If you can see this you are at the right place! Kindly turn off your cameras and microphones! Except the jury members! We will start promptly at 4pm Paris time.

Supershear Earthquakes **Theory, Experiments & Observations**

M. Bouchon U. Grenoble Alpes

A. Schubnel ENS

A. J. Rosakis Caltech

To obtain Habilitation à Diriger des Recherches from École Normale Supérieure

Harsha Suresh Bhat

D. Kondo Sorbonne U.

P. A. Johnson Los Alamos

S. Das Oxford U.

Tectonic plates try to slide past each around **faults**

Classical View of an Earthquake

Tectonic plates try to slide past each around **faults**

The faults resist this motion due to **friction**

Tectonic plates try to slide past each around faults

The faults resist this motion due to **friction**

This builds up **<u>energy</u>** in the medium and increases stress on the faults

Tectonic plates try to slide past each around faults

The faults resist this motion due to **friction**

This builds up **<u>energy</u>** in the medium and increases stress on the faults

Once the stresses exceed frictional resistance the plates slide past each other as the fault **ruptures** (unzips)

Tectonic plates try to slide past each around faults

The faults resist this motion due to **friction**

This builds up **<u>energy</u>** in the medium and increases stress on the faults

Once the stresses exceed frictional resistance the plates slide past each other as the fault **ruptures** (unzips)

This leads to a sudden release of the stored energy called an **Earthquake**

Thus, three different **speeds** come into action

Thus, three different **<u>speeds</u>** come into action

<u>rupture</u> speed

Thus, three different **<u>speeds</u>** come into action

- <u>rupture</u> speed lacksquare
- S-wave speed (~3.5 km/s)

Thus, three different **speeds** come into action

- <u>rupture</u> speed
- S-wave speed (~3.5 km/s)
- P-wave speed (~5 km/s)

Thus, three different **speeds** come into action

- rupture speed
- S-wave speed (~3.5 km/s)
- P-wave speed (~5 km/s)

A vast majority of earthquakes have rupture speed <u>slower</u> than the S-wave speed, around 2.5 km/s to 3 km/s

Fault

the P-wave speed)

However, occasionally, the rupture tends to go *faster* than the S-wave speed (but slower than

However, occasionally, the rupture tends to go *faster* than the S-wave speed (but slower than the P-wave speed)

Such class of earthquakes are called **Supershear Earthquakes**

Supersonic

https://www.nasa.gov/image-feature/stark-beauty-of-supersonic-shock-waves

Supershear

Supersonic

https://www.nasa.gov/image-feature/stark-beauty-of-supersonic-shock-waves

Supersonic

https://www.nasa.gov/image-feature/stark-beauty-of-supersonic-shock-waves

Photographische Fixirung der durch Projectile in der Luft eingeleiteten Vorgänge," Sitzungsber. k. Akad. Wiss., math.-naturwiss. Classe, 95 (1887) 764-80

Supershear

Supershear Earthquakes **Theory, Experiments & Observations**

- 1) transition seen in damage and aftershock pattern". to be subm.
- "Supershear Tsunamis and insights from the Mw 7.5 Palu Earthquake". to be subm.
- 3) fields : Theory and Experiments". J. Mech. Phys. Solids. DOI: 10.1016/j. jmps.2016.02.031.
- Earthquake Rupture In Laboratory". Earth Planet. Sc. Lett. DOI: 10.1016/j.epsl. 2013.11.030.
- 5) During Stick-Slip Experiments on Crustal Rocks". Science. DOI: 10.1126/ science.1235637.
- 6) ruptures". J. Geophys. Res. DOI: 10.1029/2007JB005182.
- 7) ruptures with application to the 2001 Mw 8.1 Kokoxili (Kunlun) Tibet earthquake". J. Geophys. Res. DOI: 10.1029/2006JB004425.

Jara, J., L. Bruhat, S. Antoine, K. Okubo, M. Y. Thomas, Y. Klinger, R. Jolivet, and H. S. Bhat (2021). "Signature of supershear

2) Amlani, F., H. S. Bhat, W. J. F. Simons, A. Schubnel, C. Vigny, A. J. Rosakis, J. Efendi, A. Elbanna, and H. Z. Abidin (2021).

Mello, M., H. S. Bhat, and A. J. Rosakis (2016). "Spatiotemporal properties of sub-Rayleigh and supershear rupture velocity

4) Mello, M., H. S. Bhat, A. J. Rosakis, and H. Kanamori (2014). "Reproducing The Supershear Portion Of The 2002 Denali

Passelègue, F. X., A. Schubnel, S. Nielsen, H. S. Bhat, and R. Madariaga (2013). "From Sub-Rayleigh to Supershear Ruptures

Dunham, E. M. and H. S. Bhat (2008). "Attenuation of radiated ground motion and stresses from three-dimensional supershear

Bhat, H. S., R. Dmowska, G. C. P. King, Y. Klinger, and J. R. Rice (2007). "Off-fault damage patterns due to supershear

• Stable crack growth possible if energy from the surrounding linear elastic field is drawn into the crack tip

- Only possible if rupture speed below the Rayleigh wave speed

Stable crack growth possible if energy from the surrounding linear elastic field is drawn into the crack tip

- Only possible if rupture speed below the Rayleigh wave speed

Kostrov (1964) : Self-similar solution of a propagating shear crack

• Stable crack growth possible if energy from the surrounding linear elastic field is drawn into the crack tip

Earthquake ruptures modelled as dynamic shear fractures

Craggs (1960) : Solution for a steady state semi-infinite crack, subjected to combined mode I and mode II loading

- Only possible if rupture speed below the Rayleigh wave speed

Kostrov (1964) : Self-similar solution of a propagating shear crack

wave speeds of the surrounding linear elastic medium. *Thus forbidden*.

Stable crack growth possible if energy from the surrounding linear elastic field is drawn into the crack tip

• Energy will be radiated out from the crack tip if the rupture speed lies between the Rayleigh and shear

Earthquake ruptures modelled as dynamic shear fractures

Craggs (1960) : Solution for a steady state semi-infinite crack, subjected to combined mode I and mode II loading

- Only possible if rupture speed below the Rayleigh wave speed

Kostrov (1964) : Self-similar solution of a propagating shear crack

- wave speeds of the surrounding linear elastic medium. *Thus forbidden.*
- Mode II shear crack will tend to propagate in the sub-Rayleigh rupture speed regime

• Stable crack growth possible if energy from the surrounding linear elastic field is drawn into the crack tip

• Energy will be radiated out from the crack tip if the rupture speed lies between the Rayleigh and shear

Shear Rayleigh

Earthquake ruptures modelled as dynamic shear fractures

Craggs (1960) : Solution for a steady state semi-infinite crack, subjected to combined mode I and mode II loading

- Only possible if rupture speed below the Rayleigh wave speed

Kostrov (1964) : Self-similar solution of a propagating shear crack

- wave speeds of the surrounding linear elastic medium. *Thus forbidden.*
- Mode II shear crack will tend to propagate in the sub-Rayleigh rupture speed regime

Weertman (1969) : Treated the crack as smeared-out dislocations

Stable crack growth possible if energy from the surrounding linear elastic field is drawn into the crack tip

• Energy will be radiated out from the crack tip if the rupture speed lies between the Rayleigh and shear

Earthquake ruptures modelled as dynamic shear fractures

Craggs (1960) : Solution for a steady state semi-infinite crack, subjected to combined mode I and mode II loading

- Only possible if rupture speed below the Rayleigh wave speed

Kostrov (1964) : Self-similar solution of a propagating shear crack

- wave speeds of the surrounding linear elastic medium. *Thus forbidden*.
- Mode II shear crack will tend to propagate in the sub-Rayleigh rupture speed regime

Weertman (1969) : Treated the crack as smeared-out dislocations

• Supershear velocity is forbidden

• Stable crack growth possible if energy from the surrounding linear elastic field is drawn into the crack tip

• Energy will be radiated out from the crack tip if the rupture speed lies between the Rayleigh and shear

Burridge (1973) : Solution for a self-similar mode II crack

0

Burridge (1973) : Solution for a self-similar mode II crack

0

Showed how to by-pass the forbidden speed regime

Burridge (1973) : Solution for a self-similar mode II crack

- Showed how to by-pass the forbidden speed regime
- A peak in the shear stress propagates ahead of the crack front at the S-wave speed nucleating a secondary (supershear) rupture ahead

Burridge (1973) : Solution for a self-similar mode II crack

- Showed how to by-pass the forbidden speed regime
- secondary (supershear) rupture ahead

Hamano (1974) : Numerical solution of rupture propagation

• A peak in the shear stress propagates ahead of the crack front at the S-wave speed nucleating a

Burridge (1973) : Solution for a self-similar mode II crack

- Showed how to by-pass the forbidden speed regime
- A peak in the shear stress propagates ahead of the crack front at the S-wave speed nucleating a secondary (supershear) rupture ahead

Hamano (1974) : Numerical solution of rupture propagation

Propagation velocity increases monotonically up to the P-wave speed

Burridge (1973) : Solution for a self-similar mode II crack

- Showed how to by-pass the forbidden speed regime
- A peak in the shear stress propagates ahead of the crack front at the S-wave speed nucleating a secondary (supershear) rupture ahead

Hamano (1974) : Numerical solution of rupture propagation

- Propagation velocity increases monotonically up to the P-wave speed
- Andrews (1976) : Numerically simulated a sub-Rayleigh to supershear rupture transition

Burridge (1973) : Solution for a self-similar mode II crack

- Showed how to by-pass the forbidden speed regime
- A peak in the shear stress propagates ahead of the crack front at the S-wave speed nucleating a secondary (supershear) rupture ahead

Hamano (1974) : Numerical solution of rupture propagation

- Propagation velocity increases monotonically up to the P-wave speed
- Andrews (1976) : Numerically simulated a sub-Rayleigh to supershear rupture transition

Earthquake ruptures modelled as dynamic shear fractures

Burridge (1973) : Solution for a self-similar mode II crack

- Showed how to by-pass the forbidden speed regime
- A peak in the shear stress propagates ahead of the crack front at the S-wave speed nucleating a secondary (supershear) rupture ahead

Hamano (1974) : Numerical solution of rupture propagation

Propagation velocity increases monotonically up to the P-wave speed

Andrews (1976) : Numerically simulated a sub-Rayleigh to supershear rupture transition

Validated Burridge mechanism of bypassing forbidden regime

Rayleigh Shear

Earthquake ruptures modelled as dynamic shear fractures

Burridge (1973) : Solution for a self-similar mode II crack

- Showed how to by-pass the forbidden speed regime
- A peak in the shear stress propagates ahead of the crack front at the S-wave speed nucleating a secondary (supershear) rupture ahead

Hamano (1974) : Numerical solution of rupture propagation

Propagation velocity increases monotonically up to the P-wave speed

Andrews (1976) : Numerically simulated a sub-Rayleigh to supershear rupture transition

- Validated Burridge mechanism of bypassing forbidden regime
- Identified mechanically stable portion of the supershear rupture speed regime

Earthquake ruptures modelled as dynamic shear fractures

Burridge (1973) : Solution for a self-similar mode II crack

- Showed how to by-pass the forbidden speed regime
- A peak in the shear stress propagates ahead of the crack front at the S-wave speed nucleating a secondary (supershear) rupture ahead

Hamano (1974) : Numerical solution of rupture propagation

Propagation velocity increases monotonically up to the P-wave speed

Andrews (1976) : Numerically simulated a sub-Rayleigh to supershear rupture transition

- Validated Burridge mechanism of bypassing forbidden regime
- Identified mechanically stable portion of the supershear rupture speed regime
- Introduced the notion of a 'transition' length

 $\sqrt{2}$

Pressure

Rayleigh Shear

0

Das (1976), Das & Aki (1977): Numerically simulated a sub-Rayleigh to supershear rupture transition

0

Das (1976), Das & Aki (1977): Numerically simulated a sub-Rayleigh to supershear rupture transition

• Introduced the S - ratio, a non-dimensional measure of the strength of a fault

Das (1976), Das & Aki (1977): Numerically simulated a sub-Rayleigh to supershear rupture transition

- Introduced the S ratio, a non-dimensional measure of the strength of a fault
- Showed that for $S \leq 1.77$ results in supershear rupture

Earthquake ruptures modelled as dynamic shear fractures

Das (1976), Das & Aki (1977): Numerically simulated a sub-Rayleigh to supershear rupture transition

• Introduced the S - ratio, a non-dimensional measure of the strength of a fault

• Showed that for $S \leq 1.77$ results in supershear rupture

Burridge (1979) : Stability analysis of a steady-state shear crack driven by a point load

Rayleigh

Shear

Pressure

 $\sqrt{2}$

Earthquake ruptures modelled as dynamic shear fractures

Das (1976), Das & Aki (1977): Numerically simulated a sub-Rayleigh to supershear rupture transition

• Introduced the S - ratio, a non-dimensional measure of the strength of a fault

• Showed that for $S \leq 1.77$ results in supershear rupture

Burridge (1979) : Stability analysis of a steady-state shear crack driven by a point load

• Verified the various admissible speed regimes

Das (1976), Das & Aki (1977): Numerically simulated a sub-Rayleigh to supershear rupture transition

• Introduced the S - ratio, a non-dimensional measure of the strength of a fault

• Showed that for $S \leq 1.77$ results in supershear rupture

Burridge (1979) : Stability analysis of a steady-state shear crack driven by a point load

• Verified the various admissible speed regimes

Freund (1979) : Solutions for the stress and particle velocities due to a 2D steady state shear crack

Stability of sub-shear crack propagation

Mello, Bhat et al. 2016

2D Steady State Singular Elastic Model : Sub-Rayleigh

Mello, Bhat et al. 2016

2D Steady State Singular Elastic Model : Supershear $\dot{u}_{1}^{2}+\dot{u}_{2}^{2}$ Velocity Field: $\dot{u} = \sqrt{1}$ (\mathbf{a}) (b)15 10 Shear Field: \dot{u}_i^s (j = 1, 2)(mm)1.5 $\dot{u}_j(x_1,x_2)/\dot{u}_1(x_1,0^+)$ 5 Fault Normal (m/s) -5 0.5 -10 0.2 0 -15 0 0.2 -5 0.4 0.6 5 -15 -10 0 0 Fault Parallel (mm)

Eshelby 1949

Mello, Bhat et al. 2016

Velocity Field: $\dot{u} =$ 15 10 mm5 Norma -5 Fau] -10 -15 and the second -15 -10 -5 0

Eshelby 1949 Mello, Bhat et al. 2016

Theory **2D Steady State Cohesive Zone Model : Supershear Stress Field**

$$0 \quad 5 \quad 10$$

$$\Delta \sigma_{xx} / (\sigma_{yx}^{o} - \tau_{r})$$

Bhat et al. 2007

Theory **2D Steady State Cohesive Zone Model : Supershear Stress Field**

$$0$$
 5 10
 $\Delta \sigma_{xx}/(\sigma_{yx}^{o}-\tau_{r})$

Bhat et al. 2007

Mello, Bhat et al. 2016

Right-Lateral/Left-Traveling Supershear Rupture

Right-Lateral/Left-Traveling

Leading Dilatational Field Lobe

Theory **2D Spontaneous Rupture Model : Supershear**

Right-Lateral/Right-Traveling Trailing sub-Rayleigh Rupture

Right-Lateral/Right-Traveling Supershear Rupture

Shear Mach cone from a generic point on the rupture front

Shear Mach cone from a generic point on the rupture front

Shear Mach cone from a generic point on the rupture front

Rayleigh Mach lines

Shear Mach cone from a generic point on the rupture front

Dunham & Bhat 2008

•Rupture tip causes medium to bulge on the compressional side and dimple on the extensional side

•Rupture tip causes medium to bulge on the compressional side and dimple on the extensional side

•To maintain the tractionfree surface, Rayleigh waves are generated

- side

• Rupture tip causes medium to bulge on the compressional side and dimple on the extensional

•To maintain the tractionfree surface, Rayleigh waves are generated

•If rupture is supershear => superRayleigh => **Rayleigh Mach fronts**

- side

• Rupture tip causes medium to bulge on the compressional side and dimple on the extensional

$$\frac{z}{W}$$

•To maintain the tractionfree surface, Rayleigh waves are generated

•If rupture is supershear => superRayleigh => **Rayleigh Mach fronts**

Dunham & Bhat 2008

50km

 $\mathbf{0}$

0

0

50km

100km

Sub-Rayleigh Rupture

Fault Normal Velocity

150km

50km

0

0

0

50km

10W

100km

Supershear Rupture

Fault Parallel Velocity

150km

Bizzarri & Das (2012) & Liu et al. (2014) : Continuous transition possible under certain conditions

Bizzarri & Das (2012) & Liu et al. (2014) : Continuous transition possible under certain conditions

Liu et al 2014

Jara, Bruhat et al. 2021

Sub to S

Mohr-Coulomb Plasticity

Sub to S

Mohr-Coulomb Plasticity

Discrete Damage

Wu (1972) : Stick-Slip experiments in Columbia Resin

Wu (1972) : Stick-Slip experiments in Columbia Resin

Wu (1972) : Stick-Slip experiments in Columbia Resin

• As Weertman (1969) theory disallowed supershear, it was forgotten. Probably!

Lambros & Rosakis (1995) : Bi-Material shear impact experiments

Lambros & Rosakis (1995) : Bi-Material shear impact experiments

Lambros & Rosakis (1995) : Bi-Material shear impact experiments

• First recorded image of a supershear rupture!

Rosakis et al. (1999) : Shear impact experiments

Rosakis et al. (1999) : Shear impact experiments

Xia et al. (2004) : Spontaneous shear ruptures along a frictional interface a.k.a Laboratory Earthquakes

Xia et al. (2004) : Spontaneous shear ruptures along a frictional interface a.k.a Laboratory Earthquakes

Xia et al. (2004) : Spontaneous shear ruptures along a frictional interface a.k.a Laboratory Earthquakes

• First laboratory evidence of Supershear Ruptures

Cordin 220 high speed cameras

CORDIN

H-100 LEQ specimen frame

expanded laser beam (D = 140mm, $\lambda = 532$ nm)

LEQ EXPERIMENTAL CONFIGURATION

hydraulic press

 $\sigma_{_0}$

U3

一理论

f=1000 mm

Mello, Bhat et al. (2010, 2016) : Experimental Validation of Ground Motion Signatures of Supershear Earthquakes

Mello, Bhat et al. (2010, 2016) : Experimental Validation of Ground Motion Signatures of Supershear Earthquakes

Mello, Bhat et al. (2010, 2016) : Experimental Validation of Ground Motion Signatures of Supershear Earthquakes

Mello, Bhat et al. (2010, 2016) : Experimental Validation of Ground Motion Signatures of Supershear Earthquakes

- Fault Parallel Motion > Fault Normal Motion for Supershear ruptures
- Supershear rupture front is followed by a "Trailing Rayleigh Rupture"

Mello, Bhat et al. (2010, 2016) : Experimental Validation of Ground Motion Signatures of Supershear Earthquakes

Mello, Bhat et al. (2014) : Scaled Reproduction of the 2002 Denali, Alaska Supershear Earthquake

Mello (2012, PhD Thesis) : Transition to Supershear Rupture Speed

Mello (2012, PhD Thesis) : Transition to Supershear Rupture Speed

Mello (2012, PhD Thesis) : Transition to Supershear Rupture Speed

Very Rare Mother-Daughter Transition Observed

Supershear ruptures possible under crustal conditions and in rocks

Transition to Supershear speed requires:

- S < 1.77 (1.19 in 3D) Andrews 1976, Das & Aki 1977, Dunham 2007
- Fault Length > Transition Length, L

Observations Supershear earthquakes in the wild

Olson & Apsel (1982), Archuleta (1984) and Spudich & Cranswick (1984) : 1979 M_w 6.5 Imperial Valley earthquake

Observations

Supershear earthquakes in the wild

• This was not universally accepted and the scale tipped in the favour of supershear skeptics for more than 25 years (Das, 2015)

- Olson & Apsel (1982), Archuleta (1984) and Spudich & Cranswick (1984) : 1979 M_w 6.5 Imperial Valley earthquake

than 25 years (Das, 2015)

Bouchon et al (2000, 2001) : 1999 M_w 7.5 Izmit & M_w 7.1 Düzce earthquakes

- Olson & Apsel (1982), Archuleta (1984) and Spudich & Cranswick (1984) : 1979 M_w 6.5 Imperial Valley earthquake • This was not universally accepted and the scale tipped in the favour of supershear skeptics for more

• This was not universally accepted and the scale tipped in the favour of supershear skeptics for more than 25 years (Das, 2015)

Bouchon et al (2000, 2001) : 1999 M_w 7.5 Izmit & M_w 7.1 Düzce earthquakes

- Olson & Apsel (1982), Archuleta (1984) and Spudich & Cranswick (1984) : 1979 M_w 6.5 Imperial Valley earthquake

Observations Supershear earthquakes in the wild

Bouchon et al (2000, 2001) : 1999 M_w 7.5 Izmit & M_w 7.1 Düzce earthquakes

Observations

servations

ar earthquakes in the wild

it & M_w 7.1 Düzce earthquakes

Observations Supershear earthquakes in the wild

Bhat et al. 2007

Bouchon & Vallée (2003) Robinson et al (2006) & others : 2001 M_w 7.8 Kunlun, Tibet earthquake

Observations

Bhat et al. 2007

Bouchon & Vallée (2003) Robinson et al (2006) & others : 2001 M_w 7.8 Kunlun, Tibet earthquake

Observations

Bhat et al. 2007

Bouchon & Vallée (2003) Robinson et al (2006) & others : 2001 M_w 7.8 Kunlun, Tibet earthquake

Observations Supershear earthquakes in the wild

Supershear earthquakes in the wild

Bouchon & Vallée (2003) Robinson et al (2006) & others : 2001 M_w 7.8 Kunlun, Tibet earthquake

Observations

Jara, Bruhat et al. 2021

ear earthquakes in the wild

Bouchon & Vallée (2003) Robinson et al (2006) & others : 2001 M_w 7.8 Kunlun, Tibet earthquake

servations

Jara, Bruhat et al. 2021

Bouchon & Vallée (2003) Robinson et al (2006) & others : 2001 M_w 7.8 Kunlun, Tibet earthquake

servations

ear earthquakes in the wild

Observations Supershear earthquakes in the wild

Mello, Bhat et al. 2014

Dunham & Archuleta (2004) Ellsworth et al. (2004) & others : 2002 M_w 7.8 Denali earthquake

Observations Supershear earthquakes in the wild

Mello, Bhat et al. 2014

Dunham & Archuleta (2004) Ellsworth et al. (2004) & others : 2002 M_w 7.8 Denali earthquake

Observations Supershear earthquakes in the wild

Mello, Bhat et al. 2014

Dunham & Archuleta (2004) Ellsworth et al. (2004) & others : 2002 M_w 7.8 Denali earthquake

Observations Supershear earthquakes in the wild

Yue et al (2013): 2013 M_w 7.5 Craig, Alaska earthquake

Zhan et al (2014) : 2013 M_w 6.7 Okhotsk, Kamtchatka earthquake. Deepest and fastest earthquake recorded

Bao et al (2019) Socquet et al (2019) Amlani et al (2021): 2018 M_w 7.5 Palu, Sulawesi earthquake

Observations Supershear earthquakes in the wild

Supershear earthquakes in the wild

Bao et al (2019) Socquet et al (2019) Amlani et al (2021): 2018 M_w 7.5 Palu, Sulawesi earthquake

Observations

Ulrich et al. 2019 Amlani et al. 2021

Supershear earthquakes in the wild

Amlani et al. (2021) : First observation of Supershear Earthquake on a GPS station

Observations

• Supershear ruptures are stable above the Eshelby speed, $\sqrt{2c_s}$

- Supershear ruptures are stable above the Eshelby speed, $\sqrt{2c_{c}}$
- opposite is true for sub-Rayleigh/ sub-shear ruptures.

• The near field particle velocity is dominated by the fault parallel component for such ruptures. The

- Supershear ruptures are stable above the Eshelby speed, $\sqrt{2c_{c}}$
- The near field particle velocity is dominated by the fault parallel component for such ruptures. The opposite is true for sub-Rayleigh/ sub-shear ruptures.
- There is a clear separation of the dilatational and the shear fields which manifest in the ground motion.

- Supershear ruptures are stable above the Eshelby speed, $\sqrt{2c_{
 m c}}$
- The near field particle velocity is dominated by the fault parallel component for such ruptures. The opposite is true for sub-Rayleigh/ sub-shear ruptures.
- There is a clear separation of the dilatational and the shear fields which manifest in the ground motion.
- Supershear ruptures are, usually, trailed by a pulse traveling exactly at the Rayleigh wave speed. This pulse has dominantly fault normal motion.

- Supershear ruptures are stable above the Eshelby speed, $\sqrt{2}c_{
 m c}$
- The near field particle velocity is dominated by the fault parallel component for such ruptures. The opposite is true for sub-Rayleigh/ sub-shear ruptures.
- There is a clear separation of the dilatational and the shear fields which manifest in the ground motion.
- Supershear ruptures are, usually, trailed by a pulse traveling exactly at the Rayleigh wave speed. This pulse has dominantly fault normal motion.
- In 3D, supershear ruptures manifest Rayleigh Mach fronts, in addition to the shear ones. The Rayleigh Mach fronts suffer no attenuation with distance from the fault for an ideal medium.

- Supershear ruptures are stable above the Eshelby speed, $\sqrt{2}c_{
 m c}$
- The near field particle velocity is dominated by the fault parallel component for such ruptures. The opposite is true for sub-Rayleigh/ sub-shear ruptures.
- There is a clear separation of the dilatational and the shear fields which manifest in the ground motion.
- Supershear ruptures are, usually, trailed by a pulse traveling exactly at the Rayleigh wave speed. This pulse has dominantly fault normal motion.
- In 3D, supershear ruptures manifest Rayleigh Mach fronts, in addition to the shear ones. The Rayleigh Mach fronts suffer no attenuation with distance from the fault for an ideal medium.
- At the location of transition from sub to supershear speeds, severe Lorentz-like contraction of the stress field should lead to minimal off-fault damage.

Harvard University, USA Harvard University, USA NITK, India

Post Doctoral Work

University of Southern California, USA University of Southern California, USA California Institute of Technology, USA

Past Employment

Institut de Physique du Globe de Paris, France 2012/01 ► 2016/05 CNRS Research Scientist

Current Position

École Normale Supérieure, France California Institute of Technology, USA

Ph. D.	Mechanical Sciences	2007/06
M.S.	Engineering Sciences	2002/06
B.E.	Civil Engineering	2001/06

2010/03 ► 2011/12 Asst. Professor (Research) 2007/11 ► 2010/03 Post Doctoral Fellow 2007/11 ► 2010/03 Visitor in Aeronautics

2016/05 ► Present CNRS Research Scientist 2018/12 ► Present Visiting Professor in Aeronautics

Research Funding & Publications

- Over 45 publications in peer reviewed international journals including Nature, Nature Communications and Science
- Over 30 publications since joining CNRS
- 1 Book Chapter
- 2 Edited Volumes

Year	Country	Funding Agency	Sta
2008	USA	NSF	Acc
2008	USA	NSF	Acc
2010	USA	NNSA	Acc
2011	USA	SCEC	Acc
2011	USA	NSF	Rej
2012	FRANCE	ANR	Rej
2013	FRANCE	ANR	Rej
2013	FRANCE	Paris - EMERGENCE	Rej
2013	EU	ERC Starting Grant	Rej
2014	FRANCE	ANR	Rej
2013	EU	ERC Starting Grant	Rej
2014	FRANCE	Paris - EMERGENCE	Rej
2014	FRANCE	Université Sorbonne Paris Cité	Rej
2015	FRANCE	ANR	Rej
2015	FRANCE	Paris - EMERGENCE	Rej
2016	FRANCE	ANR	Rej
2016	FRANCE	INSU	Acc
2017	FRANCE	Simone and Cino Del Duca Foundation	Rej
2017	FRANCE	INSU Mi-Lourds	Rej
2017	FRANCE	ENS-Action Incitatives	Acc
2017	FRANCE	Thomas Jefferson Fund	Rej
2018	FRANCE	Thomas Jefferson Fund	Rej
2019	EU	ERC Consolidator Grant	Acc
2019	FRANCE	INSU	Rej

Lucile Bruhat

Claudia Hulbert

François X. Passelègue

Sonia Fliss

Luc Illien

Ekeabino Momoh

Joseph M. Flores Cuba

Vahe Gabuchian

Marion Olives

Nicolas Mercury

Carlos D. Villafuerete

Augustin Thomas

Aurélie Baudet

Philippe Danré

Michelle Almakari

Jinhui Cheng

Kurama Okubo

Thibaut Perol

Hugo Lestrelin

Marion Y. Thomas

Michael Mello

Marshall A. Rogers-Martinez

Victor Barolle

Roxanne Ferry

Lisa Gordeliy

Jonathan Mihaly

Samson Marty

Eleni Kolokytha

We developed **simple rules for rupture branching** (forward & backward), in a fault network

We developed **simple rules for rupture branching** (forward & backward), in a fault network

We developed new algorithms to model earthquake cycles on realistic fault networks

We developed **simple rules for rupture branching** (forward & backward), in a fault network

We developed new algorithms to model earthquake cycles on realistic fault networks

We showed that **slow slip events and earthquakes emerge naturally** in non-planar faults

We developed **simple rules for rupture branching** (forward & backward), in a fault network

We developed new algorithms to model earthquake cycles on realistic fault networks

We showed that **slow slip events and earthquakes emerge naturally** in non-planar faults

We showed that the **off-fault damage dynamically** interacts with rupture

We developed **simple rules for rupture branching** (forward & backward), in a fault network

We developed new algorithms to model earthquake cycles on realistic fault networks

We showed that **slow slip events and earthquakes emerge naturally** in non-planar faults

We showed that the **off-fault damage dynamically** interacts with rupture

We developed micromechanical models of fracture networks for mechanical & hydraulic evolution

We developed **simple rules for rupture branching** (forward & backward), in a fault network

We developed new algorithms to model earthquake cycles on realistic fault networks

We showed that **slow slip events and earthquakes emerge naturally** in non-planar faults

We showed that the **off-fault damage dynamically** interacts with rupture

We developed micromechanical models of fracture networks for mechanical & hydraulic evolution

We showed that high frequency ground motion emerged from Damage Zone

We developed **simple rules for rupture branching** (forward & backward), in a fault network

We developed new algorithms to model earthquake cycles on realistic fault networks

We showed that **slow slip events and earthquakes emerge naturally** in non-planar faults

We showed that the **off-fault damage dynamically** interacts with rupture

We developed micromechanical models of fracture networks for mechanical & hydraulic evolution

We showed that high frequency ground motion emerged from Damage Zone

We co-developed numerical algorithms to spontaneously activate off-fault fracture networks

We developed **simple rules for rupture branching** (forward & backward), in a fault network

We developed new algorithms to model earthquake cycles on realistic fault networks

We showed that **slow slip events and earthquakes emerge naturally** in non-planar faults

We showed that the **off-fault damage dynamically** interacts with rupture

We developed micromechanical models of fracture networks for mechanical & hydraulic evolution

We showed that high frequency ground motion emerged from Damage Zone

We co-developed numerical algorithms to spontaneously activate off-fault fracture networks

We were able to explain migration of tremors by non-linear fluid diffusion mechanism

We developed **simple rules for rupture branching** (forward & backward), in a fault network

We developed new algorithms to model earthquake cycles on realistic fault networks

We showed that **slow slip events and earthquakes emerge naturally** in non-planar faults

We showed that the **off-fault damage dynamically** interacts with rupture

We developed micromechanical models of fracture networks for mechanical & hydraulic evolution

We showed that high frequency ground motion emerged from Damage Zone

We co-developed numerical algorithms to spontaneously activate off-fault fracture networks

We were able to explain migration of tremors by non-linear fluid diffusion mechanism

We showed that thrust faults can actually open

We developed **simple rules for rupture branching** (forward & backward), in a fault network

We developed new algorithms to model earthquake cycles on realistic fault networks

We showed that **slow slip events and earthquakes emerge naturally** in non-planar faults

We showed that the **off-fault damage dynamically** interacts with rupture

We developed micromechanical models of fracture networks for mechanical & hydraulic evolution

We showed that high frequency ground motion emerged from Damage Zone

We co-developed numerical algorithms to spontaneously activate off-fault fracture networks

We were able to explain migration of tremors by non-linear fluid diffusion mechanism

We showed that thrust faults can actually open

PERSISMO Jan 2021 - Dec 2025 We developed **simple rules for rupture branching** (forward & backward), in a fault network

We developed new algorithms to model earthquake cycles on realistic fault networks

We showed that **slow slip events and earthquakes emerge naturally** in non-planar faults

We showed that the **off-fault damage dynamically** interacts with rupture

We developed micromechanical models of fracture networks for mechanical & hydraulic evolution

We showed that high frequency ground motion emerged from Damage Zone

We co-developed numerical algorithms to spontaneously activate off-fault fracture networks

We were able to explain **migration of tremors by non-linear fluid diffusion mechanism**

We showed that thrust faults can actually open

