(z) =
1

2i

[
−a2

(z2 − a2)
3/2

]
(3.6)

Ψ′(z) = −2Φ′(z)− zΦ′′(z). (3.7)

The stress field is then given by σij(z) = σ0ij +∆σij(z) where

∆σ22(z) = 2yℑ
[
Φ′′(z)

]
(3.8)

∆σ12(z) = −2ℑ
[
Φ′(z)

]
− 2yℜ

[
Φ′′(z)

]
, (3.9)

where ℜ and ℑ correspond to the real and imaginary parts of their arguments, re-
spectively. Length 2a is the minimum value of fault length Lf and fault width W .
The complex coordinate of fault 2 is denoted as z.

Fault 1 spans from (−Lf/2, 0) to (Lf/2, 0). Fault 2, on the other hand, extends
from (x1, D) to (x2, D), where x1 = (2L − 1) · (Lf/2), x2 = x1 + Lf and L is the
overlap.

We define the metric Λ as the maximum of∆σ12+fs∆σ22 on fault 2. This metric,
which is a function of all geometrical parameters, quantifies the strength of the stress
interaction between the two faults:

Λ = max
{
−2ℑ

[
Φ′(z)

]
− 2yℜ

[
Φ′′(z)

]
+ 2fsyℑ

[
Φ′′(z)

]}
. (3.10)
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Discussions and Perspectives

In this manuscript, I have presented the 3D slip sequence model using the bound-
ary element method accelerated by Hierarchical matrices (Chapter 2). We validated
this method with analytical solutions for static cracks and numerical benchmarks
for a dynamic fault problem (Chapter 2). We also explored a fundamental geometric
complexity: the step-over fault configuration (Chapter 3). In this chapter, we will
delve into a comprehensive discussion. Additionally, we will outline future perspec-
tives, highlighting potential developments and directions for further research and
exploration.

4.1 General discussion

4.1.1 Frictional heterogeneity and geometrical heterogenity

The observation of spatio-temporal complex events highlights the diversity of seis-
mic and aseismic slip behaviors. Slow slip events (SSEs) can last fromhours to several
years, contrasting with earthquakes, which typically last only seconds to minutes.
The moment, duration, and nucleation location for events vary significantly. SSEs
can occur in the seismogenic zone as well as at shallow and deep depths, underlying
the inherent spatial-temporal complexity of slip behaviors.

Traditional models of seismic cycles have focused on friction heterogeneity to
produce spatio-temporal complexities of slip events. Variations in frictional prop-
erties along the fault plane significantly influence fault behavior, leading to the lo-
calization of stress and variations in slip distribution. These factors are critical for
understanding earthquake nucleation and propagation. Kaneko et al. (2010) showed
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that friction heterogeneities can provide a unifying explanation for various obser-
vations of fault behavior, detectable through geodetic observations of interseismic
coupling. Dublanchet et al. (2013) focus on a numerical 3D model with friction as-
perities, where velocity-weakening patches primarily host fast, seismic ruptures and
are surrounded by velocity-strengthening patches that exhibit more stable, aseis-
mic slip behavior. He examined the interaction among friction asperities, producing
complex seismic processes by controlling the density of asperities. Luo et al. (2017)
investigated the diversity of slip behaviors, generating a full spectrum of fault behav-
iors by controlling the proportion of velocity-weakening and velocity-strengthening
materials, their relative strength, and other frictional properties. However, friction
heterogeneity is static once set. It does not evolve over time and space, requiring
many parameter adjustments, such as changes in the sizes, densities, distances, and
strengths of friction asperities, to match the observed slip complexity. There are also
studies that use friction to address complex events in observation. The 2004 Mw 9.2
Sumatra-Andaman, 2010 Mw 8.8 Chile, and 2011 Mw 9.0 Tohoku great earthquakes
exhibited similar depth variations in seismic wave radiation. This phenomenon can
be explained by considering depth variations in fault frictional strength (Lay et al.,
2012).

One key aspect of nature is that faults have complex structures. Geological obser-
vations reveal that fault structures are geometrically complex across multiple length
scales, featuring damage zones, roughness, bends, branches, and step-overs. These
geometric complexities significantly affect earthquake behavior. Examples include
the Landers earthquake (Sowers et al., 1994), the Kaikōura earthquake (Klinger et al.,
2018), and the Ridgecrest earthquake (Nevitt et al., 2023), as discussed in Chapter 1.
Numerical studies also emphasize the importance of geometric complexity. For in-
stance, Cattania and Segall (2021) analyzed the precursory slow slip and foreshocks
on rough faults, Ozawa and Ando (2021) reproduced realistic spatiotemporal after-
shock activities on a rough main fault surrounded by numerous subsidiary faults,
and Ozawa et al. (2023) quantified the likelihood of rupture arrest occurring at fault
bends. Li and Liu (2016) studied the spatiotemporal evolution of SSEs using nonpla-
nar fault models in the Cascadia region.

Our study in Chapter 3 focuses on the effect of 3D fault geometry on earthquake
cycles. By considering the interaction between two parallel faults, a spatio-temporal
complex heterogeneous stress field is naturally generated. Even with a simple geo-
metrical complexity, complex events with various SSEs and earthquakes of different
sizes and durations emerge. Rupture nucleation and arrest can significantly modify
the stress field, further promoting slip complexity. The complexities produced in
our model arise from the stress interaction of faults and their rupture history rather
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than fixed fault parameters. The formation of traction asperities or stress barriers
that evolve over time and space could account for partial rupture and SSEs, with nu-
cleation along the fault varying depending on the temporal evolution of these stress
barriers.

Measuring friction properties presents greater challenges compared to assessing
geometric complexities. Fault complexities can be directly measured through geo-
logical field studies (Mitchell and Faulkner, 2009) and indirectly through seismologi-
cal studies and geodetic measurements. In contrast, friction parameters are typically
derived from laboratory experiments, which are influenced by various conditions
such as temperature (Blanpied et al., 1995), normal stress (Carpenter et al., 2016),
and fluid pressure (Scuderi and Collettini, 2016). In numerical modeling, the spa-
tial variation of friction parameters is often determined based on depth-dependent
temperature and composition. However, it is debatable whether the rate-and-state
friction (RSF) parameters derived from these experiments can adequately describe
the full seismic cycle, including all transient features observed in nature. For in-
stance, friction is velocity-dependent and exhibits behaviors such as transitioning
to velocity strengthening at high velocities and coseismic dynamic weakening due
to friction heating (Di Toro et al., 2011). Friction parameters change throughout
earthquake cycles and with fluid injection (Scuderi and Collettini, 2016), yet incor-
porating all these physical mechanisms into models remains challenging.

In addition to laboratory experiments, macroscopic physical models can also es-
timate parameters such as friction parameter a (direct effect) and b (evolution effect)
and characteristic slip distance Dc, taking into account their velocity dependence
(Chen et al., 2017). The parameter (a − b)σn, where σn is the normal stress, can
be estimated from postseismic slip using inversion of geodetic data (Thomas et al.,
2017). However, these postseismic slip estimates rely heavily on the resolution of
kinematic inversion and necessitate accurate estimation of normal stress. Moreover,
this approach is applicable only under velocity-strengthening friction conditions,
where a > b.

Robust empirical laws emerging from seismological observations reinforce the
need to consider heterogeneity in models, whether frictional or geometric. Both
mechanisms—frictional heterogeneity and geometric complexity—can produce sim-
ilar complexities of events. Friction asperities correspond to traction asperities. In
friction models, earthquakes often nucleate from velocity-weakening (VW) patches,
and ruptures are impeded when they propagate into velocity-strengthening (VS)
patches. Similarly, in geometric models, earthquakes nucleate from high traction
rate patches and are impeded by low traction rate areas. When two friction as-
perities are close enough, multiple asperities interact, leading to the formation of
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a larger earthquake (Johnson, 2010; Dublanchet et al., 2013). This phenomenon is
also observed in geometric heterogeneity models, where the rupture can propagate
through adjacent traction asperities, causing coalescence and resulting in a larger
earthquake. Both friction and geometry can produce aperiodic behavior, but achiev-
ing this with friction models requires more adjustments and incorporation of phys-
ical mechanisms, as friction asperities are fixed in time and space. Our work shows
that even with simple geometric heterogeneity, such as two parallel faults, we can
achieve significant complex behavior.

While friction is important and recognized as heterogeneous, our research sug-
gests that geometric complexities may play a more critical role— a factor often over-
looked in current studies. Although future work should incorporate friction, our
two-faultmodel achieves similar results without explicitly considering frictional het-
erogeneity or fluid presence, indicating that geometric complexity alone can effec-
tively explain complex slip behaviors.

In conclusion, it is crucial to consider both frictional heterogeneity and geomet-
ric complexity in earthquake cycle simulations. Future research should emphasize
a more integrated approach to studying slip behaviors, combining these two factors
to achieve a comprehensive understanding of realistic earthquake sequences. Our
method, FASTDASH, allows for straightforward implementation of friction hetero-
geneity.

4.1.2 Comparison of model in 2D and 3D

Most numerical models involving geometrical complexities are conducted using a
two-dimensional plane strain assumption to avoid the high computational costs as-
sociated with 3D modeling. Traditionally, accelerating 3D models have relied on
Fast Fourier Transform (Lapusta et al., 2000), which is insufficient for solving geo-
metrically complex fault models. Our study overcomes this limitation by employing
Hierarchical Matrices to accelerate the 3D modeling of seismic cycles while main-
taining a complex fault geometry.

While 2D models have provided foundational insights with the advantage of
computational efficiency, they cannot simultaneously consider variations along strike
and depth, limiting their ability to represent 3D structures. Exploring 3D geometric
complexities is time-consuming but essential for making fault models more realistic
and capturing the full range of earthquake behaviors. Our 3D model demonstrates
that these additional degrees of freedom lead to significant differences in stress dis-
tribution and slip behavior, emphasizing the necessity of three-dimensional analysis
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for accurate fault characterization. The 3D model offers a more comprehensive rep-
resentation of geological structures and fault behaviors, capturing complexities that
2D models inherently miss.

3D models provide a more realistic representation of a geological picture. Ob-
servations of fault zone structures reveal that the fault core is surrounded by a frac-
tured damage zone, with the density of 3D fractures decreasing with distance from
the fault core (Mitchell and Faulkner, 2009). Additionally, the fault zone width de-
creaseswith depthwhile fracture density increases, formingwhat is known as flower
structures (Ben-Zion et al., 2003; Ma and Andrews, 2010). Numerical results from
Okubo et al. (2019) support these observations. These studies of fault zone structure
emphasize the necessity of 3D modeling.

Furthermore, 3Dmodels can explain complex earthquake behaviors that 2Dmod-
els cannot. For example, the 2013 Mw 7.7 Balochistan, Pakistan earthquake exhib-
ited left-lateral motion with a reverse component on a dipping fault that 2D models
fail to simulate accurately (Vallage et al., 2015). Observations of earthquake swarm
processes also demonstrate that 3D geometry is critical for understanding the spa-
tiotemporal evolution of swarms, capturing phenomena that 2D models inherently
miss (Ross et al., 2020).

In summary, 3D modeling offers a more comprehensive and realistic depiction
of geological and seismological observation, highlighting the importance of three-
dimensional analysis for accurate fault characterization and slip events understand-
ing, as well as statistical scaling laws.

4.1.3 Assumptions in our model

The fault geometry in our model is fixed and does not evolve with rupture. How-
ever, during earthquakes, new fractures are created, and the interaction between
these new fractures and the original fault system also affects fault behavior. To ac-
curatelymodel this, a higher number of elements are required to discretize additional
fractures, and the mesh needs to be updated to account for fracture growth. Corre-
spondingly, H-matrices must be updated as well. Considering the evolution of the
damage zone in the earthquake cycle is computationally challenging. Faults extend
over several kilometers, while fracture growth occurs on the order of centimeters
or even smaller. Therefore, it is reasonable to ignore such changes over relatively
short time scales. However, changes in fault geometry must be addressed over long
geological time scales.
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Our method is quasi-dynamic and does not account for dynamic wave effects,
which are crucial in fully dynamic approaches commonly used for coseismic time
scales where dynamic wave effects are significant. Fully dynamic models provide
detailed insights into coseismic rupture phenomena, such as the propagating rup-
ture front, rupture speed, and supershear rupture. In contrast, in earthquake cy-
cle modeling, the quasi-dynamic approximation significantly accelerates calcula-
tions for each time step. This is essential for simulating earthquake cycles over
extended periods that require numerous time steps. This approach enables us to
simulate multiple ruptures on a fault to understand how one rupture triggers an-
other. When comparing quasi-dynamic (QD) and fully dynamic (FD) methods in 2D
models, Thomas et al. (2014) found that QD models underestimate slip, slip rate, and
rupture velocity compared to FD models, showing quantitative differences. Despite
these differences, QD methods are widely used in the seismic cycle simulation com-
munity because they produce qualitatively similar fault behaviors, slip patterns, and
sequences. Some studies, like Romanet et al. (2021), have attempted to reduce this
approximation by using a Spectral Boundary Integral Equation Method (sBIEM) for
a single mildly nonplanar fault. Their findings show that the zeroth-order effects of
wave-mediated stress transfer are more significant than the higher-order effects of
fault non-planarity. However, this method is only applicable to single, mildly non-
planar faults, whereas realistic fault geometries are often highly heterogeneous and
involve multi-fault networks. Liu et al. (2019) presents a method that combines FD
and QD approaches, using fully dynamic simulations during the coseismic phase and
quasi-dynamic simulations during the interseismic phase. This approach requires a
switching criterion and on-fault quantity transfers between codes, complicating im-
plementation and making error quantification difficult. Quasi-dynamic simulations
provide an overall view of fault behavior, complementing the detailed coseismic rup-
ture insights from fully dynamic simulations. Each approach is used for specific
purposes, depending on the goal of the study.

We use the Boundary ElementMethod (BEM) for our faultmodeling. Thismethod
allows us to efficiently solve problems involving geometrically complex faults by as-
suming an elastic medium surrounding the fault planes. In contrast, volumetrically
discretized models like the Discontinuous Galerkin (DG) method (e.g., Tandem (Up-
hoff et al., 2022)), Finite Difference (FD) method (e.g., GARNET (Li et al., 2022)), and
Finite Element Method (FEM) (e.g., EQsimu (Liu et al., 2019)) can account for hetero-
geneous elastic properties but require significantlymore computational time (Scholz,
2002). As discussed in Chapter 1, many observations support the idea that complex
fault geometry is associated with complex earthquake behaviors. In order to capture
long-term behavior, heterogeneous elastic properties can be ignored, allowing us to
focus on fault geometry as a first-order effect on fault behavior.
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The current model assumes simplified rheological behavior and neglects fluid
effects. Including a more comprehensive rheological model (e.g., viscoelasticity) and
considering the impact of pore fluids, especially for subduction zone models, could
provide better insights into fault zone mechanics and earthquake-triggering pro-
cesses.

4.2 Perspectives

In this section, we will discuss some future perspectives that can build on this work.

4.2.1 More realistic fault geometry model

Real faults often exhibit complex geometries. In Chapter 3, I presented one of the
fundamental complexities of fault systems, step-overs, using a simplified model with
two parallel planar faults. This work demonstrated that even simple geometries can
produce complex slip events, underscoring the importance of incorporating realistic
geometries in fault modeling. Natural fault networks can be decomposed into simple
geometrical complexities for more detailed analysis.

Step-overs, as studied in my work, involve two parallel faults with identical ge-
ometry. However, in real fault networks, the second fault can have different orien-
tations, and both faults can have nonplanar geometry. There are usually multiple
faults in a fault network. It is also essential to consider the effects of the number of
faults in the system.

Almakari et al. (2024) performed a 2D fault volume model study with a primary
rough fault accompanied by off-fault fractures. These off-fault fractures follow a
power-law length distribution, with fracture density decreasing with distance from
the fault. This fault volume model accurately reproduces diverse slip dynamics, in-
cluding slow slip events, low-frequency earthquakes, and earthquakes, all within a
unified framework. Extending this work into 3D in the future could provide even
more comprehensive insights.

In both Chapter 3 (step-over fault system) and Section 4.2.2 (Turkey earthquake),
I focused on strike-slip faults. It would be interesting to explore dipping faults in
future studies to capture a wider range of fault behaviors.
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4.2.2 Realistic fault system: The 2023Kahramanmaraş –Türkiye
earthquakes

Introduction

February 6, 2023, earthquakes in Turkey, with magnitudes of Mw 7.8 and Mw 7.6,
causing over 55,000 deaths and impacting around 14 million people, highlight the
significance of understanding fault geometry complexities for risk assessments. The
earthquake of Mw 7.8 nucleated on the Nurdağı-Pazarcık fault (NPF), a branch of the
Eastern Anatolian fault (EAF), and then propagated bilaterally on EAF over 300km.
With a 9-hour delay, the earthquake of Mw 7.6 occurred on the Çardak fault, which
varies from 10 to 50km away from the EAF. All faults are left-lateral strike-slip faults.
In this section, we simulate earthquake cycles on the fault system that can be acti-
vated in the 2023 Turkey earthquake, including NPF, EAF, and Çardak fault. For
simplicity, we ignore other splay faults. We focus on the interaction among these
faults.

Method

We construct our fault model (Figure 4.1) according to the discontinuous line seen
in the InSAR image (Raimbault, Jolivet and Aochi, personal communication, 2024),
and the dip is fixed at 90° down to 15 km. The frame is rotated clockwise by 30°, and
the new Cartesian coordinates (X, Y) used in the simulations correspond briefly to
the fault parallel and normal directions. Principal horizontal stress orientations are
setting segmented, shown in Figure 4.1. We also smooth the orientations in order to
have a reasonable range of shear and normal traction. Friction, material properties
principle stress value, and stress rate are shown in Table 4.1.

Previous studies have already shown that in order to obtain the convergence of
the result, the element size needs to be small enough to resolve the process zone
length Lb (Rubin and Ampuero, 2005)

Lb =
µDc

bσn
. (4.1)

Lb is 2400m in this problem. We choose grid size 400m, which isLb/6. This model
requires 105,722 triangular elements. To solve the Turkey 2023 doublet earthquakes,
we need 6500 time steps, and it will be completed in 2 hours. The rupture process
and timing are shown in Figure 4.2.
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Figure 4.1: Geometry of the fault system in Turkey earthquakes and stress field set-
ting in this study.
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Table 4.1: Model and numerical parameters for the 2023 Kahramanmaraş – Türkiye
earthquakes

Parameters Description Value
a friction property: parameter for RSF 0.003
b friction property: parameter for RSF 0.01
Dc friction property: characteristic slip distance 0.04 m
Vref friction property: reference velocity for RSF 10−6 m/s
f0 friction property: reference friction coefficient for RSF 0.6
µ material property: shear modulus 3× 1010 Pa
ρ material property: density 2670 kg/m3

Cs material property: shear wave velocity 3464 m/s
V0 initial condition: initial slip rate 10−9 m/s
σ1 initial condition: maximum principle stress 100 MPa
σ2 initial condition: vertical principle stress 50 MPa
σ3 initial condition: minimum principle stress 30 MPa
σ̇1 initial condition: maximum principle stress rate 0.2 Pa/s
σ̇2 initial condition: vertical principle stress rate 0.05 Pa/s
σ̇3 initial condition: minimum principle stress rate 0.03 Pa/s

Result

We then simulate multiple earthquake cycles on this fault system and solve 6 earth-
quakes for the main faults. See Figure 4.3. It takes 68,000 time steps, and the compu-
tation is completed in one day. Our results show that earthquakes on EAF are more
frequent than those on the Cardak fault and NPF. Due to the interaction between
three faults, we have complex earthquake sequences in the following earthquake
cycles.

Conclusion

Unlike conventional modeling approaches limited to single planar faults, this model
lets us simulate how earthquakes might happen in complex fault systems, no matter
howmany faults or whether they are planar or nonplanar. The geometrical complex-
ities of fault systems can be well-defined by geological and geophysical approaches.
We can simulate real-world fault systems and use a physics-based model to figure
out how big earthquakes might be, where they could occur, and how often. In Chap-
ter 3, We applied this approach to the 2023 Kahramanmaraş – Türkiye earthquakes,
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Figure 4.2: The slip rate in the Turkish model for the first and second earthquake
sequences. (a)(b)(c) The first sequences rupture in the order of NPF, EAF, and Cardak
fault (d)(e)(f) The second sequences rupture in the order of EAF, Cardak fault, and
NPF.

– 89 –



0 10 20 30 40 50
Time(yrs)

10
-5

10
0

10
5

10
10

10
15

10
20

M
o
m

e
n
t 
R

a
te

(N
 

 m
/s

)

Eastern Anatolian fault
Cardak fault

Figure 4.3: Moment rate evolution on three faults segments for 50 years.

considering how the three faults affected each other. With our innovative method,
we analyzed six earthquakes in just one day—a task that would have taken around
24 days with older techniques that do not use Hmat acceleration. To get the timing
right and study supershear ruptures, a fully dynamic model is needed. Our model
aims to explain the complicated patterns of earthquake sequences clearly.

– 90 –



Discussion and perspectives

Figure 4.4: The geometry of the conjugate faults activated during the 2019 Ridgecrest
earthquakes and grid handling at their intersection.

4.2.3 Realistic fault systems: The 2019 Ridgecrest earthquake
and Mexico subduction zone

In the previous section, we demonstrated the effectiveness of our method using a
realistic fault system, specifically the 2023 Kahramanmaraş – Türkiye earthquakes.
Our approach can be effectively applied to various fault geometries, aiding in the
study of real-world earthquakes. In the following sections, we will present two
additional examples—the 2019 Ridgecrest earthquake and the Mexico subduction
zone—to show the capability of our method.

The 2019 Ridgecrest earthquakes

We extracted the conjugate faults activated during the 2019 Ridgecrest earthquakes
from the Southern California Earthquake Center (SCEC) Community Fault Model
(CFM) (Plesch et al., 2007) and remeshed them in CUBIT to ensure that the two
faults share the same edges and nodes at their intersection. Themesh is more refined
towards the intersection between the two faults (as shown in Figure 4.4 on the right)
to model the dynamics of the system at the intersection accurately.

Considering a constant stress field, the resulting shear and normal tractions on
the faults are shown in Figure 4.5. This traction distribution supports right-lateral

– 91 –



slip motion on the longer fault and left-lateral slip motion on the shorter fault, the
same as the observation. Future studies can develop more detailed models to repro-
duce the earthquake sequences, where a foreshock on the shorter fault triggers the
mainshock on the longer fault.

Mexico subduction zone

We also simulated the real geometry of the Mexico subduction zone, which is close
to Guerrero. The geometry of the subduction zone is from a personal discussion
with Carlos D. Villafuerte. We got different earthquake sequences that nucleate at
different positions, as shown in Figure 4.6 and 4.7. For the earthquake depicted in
Figure 4.7, our observations indicate that the geometric complexities of the fault
structure may influence the shape of the rupture front. Future work can focus on
exploring the slow slip events in this region.

4.2.4 Loading condition and initial condition

Loading condition: plate rate and stress rate

In earthquake cycle simulations, two commonly used types of loading are plate rate
loading and stress rate loading.

For plate rate loading, the backslip approach (Heimisson, 2020) is implemented
in FASTDASH. Thismethod specifies fault-slip rates and then calculates and imposes
stressing rates that correspond to the specified slip rates, as shown in Equation 2.28.
However, this often results in singularities in stressing rate at fault boundaries, lead-
ing to unrealistic hypocenters of events associated with these singularities. Shaw
(2019) introduced a new generalized hybrid loading method that combines the abil-
ity to drive faults at desired slip rates with more regularized stressing rates, allowing
faults to slip more naturally.

On the other hand, stress rate loading involves applying a constant stress loading
rate aligned with the principal direction of the initial background stress tensor. This
method is more accurate for complex geometries, assuming a constant stress rate in
the region and allowing the shear and normal traction rate on the fault to vary with
the strike.

However, there is one issue in stress rate loading, which is unrealistic stress ac-
cumulation. In Chapter 3, we use stress rate loading along the strike, as the two
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(a)

(b)

Figure 4.5: Resulting shear and normal traction distribution on the conjugate faults
activated during 2019 Ridgecrest earthquakes. The units of shear traction and nor-
mal traction are both Pascal (Pa).
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(a)

(b)

Figure 4.6: Slip rate snapshots for Mexico subduction zone simulation. One earth-
quake nucleated close to the center of geometry. The units of slip rates are meters
per second (m/s), and the units of time are seconds (s).
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(a)

(b)

Figure 4.7: Slip rate snapshots for Mexico subduction zone simulation. One earth-
quake nucleated close to the top left corner of geometry. The units of slip rates are
meters per second (m/s), and the units of time are seconds (s).
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Table 4.2: Stress field applied to the rough fault

Parameters Description Value
σ1 maximum principle stress 45 MPa
σ2 vertical principle stress 18 MPa
σ3 minimum principle stress 10 Mpa
ψ angle between x-axis and maximum principle stress 45o

σ̇1 maximum principle stress rate 0.0045 Pa/s
σ̇2 vertical principle stress rate 0.0018 Pa/s
σ̇3 minimum principle stress rate 0.0001 Pa/s

faults are planar, and there is no unrealistic normal traction accumulation on the
faults. Earthquakes and slow slip events will release the shear stress accumulation.
In Section 4.4.2, concerning the Turkey case, there is a strike variation, and we ob-
serve normal traction increasing with time, which slightly increases the recurrence
intervals of earthquakes. Since the time scale is not too long, the normal traction
remains reasonable. However, if the simulation time scale is extended significantly,
the normal traction accumulation could become excessively high, particularly in a
complex fault system.

Here, we provide an example with a rough fault to illustrate this issue. We focus
on a 3D sinusoidal rough fault, with the stress field information detailed in Table
4.2. A heterogeneous traction distribution on the fault plane is shown in Figure 4.8.
The results in Figure 4.9 demonstrate that the recurrence interval increases over time
due to the rapid accumulation of both shear and normal traction on the faults, which
is unrealistic in nature. The surrounding material cannot support excessively high
normal stress and will eventually exhibit plastic behavior, which our model cannot
capture.

One way to address this issue is to set a yield limit for normal stress. Once the
normal stress reaches a certain threshold, it is capped at this yield value. However,
this approach can lead to the loss of normal traction interactions in complex geome-
tries. Alternatively, we can apply a time-dependent relaxation term for both shear
and normal stresses. This relaxation term approximates the viscoplastic behavior of
off-fault materials and can be defined as follows (Ozawa et al., 2023):

dτ

dt
= −τ − τ0(s)

trelax
(4.2)

dσ

dt
= −σ − σ0(s)

trelax
, (4.3)
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(a)

(b) (c)

Figure 4.8: Geometry of sinusoidal rough fault and initial condition. The units for a
distance along strike direction and along normal direction are meters (m). The units
for initial shear and normal traction are Pascal (Pa).
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where trelax is the characteristic relaxation time, σn is the background normal stress
and τ0 is the background shear stress. Thismethod can resolve the issue of unrealistic
stress accumulation and preserve the stress interactions in complex fault systems.

Depth variation of normal traction

The variation of normal traction with depth is primarily due to the increasing weight
of the overlying rock and soil layers, leading to greater overburden pressure. This
pressure, also known as lithostatic pressure, increases linearly with depth. These
principles arewell-documented in geological and geophysical literature (Scholz, 2019).

To enhance the realism of our model, we can consider depth variations in normal
traction. By assigning normal traction element-wise within our model, it becomes
straightforward to incorporate these variations and study different events along the
depth of the fault. This approach allows for a more accurate representation of the
stress distribution and its impact on slip events.

4.2.5 Free surface effects

Since no stress is transmitted between the solid Earth and the atmosphere, it is es-
sential to consider half-space solutions and account for free surface effects (Segall,
2010). The half-space model is particularly important for shallow dipping faults and
large subduction zones.

To simulate a fault in a semi-infinite medium, we can use the mirror image tech-
nique, which has been applied in rupture dynamics problems (Quin, 1990; Aochi and
Fukuyama, 2002). By placing a "mirror image" source of stress or displacement on
the opposite side of the boundary, a symmetric problem is created that is easier to
solve analytically. This approach helps satisfy zero-traction boundary conditions by
superposing the stress fields from the original and mirror image sources.

Zhang and Chen (2006) derived the theoretical formulation of the half-space
Green’s function kernel for rupture dynamics, but it is limited to planar faults and
is primarily used for wave propagation problems. The dislocation method, how-
ever, offers flexibility for applying to complex geometries in elastostatic solutions.
For instance, Okada (1992) gave the rectangular dislocation solution in half-space.
Nikkhoo and Walter (2015) gave analytical, artifact-free triangular dislocations so-
lution in half space. They addressed artifact singularities and numerical instabilities
through a geometric method involving the superposition of three angular disloca-
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tions. This method incorporates the main dislocation, the image dislocation, and a
harmonic function to eliminate resultant surface normal traction, thus meeting the
zero-traction boundary condition at the free surface. Applying this in FASTDASH
is straightforward.

We compare the displacement distribution on the free surface with rectangular
dislocation in Okada (1992) and triangular dislocation in Nikkhoo andWalter (2015),
shown in Figure 4.10. The relative error is less than 10−4.

To avoid the implementation of another type of kernels while incorporating free
surface effects, a traction-free virtual interface at the surface can be used along-
side the full-space solution. Although this approach requires more computation, it
simplifies the development. It also allows the virtual surface plane’s shape to be ar-
bitrary, adapting to various topographies. This method for solving half-space prob-
lems has been implemented in rupture dynamics (Hok and Fukuyama, 2010).

Currently, our model focuses on the full-space static kernel and does not account
for surface effects. We plan to enhance our model by integrating this half-space ap-
proach and considering the impact of topography. This will allow the investigation
of shallow dipping faults and subduction zones.

4.2.6 Fluid fault interaction on geometrically complex faults

Including a more comprehensive impact of pore fluids could provide better insights
into fault zone mechanics and earthquake-triggering processes.

Scientific objectives and state-of-the-art

Seismic hazard assessment is essential for societal safety and infrastructure resilience,
aiming to quantify seismic risks for informed decision-making and preparedness.
The maximum magnitude of earthquakes, influenced by the complexity of fault sys-
tems, is a critical aspect of this assessment. The geometrical complexity of fault
systems in the natural environment decisively influences the initiation, propaga-
tion, and arrest of seismic events (King and Nábělek, 1985; Nakata et al., 1998; Wes-
nousky, 2006). Nonplanar faults, with their multi-scale roughness, introduce stress
heterogeneity that determines earthquake size by controlling rupture termination.
Rupture jumps across fault step-overs can significantly increase the size and mag-
nitude of earthquakes, heightening the risk and potential damage. February 6, 2023,
earthquakes in Turkey, with magnitudes of Mw 7.8 and Mw 7.6, causing over 55,000
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(a)

(b)

Figure 4.10: (a) Triangular elements and displacement distribution on the free surface
plane by using solutions from Nikkhoo and Walter (2015). The red line represents
the dislocation edge. (b) Rectangular elements and displacement distribution on the
free surface plane by using a solution from Okada (1992). White elements represent
singularities.
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deaths and impacting around 14 million people, highlight the significance of under-
standing fault geometry complexities for risk assessments.

Another crucial factor in seismic activity is fluid pressure. Fault zones are filled
with fluids within cracks and pores. Fluid flow can occur naturally from dehydration
reactions in hydrous minerals in subducting slabs, enabling tremors, slow slip, or
promoting aseismic slip (e.g., tremors in Japan, as observed by Shelly et al. (2006) and
aseismic slip in New Zealand as noted by Hamling et al. (2017)). Fluid flow can also
result from anthropogenic activities. Energy-related projects, such as wastewater
disposal and geothermal energy production, can add or remove fluid in the medium,
triggering induced seismicity (Ellsworth, 2013; Bao and Eaton, 2016; Goebel et al.,
2017; Keranen and Weingarten, 2018). Surrounding a region of fluid injection, pore
pressure diffusion leads to a change in effective stress, which may perturb the resis-
tance and stability of pre-existing faults. This phenomenon has been demonstrated
in the in-situ experiments of Guglielmi et al. (2015) and in the laboratory experi-
ments of Cebry et al. (2022). Beyond fluid diffusion, poroelastic stress transfer can
trigger seismicity over long distances, as shown in studies by (Segall and Lu, 2015;
Goebel et al., 2017). Therefore, incorporating fluid pressure into slip sequence sim-
ulations significantly enhances their relevance to both natural and induced seismic
events.

Theoretical models suggest that induced earthquake magnitude correlates with
injected fluid volume (Shapiro et al., 2011; McGarr, 2014; Bentz et al., 2020), yet they
often overlook prestress levels. Fracture mechanics-based models, such as those by
Garagash and Germanovich (2012); Galis et al. (2017); Sáez and Lecampion (2024),
highlight prestress sensitivity, but they usually assume simplistic fault geometries,
neglecting complex stress interactions in multiple fault systems. However, events
like the 2012 Brawley swarm (Wei et al., 2015) and the 2017 Pohang event (Palgunadi
et al., 2020) reveal the significance of dynamic fault interactions in fluid-induced
earthquakes.

Fluid-fault interaction yields diverse slip dynamics, while even without fluids,
elastic interactions within fault networks lead to varied tractions and slips. Hence,
it is crucial to consider both mechanisms for accurate slip dynamics replication. Fu-
turework can focus revolves around complex fault geometries and the inter-
action between fluids and faults in earthquake cycles (Figure 4.11). We aim to
investigate fault roughness, discontinuities (step-overs), and varying fluid pressures
using a comprehensive approach combining numerical modeling and experiments.
Incorporating fluid effects into numerical models adds complexity but deepens our
understanding of fluid-triggered events’ maximum magnitudes. Laboratory exper-
iments offer direct validation for the results of simulations, thereby synergistically
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Figure 4.11: Schematic of planned fluid and fault coupling based on proof of concept
model of Romanet et al. (2018).
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complementing each other.

Methodology

Physics-based models facilitate numerous simulations, enabling the exploration of
parameters and the creation of phase diagrams to assess significance. However, val-
idating results can be challenging due to assumptions and real-world applicability.
Laboratory experiments offer direct validation of simulation outcomes, providing
tangible evidence to confirm or challenge model predictions. However, they entail
higher time and financial costs compared to modeling and often have limited spatial
resolution.

To effectively meet our research objectives, we propose an integrated ap-
proach combining numerical modeling with laboratory experiments to in-
vestigate the effects of fault geometry and fluid flow on the maximummag-
nitude of events. Initially, modeling will explore how factors like fault roughness
and discontinuity impact the maximummagnitude of fluid-triggered seismic events,
broadening possibilities and identifying key phenomena. Subsequently, laboratory
experiments will cross-validate observations from numerical results. Our objectives
will be addressed through three work packages (WPs).

We will implement a fluid pressure solver with the physical ingredients in a new
3D complex fault network earthquake cycle model, which is necessary to explain
the experiments. This work package offers a numerical tool for experiments in WP2
and WP3.

Simulating the earthquake cycle in 3D fault networks by embedding 2D faults
within a 3D medium incurs significantly higher computational costs than 2D sim-
ulations. Conventional acceleration methods like Fast Fourier Transform (FFT) are
ineffective for complex fault systems. Observational studies, such as those by Ross
et al. (2020), have revealed that earthquake swarm behavior is profoundly influenced
by the three-dimensional fault structure, a detail overlooked by 2D models. This
highlights the urgent need for an efficient tool capable of simulating 3D earthquake
cycles within complex fault geometries to comprehend slip sequences accurately.

In my PhD research, I addressed this challenge by developing a simulator for
seismic and aseismic sequences accelerated by Hierarchical matrices, as discussed
in Chapter 2. This model efficiently handles the seismic cycle within complex fault
networks, encompassing nonplanar faults and multiple fault systems governed by
rate-and-state friction laws and cumulative stress from prior ruptures, all at a man-
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ageable computational cost (Cheng et al., 2024b). This approach allows detailed anal-
ysis of elastic interactions across multiple faults, offering crucial insights into their
collective behavior.

An effective numerical tool for analyzing complex fault networks is crucial, par-
ticularly for investigating fluid-triggered problems within a real fault system. To
further enhance this model, I propose integrating pore pressure diffusion and perme-
ability variation. This enhancement aims to provide a more comprehensive under-
standing of the interplay between pore fluid pressure diffusion and fault mechanics,
enriching our grasp of earthquake cycles in complex geological settings.

When assuming constant permeability, pore pressure diffusion follows the ana-
lytical solution (Rudnicki, 1986). However, fluid systems can exhibit nonlinear be-
haviorwhen considering spatial and temporal heterogeneous permeability. The fault
zone’s permeability is heterogeneous, with low permeability in the fault core and
high permeability in the surrounding damage zone, decreasing with distance (Wib-
berley et al., 2008; Faulkner et al., 2010) from the core. In laboratory experiments,
some studies indicate that permeability also changes with slip due to dilatancy (the
expansion of porosity during shear deformation) and effective normal stress (Bran-
tut, 2020; Mitchell and Faulkner, 2008; Passelègue et al., 2020).

This work package focuses on two configurations: a single rough fault and two
overlapping rough faults. The objective is to investigate how stress heterogeneity,
resulting from fault roughness, interaction, and far-field loading conditions, influ-
ences earthquake size-magnitude relations (the Gutenberg-Richter b-value).

Our approach integrates numerical modeling from WP1 with the experiments
described here. We will utilize polymethyl methacrylate (PMMA) due to its lower
shear modulus compared to rock, enabling easier observation of the nucleation pro-
cess under equivalent normal stress conditions. We will begin by examining a single
rough fault and then progress to a step-over fault systemwith two overlapping rough
faults. Sandblasting or sandpaper, as well as computer numerical control (CNC) ma-
chining of the fault surface, can produce specific roughness. For step-over samples,
we will cut two surfaces and glue the ends to manage fault length and overlap dis-
tance. The experimental samples will undergo uniaxial loading. Spatially varying
far-field loading will be achieved by engineering a nonplanar surface. Wires will be
used to initiate earthquakes, while strain gauge rosettes will measure strain in three
directions.

Fault roughness, characterized by multi-scale deviations from planarity, is com-
monly modeled using stochastic descriptions and extensively studied for its impact
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on tectonic earthquakes. It introduces natural shear and normal traction hetero-
geneity, influencing earthquake nucleation, propagation, and aftershock sequences
(Harbord et al., 2017; Cattania and Segall, 2021; Ozawa and Ando, 2021; Goebel
et al., 2023). Our approach integrates experiments and numerical methods to explore
spatial-temporal changes in Gutenberg-Richter b-values. Spatial heterogeneity in b-
values can offer insight into stress or slip distribution, while temporal changes can
illuminate b-value evolution throughout earthquake cycles. Previous observational
studies have indicated a reduction in b-values preceding large earthquakes.

Then, we build up the complexity and involve elastic interaction between two
faults. The obtained results will be cross-validated with those presented in Cheng
et al. (2024a): with more interaction between two faults, more slow slip events are
observed in the slip catalog. The interaction intensity is controlled by a geometry
factor, which is a function of overlap distance, distance between two faults, and fault
width. The interaction intensity, combined with friction parameters, will determine
the coexistence and dominance of slow slip events and earthquakes in the slip cata-
log. With numerical modeling, we can easily get a phase diagram of the laboratory
scale, which will help us select parameters and prepare samples. From experiments,
friction parameters can be measured with velocity step experiments and constrain
the numerical model inputs (Dieterich and Kilgore, 1994; Marone, 1998).

Validating laboratory experiments helps understand local effects within the con-
straints of instrument size, yet natural fault processes occur on much larger scales.
Numerical modeling offers a solution by simulating realistic fault geometries at the
field scale, bridging the gap between experimental insights and the complex dynam-
ics of natural fault systems. In the 2023 Turkish earthquake, two significant seismic
events occurred on separate fault segments with a delay exceeding 8 hours. Pre-
liminary results from studying this fault system reveal the reactivation of two main
faults during these earthquakes (Cheng et al., 2024b). Our goal is to delve deeper into
this scenario for a comprehensive understanding of interaction dynamics within this
multi-fault system. Scientific inquiries into step-over fault systems in dry con-
ditions aim to comprehend how geometry influences earthquake and slow
slip event sizes and frequencies across experimental and field scales.

To explore fluid-fault interaction in complex fault systems, our approach inte-
grates numerical modeling from WP1 with injection experiments based on samples
inWP2. These experiments will involve injecting fluid onto a single rough fault, and
two overlapped rough faults. Due to PMMA’s low permeability, pore fluid pressure
diffusion occurs primarily along the pre-cut fault plane during direct fluid injection.
In cases where a single rough fault is subject to fluid injection, dilatancy effects and
changes in permeability cannot be overlooked (Ye and Ghassemi, 2018). By studying

– 106 –



Discussion and perspectives

injection-induced events on rough faults, we aim to generate a diverse sequence of
complex seismic events, replicating statistical frequency-magnitude relationships.
When injecting fluid onto two overlapped rough faults, pore fluid pressure diffusion
within the 2D fault plane can create spatio-temporal variations in fluid pressure.
Heterogeneous effective normal traction will modify fault strength, potentially re-
vealing unexpected phenomena compared to dry conditions. Rupture jump ability
between faults may change with fluid injection, impacting earthquake size. Com-
paring experimental results with model outputs will elucidate whether additional
physical mechanisms, such as dilatancy or variation of permeability with effective
normal stress, are needed to explain fluid-triggered events. Our research aims
to understand how fluid injection influences the maximum magnitude of
fluid-triggered events in a step-over system.

Expected Results

We aim to integrate our slip sequence model with a geologically realistic fault struc-
ture, incorporating a fluid and permeability model informed by laboratory experi-
ments. Stress heterogeneity, driven by geometrical variations such as fault rough-
ness or multiple faults, plays a crucial role in fault slip dynamics. Furthermore, fluid
injection is known to alter the stress state, affecting the magnitude and frequency
of seismic events along a single fault. The scientific question is to understand mech-
anisms governing earthquake termination and its implications for event magnitude
estimation. Specifically, we are examining how various forms of geometrical hetero-
geneity influence rupture expansion and arrest in injection-induced earthquakes. By
elucidating these factors, we will refine seismic hazard assessment, discerning the
maximum magnitude potential of fault systems. We model both laboratory exper-
iments and hypothetical field cases using identical configurations to bridge scales
and extrapolate insights gained at the lab scale. Our objective includes replicating
earthquake statistics and emphasizing the understanding of maximum seismic event
magnitude factors. Analyzing fault stability under fluid injection aids in mitigating
seismic hazards from industrial activities, deepening fault mechanics understand-
ing, and enhancing seismic impact prediction and management in fluid injection
processes.
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Chapter 5

Conclusions

As discussed in the introduction of this thesis, natural fault systems present com-
plex geometries. It has been observed in several cases that the complex geometry of
faults can control the slip dynamic sequences and can generate slow ruptures, com-
monly known as SSEs. Even though the geometry of fault has been widely neglected
in traditional numerical models, recent studies have started to address it, in partic-
ular, using 2D models for computational reasons. Some current models allow for
3D geometrical complexity investigation. However, they are not computationally
efficient.

The main purpose of this thesis is to understand the role of complex fault ge-
ometry in the earthquake cycle. To achieve this, we developed a highly efficient
3D earthquake sequence simulator, FASTDASH, from scratch using the Boundary
Element Method (BEM) with Hierarchical Matrices.

In Chapter 2, we introduce a quasi-dynamic earthquake cycle model for 3D ge-
ometrically complex fault systems governed by the rate-and-state friction law. Us-
ing a boundary element method accelerated by Hierarchical Matrices, we convert
force equilibrium on faults into a series of ordinary differential equations (ODEs) to
simulate the evolution of slip rate, rake angle, shear and normal tractions, and mo-
ment rate on the faults. Hierarchical matrices effectively solve 3D complex faults,
reducing computational complexities from O(N2) to O(N logN), where N repre-
sents the number of discretized fault elements. For a fault discretized with 105 el-
ements, traditional algorithms require 1010 resources, whereas H-matrices reduce
this to 1.16×106. This approach provides the feasibility to conduct large-scale three-
dimensional computations universally adaptable to any fault geometry, helping us
understand realistic earthquakes.
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To validate our method, we benchmarked our model with static analytical so-
lutions, such as a penny-shaped crack under constant loading and an elastic crack
surrounded by a cohesive zone (Dugdale crack). We also cross-validated it with the
Southern California Earthquake Center SEAS BP4-QD benchmark to ensure code
accuracy during earthquake cycles. We also provide insights on selecting numer-
ical parameters like H-matrix properties and tolerance for ODE solvers to balance
computing time and result accuracy.

In Chapter 3, we explore step-over fault systems. We generated spatiotemporal
complex slip events from a step-over fault system with two parallel faults, demon-
strating how geometrical factors affect fault behavior. Specifically, we defined a fault
interaction metric Λ, a function of geometrical parameters, and found its relation to
the SSE moment release rate in the slip catalog. We observed that slow slip events
occur only within a certain range of Λ. This metric can also be easily extended to
other geometries. Additionally, we reproduced scaling laws, in particular, moment-
duration scaling for both fast and slow ruptures, and we show that the slow rupture
scaling is highly sensitive to the slip rate threshold used to detect the events. This
might imply that the sensitivity of the instrumental tools might also influence the
scaling for slow ruptures observed in nature.

In Chapter 4, we discuss the implications and perspectives of our work. Due to
its universal applicability, our model can be applied to more realistic fault geome-
tries. We apply our previously developed method to the 2023 Turkey earthquake
and aftershocks, and we show how the geometry of the fault systems in that re-
gion control the slip dynamics of this seismic sequence. It is also straightforward to
assign friction heterogeneity, depth-dependent normal stress, and different loading
approaches, showcasing our code’s high flexibility. Furthermore, developing this
effective numerical tool for earthquake cycles lays the foundation for future work
incorporating fluid injection.
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MOTS CLÉS

Matrice hiérarchique, Géométrie des failles 3D, Cycle sismique

RÉSUMÉ

Les systèmes de failles majeures présentent des propriétés géométriques complexes, telles que des directions de glisse-
ment variées, des discontinuités et des variations en profondeur. Ces géométries, reconstruites à travers des méthodes
géologiques et géophysiques, influencent significativement les événements sismiques. Les failles non planes introduisent
une hétérogénéité de contrainte, influençant la taille des séismes et le comportement de rupture. Les sauts de rupture
à travers les relais de failles peuvent augmenter la taille des séismes, augmentant ainsi les risques et les dommages
potentiels.
Nous présentons un modèle tridimensionnel quasi-dynamique du cycle sismique utilisant la méthode des éléments de
frontière, accéléré par des matrices hiérarchiques. Cette approche capture les interactions élastiques entre plusieurs
segments de failles et les champs de contrainte hétérogènes, réduisant la complexité de calcul de O(N2) à O(N logN).
Validé contre des solutions analytiques et des benchmarks numériques, notre modèle traite des configurations telles
que deux failles planes parallèles. Les interactions entre les failles créent des événements de glissement complexes, y
compris des événements de glissement lent et des ruptures partielles ou complètes. En incorporant les interactions 3D,
notre modèle supporte une gamme plus large de paramètres pour la coexistence des séismes et des événements de
glissement lent comparé aux modèles 2D. Nos résultats suggèrent que les divergences de mise à l’échelle moment-durée
dans les événements de glissement lent dépendent du seuil de taux de glissement utilisé.

Appliqué aux séismes de Kahramanmaraş en Turquie en 2023, notre modèle, avec une géométrie de faille réaliste et des

champs de contrainte lissés, reproduit avec succès la rupture bilatérale observée sur la faille anatolienne orientale et le

déclenchement retardé sur la faille de Cardak.

ABSTRACT

Major fault systems exhibit complex geometrical properties such as varying strike directions, discontinuities, and depth
variations. These geometries, reconstructed through geological and geophysical methods, significantly impact seismic
events. Nonplanar faults introduce stress heterogeneity, influencing earthquake size and rupture behavior. Rupture jumps
across fault step-overs can increase earthquake size, heightening risk and damage potential.
We introduce a 3D quasi-dynamic earthquake cycle model using the boundary element method, accelerated by Hierar-
chical matrices. This approach captures elastic interactions among multiple fault segments and heterogeneous stress
fields, reducing computational complexity from O(N2) to O(N logN).
Validated against analytical solutions and numerical benchmarks, our model handles configurations such as two parallel
planar faults. Interactions between faults create complex slip events, including slow slip events and partial or full ruptures.
By incorporating 3D interactions, our model supports a broader range of parameters for coexisting earthquakes and slow
slip events compared to 2D models. Our findings suggest that moment-duration scaling discrepancies in slow slip events
depend on the slip rate threshold used.

Applied to the 2023 Kahramanmaraş earthquakes in Turkey, our model, with realistic fault geometry and smoothed stress

fields, successfully reproduces the observed bilateral rupture on the Eastern Anatolian Fault and delayed triggering on

the Cardak fault.
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Hierarchical Matrices, 3D fault geometries, Earthquake cycle
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