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Abstract
To analyze the effect of fault branches on dynamic rupture propagation we numerically

simulated the observed dynamic slip transfer from the Denali to Totschunda faults during

the Mw 7.9, November 3, 2002, Denali fault earthquake, Alaska and show that the theory

and methodology of Poliakov et al. [2002] and Kame et al. [2003] is valid for the 2002

Denali fault event. To understand the effect of fault branch length on dynamic rupture

propagation we analyze earthquake ruptures propagating along a straight “main” fault and

encountering a finite-length branch fault. We show finite branches have the tendency of

stopping or re-nucleating rupture on the main fault depending on their length in addition

to the parameters singled out by Kame et al. [2003]. We also illustrate branch-related

complexities in rupture velocity and slip evolution. We illustrate the effect of backward

branches (branches at obtuse angle to the main fault with the same sense of slip as the

main fault) and propose a mechanism of backward branching. As a field example we

simulate numerically, using a two-dimensional elastodynamic boundary integral equation

formulation incorporating slip-weakening rupture, the backward branching phenomenon

observed during the Landers 1992 earthquake.

To characterize the effect of supershear ruptures on off-fault materials we extend a
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model of a two-dimensional self-healing slip pulse, propagating dynamically in steady-

state with slip-weakening failure criterion, to the supershear regime and show that there

exists a non-attenuating stress field behind the Mach front which radiates high stresses

arbitrarily far from the fault (practically this would be limited to distances comparable

to the depth of the seismogenic zone). We apply this model to study damage features

induced during the 2001 Kokoxili (Kunlun) event in Tibet. We also study the 3D effects

of supershear ruptures by simulating bilateral ruptures on a finite-width vertical strike-

slip fault breaking the surface of an elastic half-space, and focus on the wavefield in the

near-source region. We provide numerical evidence for the existence of Rayleigh Mach

fronts, in addition to shear Mach fronts. We conclude that radiating Mach waves of three-

dimensional supershear ruptures do transmit large-amplitude ground motions and stresses

far from the fault. The amplitudes along the shear Mach front would be moderated at

distances greater than the fault width by decay with distance due to geometrical spreading.

However, in an ideally elastic material, we do not expect any geometrical attenuation along

the Rayleigh Mach front.
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A fault system has in general geometric complexities, long known to geologists [King

and Nabelek, 1985; Sibson, 1985; King, 1986; Wesnousky, 1988; Knuepfer, 1989; Aydin

and Schultz, 1990; Yule and Sieh, 2003; Brankman and Aydin, 2004; Wesnousky, 2006,

among others], like bends, branches, step-overs, and sub-parallel strands at different length

scales (e.g. 1992 Landers earthquake, Figure 1.1). A long standing issue in geophysics is

the role played by these geometric complexities in dynamic earthquake rupture propagation

and generation/re-activation of off-fault damage.

Since one of the goals of seismic hazard analysis is predicting the rupture extent of

future events it becomes even more relevant, from a practical standpoint, to understand

the role of geometric complexities in dynamic earthquake rupture propagation. Recently,

Wesnousky [2006] has compiled surface rupture maps of 20 large strike-slip surface rupture

earthquakes and emphasized the role of geometric complexities, specifically step-overs, in

stopping an earthquake rupture (Figure 1.2). One of the claims made in that work was

that variations in earthquake rupture lengths are not necessarily controlled by the relative

size of initial slip pulses or stress drops but rather by the geometrical complexity of fault

traces and variations in accumulated stress levels along faults are due to the location of past

earthquakes along the respective faults.

The interaction between geometric complexities like fault bends and jogs and rupture

has been observed for various earthquakes. For example, the 1992 Landers event branched

from the Johnson Valley Fault to the Kickapoo fault with part of the rupture continuing on

the Johnson Valley fault for four kilometers beyond the branching junction [Sowers et al.,

1994; Kame et al., 2003]. The rupture then transitioned, via a step-over, to Homestead

Valley fault where part of the rupture seemed to branch “backwards” [Fliss et al., 2005].
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0 1kmSCALE

Figure 1.1: Map from Sowers et al. [1994] showing region of transition from the Johnson
Valley to the Kickapoo and to the Homestead Valley faults during the 1992 Landers earth-
quake. The thickest lines show fault breaks with surface slip > 1 m, intermediate lines
> 0.05 m, and thinnest lines > 0.01 m.
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The 2002 Denali event branched off from the main Denali fault to the Totschunda fault

with no observable surface slip on Denali fault beyond the branching junction [Bhat et al.,

2004]. Similar examples of branching from various other earthquakes are discussed in

Kame et al. [2003]. For more examples on observations of earthquake rupture propagation

through geometric complexities see Wesnousky [2006].

Theoretical modeling of a mode II rupture propagation on a planar fault, in an isotropic

elastic medium, suggests two key points of relevance to this study [Yoffe, 1951; Poliakov

et al., 2002; Rice et al., 2005, and references therein]. One is that a dynamic shear rupture,

once nucleated on a planar fault with uniform frictional properties and stress distribution,

accelerates to its limiting speed (cR, the Rayleigh wave speed for Mode II and cs, the shear

wave speed for mode III), sometimes even transitioning to the supershear (rupture speed

exceeding cs) regime for mode II ruptures. Thus to explain observations of a variety of

earthquake event sizes, the event size being a proxy for rupture length, on a given fault one

has to appeal to some kind of heterogeneity introduced into the fault frictional properties

and stress distribution. The second point is that as the rupture accelerates to its limiting

speed the stress perturbation in the medium is larger on off-fault planes than on the plane

directly ahead of the rupture front [e.g. Poliakov et al., 2002]. These two theoretical ob-

servations suggest that off-fault structures, such as branches, step-overs etc., can get stress

perturbations that could be large enough sometimes to activate them. This could then lead

to inhomogeneous changes in stress distribution (arising chiefly from geometric complex-

ities), and fault frictional behavior, which could in turn significantly perturb the rupture

propagation characteristics on a fault.

The consensus, so far, in the area of earthquake source physics is that spatial hetero-
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Figure 1.2: Maps of various earthquake rupture surface traces. Adjacent and continuing
traces of active faults that did not rupture during the earthquake are shown as dotted lines.
Also annotated are the dimensions of fault steps measured approximately perpendicular to
fault strike. The star is the earthquake epicenter [from Wesnousky, 2006].
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geneity in the strength/stress distribution along the fault could lead to the stoppage of an

earthquake rupture. One should however note that this consensus is derived mainly from

the fact that most of the modeling of earthquake ruptures is done via kinematic or dynamic

inversion of events on planar faults to match seismological observations.

Hence the question of the source of heterogeneities in the fault stress and frictional

properties is still not addressed definitively. To fully address that issue two ingredients

are vital. One is the numerical ability to perform multi-earthquake cycle studies on a ge-

ometrically complex fault system and the other is to incorporate a fault friction law that

allows for an evolution in the strength of a fault system in the inter-seismic period. The

latter is achieved quite effectively through a rate-and-state type frictional behavior where

the strength of the fault could depend on the sliding velocity, the contact time between

fault asperities, the total amount of slip accumulated by the fault (or some other measure

of history of sliding between the faults) and various other hydro-thermo-poro-mechanical

properties of the fault [Segall and Rice, 2006; Rice, 2006; Rempel and Rice, 2006, and ref-

erences therein]. Because of computational limitations no studies have been done yet that

fully incorporate the above two ingredients. It should however be noted that these issues

have been addressed in the context of a planar fault by Lapusta et al. [2000] and Lapusta

and Rice [2003]. More recently Liu and Rice [2005] have shown that small perturbations

in the fault frictional properties can lead to a very inhomogeneous stress state on the fault

altering the seismic cycle significantly enough to make the small frictional perturbations ir-

reversible. Duan and Oglesby [2005] were the first to conduct multi-cycle dynamics study

of an earthquake rupture through a branched fault geometry (with a visco-elastic constitu-

tive response of the medium to mimic the inter-seismic loading period rather than the one
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mentioned above) and have shown that the stress field left in the wake of an earthquake

event did alter the general rupture propagation direction during the subsequent earthquake

events. In the light of the questions mentioned above the importance of understanding the

relevance of geometric complexities of a fault in dynamic earthquake rupture becomes a

pertinent one.

However, that does not mean that the issue of complex fault geometries has not been

addressed in the past. For example, Harris et al. [1991] and Harris and Day [1993] have

numerically investigated the conditions under which rupture transitions from one planar

segment of a step-over to another. There has been a surge of activity recently in the numer-

ical modeling of rupture propagation through geometric complexities. Numerical modeling

of geometric complexities and their interaction with the rupture process has been done by

Tada and Yamashita [1997], Kame et al. [2003] and Bhat et al. [2004], among others, for a

rupture branching through a fault system in 2D using the Boundary Integral Equation (BIE)

method (see Appendix A), and by Duan and Oglesby [2005] using the Finite Element (FE)

method. Aochi et al. [2000a,b, 2002, 2005] and Aochi and Fukuyama [2002] addressed

similar problems in 3D using the BIE method, and Oglesby et al. [2003a], Dreger et al.

[2004] and Oglesby [2005] using the FE method.

The theoretical framework for dynamic off-fault processes due to an earthquake rupture

on a fault was laid out by Poliakov et al. [2002], in the context of a dynamic steady state

semi-infinite shear rupture. The authors noted that off-fault slip systems could get activated

due to an earthquake rupture with the extent and location of such activated zones depend-

ing on the large scale stress field and the rupture velocity. Rice et al. [2005] extended this

framework to a slip pulse propagating in a medium, on a prescribed fault plane. Follow-
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ing the concepts introduced by Poliakov et al. [2002] on factors governing fault branch-

ing, Kame et al. [2003] performed an extensive set of numerical simulations of branching.

Those were done in 2D, for a mode II, rupture model with a linear slip-weakening friction

coefficient, with strength during slip-weakening proportional to the instantaneous local nor-

mal stress. The simulations involved a range of branching fault angles (ϕ) with the primary

fault, rupture velocities (vr) approaching the branching location, and maximum horizontal

pre-stress inclinations (Ψ) with the main fault. These parameters were crucial in rupture

taking or not taking a branch, and continuing or not along the main fault as well. The

simulations were compared with field cases of branching earthquakes, namely the 1944

Tonankai event, the 1971 San Fernando event, the 1979 Imperial Valley event, the 1985

Kettleman Hills event and the 1992 Landers event for the rupture branching from the John-

son Valley fault to the Kickapoo fault [Figure 1.1].

In chapter 2 we further validate the theory of fault branching developed by Poliakov

et al. [2002] and Kame et al. [2003] with another field branching event during the 2002

Denali fault earthquake, where the rupture branched, by about 150 to the extensional side,

abruptly from the Denali fault to the Totschunda fault (Figure 1.3). We show that a rela-

tively simple 2D theory of fault branching can quite satisfactorily explain this phenomenon.

The above model, however, does not address a key issue which is the role of the length

of the fault branch. A cursory glance at the map of surface rupture trace after the 1992

Landers event (Figure 1.1) reveals branch segments at various length scales ranging from

few tens of meters to a few kilometers. The question then is can we ignore the small

scale geometrical features when, say, modeling this event. Theoretical work by Eshelby

[1969] for mode III and Fossum and Freund [1975] for mode II emphasizes that when a
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Figure 1a

Figure 1.3: Rupture path, solid line, of the Mw 7.9 Denali fault earthquake. A star towards
the left of center of the figure marks the epicenter of the 3 November 2002 event. [Figure
courtesy: Alaska Division of Geological and Geophysical Surveys.]
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dynamic rupture is suddenly stopped it radiates large stress perturbations into the medium

from the rupture termination point. In fact Harris et al. [1991] and Fliss et al. [2005]

use this as a mechanism for the rupture to dynamically jump from one fault segment to

another. Thus a termination of a rupture on a short branch segment could significantly alter

rupture propagation characteristics on the main fault. This leads us to a hypothesis that

short branch segments could indeed be significantly important in modeling an earthquake

event. We address this issue of “finite” branches in chapter 3.

Another interesting question that is posed, recently, in the area of geometrical fault

complexity is: Is it possible to judge the directivity of a large earthquake from the rupture

pattern it left? The answer to that question would be very useful for risk assessment of

future earthquakes, even if it is currently unknown if large earthquakes do systematically

repeat their rupture direction (while not necessarily the entire rupture pattern). A narrower

version of that question is, could we associate the directivity of a major earthquake with

the pattern of branches that it left?

That question has been posed by Nakata et al. [1998], who proposed to relate the ob-

served surface branching of fault systems with directivity. Their work assumed that all

branches were through acute angles, in the direction of rupture propagation. However

Dmowska et al. [2002] pointed out that, for at least some field observations, the rupture

paths seemed to branch through highly obtuse angles, as if to propagate “backwards” along

the branch. Mechanically such branching is forbidden, it is rather more probable that some

obtuse branches are due to early aftershocks. However during the 1992 Landers, Califor-

nia, earthquake, Poliakov et al. [2002] showed that the pattern of damage off the southern

Homestead Valley fault, which lies mainly on the western side of the fault, and the rela-
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tively steep direction of maximum compressive stress with respect to the fault (Ψ ≈ 650)

clearly indicates such a backward direction of propagation (NNW to SSE) on that branch

(Figure 1.1). In chapter 4 we analyze and numerically simulate the mechanics of such

backward branching, and relate the results to understanding rupture directivity.

The velocity at which a rupture propagates influences the amplitude and character of the

radiated ground motion and stresses. A distinct manifestation of this occurs when ruptures

exceed the S-wave speed and generate shear Mach fronts that coherently transmit ground

motion and stresses far from the fault. The earliest inference of supershear earthquake

rupture was during the 1979 Imperial Valley earthquake for which Archuleta [1984] noticed

that for a better fit of near-fault strong motion records, the rupture speed had to exceed the

shear wave speed. More recent inferences were made during the 1999 Izmit and Düzce

events [Bouchon et al., 2000, 2001] the 2001 Kokoxili (Kunlun) event [Bouchon and Vallee,

2003] and the 2002 Denali event [Ellsworth et al., 2004; Dunham and Archuleta, 2005].

Laboratory verification of supershear rupture was provided by Rosakis et al. [1999] and

Xia et al. [2004].

The aim of chapter 5 is to point out some unique features of supershear ruptures that

manifest themselves as patterns of off-fault damage which should be, in favorable circum-

stances, directly observed in the field. Earlier work by Poliakov et al. [2002] and Rice et al.

[2005] for 2D steady sub-Rayleigh rupture speeds has revealed expected off-fault dam-

age patterns. Those were dependent on rupture speed, orientation of the pre-stress field

among other parameters, and were shown to have some consistency with field observa-

tions. Adopting the Dunham and Archuleta [2005] extension of the speed regime of the

Rice et al. [2005] solution for a steady self-healing slip pulse to the supershear regime we
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study the off-fault damage created during rupture propagation.

The combined assumptions of two dimensions (i.e., an infinite extent of the slipping

region parallel to the rupture front), steady-state propagation, and a homogeneous linear-

elastic medium cause the Mach fronts to extend infinitely far from the fault and for the

amplitude of fields associated with the Mach front to remain undiminished with distance

from the fault. To understand the effect of bounding the lateral extent of the slipping re-

gion, consider two limiting cases of a rupture on a finite-width fault (with width 2W and

ignoring, for the present, the free surface). At locations close to the fault and away from

its edges (specifically, those much closer that W ), the finite fault width is unimportant and

two-dimensional models provide an accurate description of the fields. In this extremely

near-source region, the Mach front assumes the form of a wedge (Figure 1.4a) and Mach

front amplitudes will not diminish with distance from the fault. Of course, this region is fur-

ther complicated by the presence of dilatational fields of comparable amplitude. At the op-

posite extreme, consider points far removed from the fault (specifically, at distances greatly

exceeding W ). From these distant points, the finite-width fault appears as a line source,

and S-wave radiation now forms a Mach cone (Figure 1.4b). Since the cross-section of the

cone is a circle, geometrical spreading dictates that displacement amplitudes will diminish

as the inverse square-root of radial distance from the fault. It is of critical importance to

hazard calculations to understand exactly how the transition between these two extremes

occurs. Specifically, to what distances are large ground motion and stresses transported

for realistic fault geometries? Bhat et al. [2007a] hypothesized that the transition between

the two limits ought to occur at distances close to W based on the argument that once the

rupture saturates in depth the dominant length scale in the problem is related to this depth
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in numerical simulations.
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and 3D effects can no longer be ignored.

While investigations have been carried out in the context of 3D kinematic supers-

hear ruptures [Savage, 1971; Ben-Menahem and Singh, 1987; Aagaard and Heaton, 2004;

Bernard and Baumont, 2005] no such systematic analysis has been done for dynamic super-

shear ruptures. The aim of chapter 6 is to address the questions raised earlier by considering

ruptures in three dimensions, specifically ruptures on a finite-width surface-breaking fault

in an elastic half-space.
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2.1 Abstract

We analyze the observed dynamic slip transfer from the Denali to Totschunda faults

during the Mw 7.9, November 3, 2002, Denali fault earthquake, Alaska. This study adopts

the theory and methodology of Poliakov et al. [2002] and Kame et al. [2003], in which it

was shown that the propensity of the rupture path to follow a fault branch is determined

by the preexisting stress state, branch angle and incoming rupture velocity at the branch

location. Here we check that theory on the Denali-Totschunda rupture process using 2D

numerical simulations of processes in the vicinity of the branch junction.

The maximum compression direction with respect to the strike of the Denali fault near

the junction has been estimated to range from approximately 73o to 80o. We use the values

of 70o and 80o in our numerical simulations.

The rupture velocity at branching is not well constrained but has been estimated to

average about 0.80cs throughout the event. We use 0.60cs, 0.80cs, 0.90cs and even 1.40cs

as parameters in our simulations.

We simulate slip transfer by a 2D elastodynamic boundary integral equation model of

mode II slip-weakening rupture with self-chosen path along the branched fault system. All

our simulations except for 70o and 0.90cs predict that the rupture path branches off along

the Totschunda fault without continuation along the Denali fault. In that exceptional case

there is also continuation of rupture along the Denali fault at a speed slower than that along

the Totschunda fault and with smaller slip.
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2.2 Introduction

Figure 1a

Figure 2.1: Rupture path, solid line, of the Mw 7.9 Denali fault earthquake. A star towards
the left of center of the figure marks the epicenter of the 3 November 2002 event. [Figure
courtesy: Alaska Division of Geological and Geophysical Surveys.]

A Mw 7.9 earthquake struck central Alaska on November 3, 2002. The Denali fault

earthquake (DFE) occurred along the Denali fault system and ruptured a total length of

approximately 350 km. The last segment of rupture was along the Totschunda fault, which

branches off from the Denali fault, with 68 km of observed surface rupture [Peter Haeussler,

USGS, Anchorage; private communication, 2002]; see Figure 2.1 (epicenter: star in center

left of the figure). Beyond the branching location there was no surface rupture visible on the

Denali fault for at least 25 km [Peter Haeussler, USGS, Anchorage; private communication,
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Figure 1b
Figure 2.2: Aftershocks of the Mw 7.9 Denali fault event, from Eberhart-Phillips et al.
[2003], also showing three sub events during the rupture.

2002].

Beyond the Denali-Totschunda branching location the aftershocks of the Mw 7.9 event

occurred predominantly along the Totschunda fault segment; Figure 2.2 [Eberhart-Phillips

et al., 2003]. Together with the lack of surface rupture along the continuation of the De-

nali fault, this indicates that after branching the rupture progressed exclusively along the

Totschunda fault.
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Figure 2.3: Results of 2D numerical simulations from Kame et al. [2003] showing the
influence of branching angle (ϕ) on a right-laterally propagating rupture at a velocity (vr)
of 0.8cs near the branching location. The orientation angle Ψ of the principal maximum
stress with respect to the main fault is 56o. The solid black line shows the path of the
rupture; fault regions are shown in gray; cs is the shear wave speed of the medium
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(Ψ) on a right-laterally propagating rupture at a velocity (vr) of 0.8cs near the branching
location. The fault geometry is fixed with the branching angle ϕ = −15o .

2.3 Summary of theory of fault branching

Following the concepts introduced by Poliakov et al. [2002] on factors governing fault

branching, Kame et al. [2003] performed an extensive set of numerical simulations of

branching. Those were done in the context of a 2D, mode II, rupture model with a lin-

ear slip-weakening friction coefficient, with strength during slip-weakening proportional

to the instantaneous local normal stress. They involved a range of branching fault angles

(ϕ) with the primary fault, rupture velocities (vr) approaching the branching location, and
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maximum horizontal pre-stress inclinations (Ψ) with the main fault. See Figures 2.3-2.5

for their results which are most relevant for the present discussion; all results are shown for

right-lateral rupture.

The results can be summarized as follows. For a given rupture velocity the most vulner-

able branch orientations change from those on the compressional side (ϕ > 0) to those on

the extensional side (ϕ < 0) with increasing orientation of the maximum horizontal stress

with the main fault (as partly illustrated in Figures 2.3 and 2.4).
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Figure 2.5: Results of 2D numerical simulations from Kame et al. [2003] showing the in-
fluence of the rupture velocity at the branching location (vr) on a right-laterally propagating
rupture approaching a branched fault segment at ϕ = −15o . The orientation of the princi-
pal maximum stress with respect to the main fault (Ψ) is 56o. The solid line shows the path
of the rupture; cs is the shear wave speed of the medium.
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The tendency of the rupture path to proceed exclusively on the branch also increases

(and becomes increasingly independent of rupture velocity) as one approaches the limits of

maximum stress inclinations with respect to the main fault (0o or 90o for exclusive prop-

agation on compressional or extensional branches respectively). With increasing rupture

velocity (keeping Ψ constant) the stress shadow effect of one fault on another, which is

important for small branching angles, decreases; this makes the rupture path lie less exclu-

sively either along the main fault or along the branched one (Figure 2.5). The parameter

Lstop /R0 in the figures refers to the distance, Lstop, beyond the branch junction at which

propagation has stopped on either the branch or the main fault. Lstop is normalized by R0,

which is the length that the slip-weakening zone would occupy along the main fault in low

speed propagation [Kame et al., 2003].

2.4 Determination of parameters influencing branching for

the Denali fault earthquake

2.4.1 Maximum principal stress direction (Ψ)

Nakamura et al. [1980], have estimated the late Quaternary tectonic stress trajectories

in the Aleutians and Alaska, using geologic indicators along continental Alaska. Their re-

sults show averaged directions of maximum horizontal compression. The principal stress

direction near to the Denali-Totschunda branching region is estimated from their results

as approximately 75o with respect to the main fault. Estabrook and Jacob [1991] later

provided a map of maximum horizontal compression-determined stress trajectories from a

variety of sources, including seismic focal mechanisms, volcanic, geologic fault and bore-
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Figure 2.6: Maximum principal stress orientations prior to the 2002 Denali fault earthquake
sequence (black bars) and for the 2002 Denali fault earthquake sequence aftershocks (white
bars), from [Ratchkovski, 2003]. Dashed polygons outline inversion blocks for events prior
to October 2002. Solid polygons are the inversion regions using the aftershocks. Solid
lines are the mapped fault traces. Subevent locations [Eberhart-Phillips et al., 2003] of the
magnitude 7.9 earthquake are shown as hexagons.

hole breakout data, for Alaska, the Aleutians, and the Bering Sea. This was based on

the results of Nakamura et al. [1980] and Estabrook et al. [1988]. The principal stress

direction nearest to the Denali-Totschunda branching region was again reported to be at

approximately 75o with respect to the strike of the Denali fault just before branching.

Azimuths of maximum and minimum horizontal compression, obtained using stress

tensor inversion from focal mechanisms, were determined along different fault systems

in central Alaska by Ratchkovski and Hansen [2002]. All of their regions were on the
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order 100 to 400 km west of the branching location, and most also to the north. The

principal stress direction nearest to the Denali-Totschunda branching region was found to

be approximately 73o (by extrapolating results from closest locations) with respect to the

strike of the Denali fault just before branching.

Based on the more recent focal mechanism inversions of Ratchkovski [2003] it can be

seen that as one traverses along the Denali fault eastward, from the epicenter, the direction

of principal maximum stress, before the earthquake, rotates slightly in a clockwise sense

from R1 to R2 and counter-clockwise from R2 to R3 (Figure 2.6). The direction of prin-

cipal maximum compressive stress close to the Denali-Totschunda branching location was

therefore inclined at about 80o with respect to the Denali fault prior to the DFE.

We choose two values of Ψ, 70o and 80o, to cover the range of observations. The latter

better represents measurements near the branching junction; the former is an approximate

lower bound based on regional stress studies. Based on the results of Kame et al. [2003],

Ψ=70o is a conservative estimate for our simulations because, as it was noted earlier, the

likelihood of the rupture taking the branch exclusively increases with increasing Ψ and

becomes increasingly independent of the rupture velocity when approaching the branching

location. We will show that the rupture path is predicted to be captured exclusively by the

branch in nearly all cases studied when Ψ=70o and in all cases when Ψ=80o.

2.4.2 Rupture velocity (vr)

The average rupture velocity during the DFE seems to be about 80% of the shear wave

speed [Kikuchi and Yamanaka, 2002], although the velocity as the branch was approached

is not yet constrained very well. Inversion of strong motion records by Eberhart-Phillips
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et al. [2003] revealed three sub-events (Figure 1b) during the DFE with the second and the

third subevent occurring at about 125 km and 50 km to the west of the Denali-Totschunda

branching location respectively. Best fitting inversion required a high rupture velocity of

about 3.5 km/s between sub events 2 and 3. Ellsworth et al. [2004] note that the rupture

actually went supershear near Pump Station 10 (PS10), whose location is much further to

the west of the branching location and is very close to subevent 2. They also mention that

the rupture velocity is around 0.80cs for about 20 km east of PS10. We therefore carry out

our numerical simulations for different values of rupture velocity when approaching the

branching location, including supershear rupture velocity. Rousseau and Rosakis [2003]

have extended branching concepts like in Poliakov et al. [2002] to the supershear regime.

2.4.3 Branching angle (ϕ)

The Totschunda fault branches away from the Denali fault, to the extensional side, at

an angle of approximately 15o. The angle was measured from a fault map of central Alaska

provided by Savage and Lisowski [1991].

Wallace et al. [2002] suggested that the northern part of the Totschunda fault sys-

tem may consist of multiple discontinuous southeast striking strands and are locally con-

nected by south-striking step-over faults. This may reflect the immaturity of the northern

Totschunda system. The aim of our study is to do a first order analysis of the branching

process by simplifying the geometry. This approach to a simpler model is supported by

examination of an aerial photo (Peter Haeussler, personal communication) of the branch

location, which suggests a simple branching geometry.
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Figure 2.7: Fault geometry used in the model along with the associated parameters.

2.5 Slip-weakening coulomb friction law

To describe the failure criterion on the faults, we use the slip-weakening friction law

[Ida, 1972, Palmer and Rice, 1973, Andrews, 1976]. As shown in Figure 2.8, for the

simple linear-weakening version, when the normal stress is constant, the shear strength, τ ,

decreases linearly in this model with ongoing fault slip, ∆u, from a peak strength, τp to a

residual strength,τr , and then remains constant after the slip has reached a critical value

Dc.

τ = τr + (τp − τr)(1−∆u/Dc)H(1−∆u/Dc) (2.1)

where H(.) is the Heaviside function.

We add to this model the Coulomb friction law that describes the shear stress as a

linear function of the instantaneous normal stress, τ = −fσn. The friction coefficient, f ,

decreases from an initial value, fs, the static friction coefficient, to fd, the dynamic friction

coefficient, with ongoing fault slip and then remains constant. Thus, τp = −fsσn and τr =
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Figure 2.8: slip-weakening Coulomb friction law [Kame et al., 2003]. The peak and resid-
ual strength (τp, τr), and strength (τ ) at any particular amount of slip (∆u), is proportional
to normal compressive stress (−σn).

−fdσn in equation (2.1). Andrews [1976] defined a parameter S [= (τp − σ0
yx)/(σ

0
yx − τr)]

associated with the slip-weakening law where σ0
yx is the initial shear stress on the fault.

This parameter has a critical value (approximately 1.77) below which the rupture would

propagates with a speed that ultimately transitions to supershear for propagation paths that

are sufficiently long compared to the size of the nucleation zone.

This model (slip-weakening Coulomb friction law) has been widely used as a fail-

ure criterion in describing earthquake rupture processes because of its simplicity and its

ease to implement in numerical methodology. In spite of its simplicity the slip-weakening

Coulomb friction law allows the explanation of many complex dynamic rupture processes.
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2.6 Summary of results

Numerical studies were conducted using the boundary integral equation method elab-

orated in Appendix A. A long running rupture, which is depth limited, as for the DFE

event, cannot be modeled in a 2D framework. However, following the theoretical concepts

outlined in Poliakov et al. [2002], Kame et al. [2003] and Rousseau and Rosakis [2003],

we can argue that the critical factor, other than the geometry and pre-stress, is the rupture

speed as the branch is approached. This can be suitably simulated in 2D, with far greater

grid refinement than in 3D simulations, by nucleating a 2D rupture at various distances

from the branching location. Given the present computing capabilities, the 2D formula-

tion allows adequate grid refinement to fully resolve the slip-weakening process, a feature

which is not generally achieved in 3D simulations. Nevertheless, the rupture phenomenon

is clearly a 3D one, and much has been learned about branching from such simulations by

Aochi et al. [2000a,b], Aochi and Fukuyama [2002], Oglesby et al. [2000a,b] and Oglesby

and Day [2001].Figure 2.7 shows the fault geometry adopted for our simulations, of which

preliminary results were reported in Bhat et al. [2002].

Since the S ratio governs the nature of rupture (supershear or sub-Rayleigh), a desired

value is first chosen. This would then give the initial shear stress acting on the fault (as a

fraction of−σoyy) if values of fs and fd are assumed. If the pre-stress field is normalized by

the fault normal pre-stress then the normalized fault parallel pre-stress can be obtained by

using the desired value of Ψ, the orientation of the principal maximum compressive stress

with the primary fault. The pre-stress parameters thus obtained must be checked so that

the Mohr-Coulomb failure criterion based on fs is not violated either on the primary or the

branched fault.
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Dreger et al. [2004] noted, in their dynamic source modeling of the DFE using a 3-D

finite element method, that the rupture actually jumps ahead of the primary rupture front

by 14 km, triggering slip on the Totschunda fault. We do not observe such a phenomenon

in our simulations.

Our calculations were done for various values of vr and Ψ at the Denali-Totschunda

branching location.

vr = 0.60cs ; Ψ = 70o ; fs = 0.60 ; fd = 0.12 ; SDen = 3 ; ST ot = 0.6

When the velocity of the rupture approaching the branching location at the Totschunda

fault was 0.60cs, it was observed that the rupture branches completely onto the Totschunda

fault. Figure 2.9 shows the combined plots of slip velocity along both the Denali and

Totschunda faults. It is clearly observed that once the rupture on the Denali fault crosses the

branching location the slip velocity decreases rapidly with time. This is a clear indication of

the fact that the main fault can no longer accommodate slip beyond the branching location.

At time step 365 the rupture has reached the branching point. We observe in our simu-

lations at this time step that the slip velocity at the right end of the rupture front accelerates

briefly before slowing down. This may be a result of numerical oscillations in our calcula-

tions.

vr = 0.80cs ; Ψ = 70o ; fs = 0.60 ; fd = 0.12 ; SDen = 3 ; ST ot = 0.6

For this case, the rupture again branches along the Totschunda fault with no further

continuation on the Denali fault. Figure 2.10 shows slip velocity along both the Denali

and Totschunda faults. It is clear, as in the previous case, that beyond the branch, the slip
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Figure 2.9: Plot of slip velocity along the Denali and Totschunda fault segments for Ψ =
70o;vr = 0.60cs. Slip velocity variation along the Totschunda fault is projected onto the
Denali fault. The Totschunda fault begins at 5X/R0 = 58. vr, cs, R0, µ, ν and cp represent
the rupture velocity near the branching point, the S-wave speed of the medium, the size
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normal compressive stress and the P-wave velocity of the medium respectively.
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velocity diminishes rapidly on the Denali fault.

vr = 0.90cs ; Ψ = 70o ; fs = 0.60 ; fd = 0.12 ; SDen = 3; ST ot = 0.6

Earlier studies by Kame et al. [2003] showed that for this value of rupture velocity and

for Ψ = 56o, the rupture would tend to propagate both along the main and the branched

fault in the extensional side with a small branching angle of 15o. The same happens in this

case with Ψ = 70o but not, as we shall see next, when Ψ = 80o. Figure 2.11 shows the vari-

ation of slip velocity along the Denali and Totschunda faults. As can be seen in this figure,

the slip velocity on the Denali fault beyond the Totschunda fault is significant resulting in

simultaneous propagation of rupture along both faults beyond the branching location albeit

at a slower rate and with less slip on the Denali fault than on the Totschunda fault.

vr = 0.87cs ; Ψ = 80o ; fs = 0.40 ; fd = 0.05 ; SDen = 4 ; ST ot = 0.4

As stated earlier, the likelihood of the rupture propagating exclusively along the exten-

sional branch increases with increasing inclination of Ψ. In this case we increase Ψ to 80o

and maintain the rupture velocity at0.87cs while approaching the Totschunda fault. In this

model, we changed the friction coefficients because with the earlier values of friction co-

efficients the pre-stress field violated the Mohr-Coulomb failure criterion outside the fault

zones.

Our results show that, for the above case, the rupture proceeds rapidly along the Totschunda

fault with almost no continuation on the Denali fault. Figure 2.12 shows slip velocity along

both the Denali and Totschunda faults. Again, beyond the Totschunda fault, the slip veloc-

ity diminishes quickly on the Denali fault. There is some continuation of rupture on the
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Figure 2.10: Slip velocity along the Denali and Totschunda fault segments for Ψ =
70o;vr = 0.80cs. Slip velocity variation along the Totschunda fault is projected on the
Denali fault. Totschunda fault begins at 5X/R0 = 108.
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Denali fault. The Totschunda fault begins at 10X/R0 = 380.
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Figure 2.12: Slip velocity along the Denali and Totschunda fault segments for Ψ =
80o;vr = 0.87cs case. Slip velocity variation along the Totschunda fault is projected onto
the Denali fault. The Totschunda fault begins at 10X/R0 = 414.
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Denali fault beyond the Totschunda fault, although this length is of the order of R0, the size

of the slip-weakening zone. This is negligible in comparison with the progress of rupture

on the Totschunda fault. Hence, we can conclude here that the rupture takes the Totschunda

fault exclusively.

vr = 1.40cs ; Ψ = 70o ; fs = 0.50 ; fd = 0.10; SDen = 1 ; ST ot = 0.09

While we have no reason at present to think that the rupture velocity was supershear

near the branch junction, we also performed a simulation in which the rupture velocity

when approaching the Denali-Totschunda branching location was 1.40cs. To make an ap-

propriate choice for the S ratio so that the rupture velocity was supershear and the Mohr-

Coulomb failure criteria were not violated by the pre-stress field, we were required to

choose the above values for dynamic and static coefficients of friction.

Slip velocity, Figure 2.13, on the Denali and Totschunda faults shows that on the part of

the Denali fault beyond the junction, the slip velocity decays rapidly, suggesting that seg-

ment of the Denali fault beyond the Totschunda intersection will ultimately stop slipping.

On the Totschunda fault the speed briefly reduced to sub-Rayleigh then went supershear

again, exhibiting a pattern similar to those observed in other cases of sub-Rayleigh to su-

pershear transitions, leaving pulses that move as Rayleigh waves on what was the crack

surface before the intersonic transition, and provide a multi-pulse character to the slip-rate

distribution.
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Figure 2.13: Slip velocity along the Denali and Totschunda fault segments for Ψ = 70o;
vr = 1.40cs. Slip velocity variation along the Totschunda fault is projected onto the Denali
fault. The Totschunda fault begins at 10X/R0 = 104.
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Figure 2.14: Variation of the rupture velocity along the Denali and the Totschunda fault
segments for Ψ = 70o;vr = 0.60cs and Ψ = 70o;vr = 0.90cs cases. vr, cs, R0, and
cp =

√
3cs represent the rupture velocity near the branching point, the S-wave speed of

the medium, the size of the slip-weakening zone, and the P-wave velocity of the medium
respectively. The rupture velocity is determined using a smoothing procedure described in
Appendix B.
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2.7 Summary and conclusions

The theory of fault branching developed by Poliakov et al. [2002] and Kame et al.

[2003] was tested on the recent Denali fault earthquake using the numerical method devel-

oped by Kame et al. [2003]. The theoretical stress analysis of a propagating mode II rupture

suggests that the tendency to follow a branch is influenced by rupture velocity vr approach-

ing the branch, preexisting maximum compressive stress inclination Ψ, and prospective

branching angle ϕ. This study provides another comparison of the rules of branching with

a field case; five other such field cases were discussed by Kame et al. [2003].

We numerically simulated the observed slip transfer from the Denali to Totschunda

faults by the methodology of Kame et al. [2003] which uses a 2D elastodynamic boundary

integral equation model of mode II rupture with self-chosen path along a branched fault

system. The strength of the faults was assumed to follow a Coulomb law with a friction co-

efficient that slip-weakens from its static to dynamic value. Figure 2.14 shows the rupture

velocity variation on the Denali and Totschunda faults for cases Ψ = 70o; vr = 0.60cs and Ψ

= 70o; vr = 0.90cs respectively. All but one of our simulations for incoming sub-Rayleigh

rupture velocities predict that the rupture path will branch off along the Totschunda fault

without continuation along the Denali fault. The exception is the case when the prestress

inclination is 70o, a lower limit to the plausible range, and incoming rupture speed at the

branching point is 0.90cs. In this case rupture follows the branch but there is also a continu-

ation of rupture along the Denali fault beyond the branching location, at a lower speed than

that along the Totschunda fault. However when the prestress inclination is steeper, at 80o,

the rupture chooses Totschunda exclusively when its velocity near the branching location is

around 0.90cs. We also see exclusive continuation of rupture on the Totschunda fault when
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the rupture is supershear, 1.40cs.



Chapter 3

Role of Finite Branches in Dynamic

Rupture Propagation

41



42 Chapter 3: FINITE BRANCHES AND RUPTURE DYNAMICS

3.1 Abstract

We analyze earthquake ruptures propagating along a straight “main” fault and encoun-

tering a finite-length branch fault. Such intersections are often observed in natural fault

systems. The predicted effects of the interaction with the branch that we report can be

remarkable; they can strongly perturb the propagation velocity on the main fault and, in

some cases, even arrest that propagation. Earlier work [Kame et al., 2003; Bhat et al.,

2004] emphasized the role of the fault pre-stress state, branch geometry (i.e., branching

angle), and the incoming rupture velocity at the branching junction in determining whether

the rupture would follow the branch or continue on the main fault or both, through simu-

lations which did not let a rupture on the branch encounter a barrier or a fault end (called

“infinite” branch cases henceforth). In this study we look at “finite” branch cases, and study

the effect also of branch length, with rupture being blocked from propagation beyond the

branch end. We show that in general rupture termination on a compressional branch little

affects propagation on the main fault compared to the infinite branch cases. For branches on

the extensional side, we show in some cases, that whereas an infinite’ branch would have

allowed (or stopped) rupture propagation on the main fault, a finite branch stops (or al-

lows) propagation on the main fault. Such results have a dependence on branch length that

we document. We also illustrate branch-related complexities in rupture velocity evolution

which could be one of the sources of the high-frequency content of strong ground motion

record. Complexities in the slip distribution, often associated with a presumed heteroge-

neous strength distribution along the fault, can also be observed when rupture is terminated

on a branch.
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3.2 Introduction

Large earthquake events are complex processes. These complexities show up in the

form of short bursts of high-frequency ground motion, branches and offsets in the rupture

path, and asymmetry in the inferred slip pattern, to name a few. The source of seismic

complexities is normally thought to be associated with heterogeneity in the stress and/or

strength distribution along the fault. The other important question of how an earthquake

stops is also often attributed to spatial heterogeneity in the strength/stress distribution along

the fault. The aim of this study is to explore another mechanism to explain seismic com-

plexities, namely, a class of geometric complexities in the form of branches.

A fault system has in general geometric complexities, long known to geologists [King

and Nabelek, 1985; Sibson, 1985; King, 1986; Wesnousky, 1988; Knuepfer, 1989; Aydin

and Schultz, 1990; Yule and Sieh, 2003; Brankman and Aydin, 2004; Wesnousky, 2006,

among others], like bends, branches, step-overs, and sub-parallel strands at different length

scales (eg. 1992 Landers earthquake, Figure 3.1). The interaction between these geometric

complexities like fault bends and jogs and rupture has been observed for various earth-

quakes. For example, the 1992 Landers event branched from the Johnson Valley Fault to

the Kickapoo fault with part of the rupture continuing on the Johnson Valley fault for four

kilometers beyond the branching junction [Sowers et al., 1994; Kame et al., 2003]. The

2002 Denali event branched off from the main Denali fault to the Totschunda fault with no

observable surface slip on Denali fault beyond the branching junction [Bhat et al., 2004].

Similar examples of branching from various other earthquakes are discussed in Kame et al.

[2003].

Numerical modeling of geometric complexities and their interaction with the rupture
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process has been done by Tada and Yamashita [1997], Kame et al. [2003] and Bhat et al.

[2004], among others, for a rupture branching through a fault system in 2D using the

Boundary Integral Equation method (see Appendix A), and by Duan and Oglesby [2005]

using the Finite Element method. Aochi et al. [2000a,b, 2002, 2005] and Aochi and

Fukuyama [2002] addressed similar problems in 3D using the BIE method, and Oglesby

et al. [2003a], Dreger et al. [2004] and Oglesby [2005] using the FE method.

In this work we emphasize the role of small finite branches off the main fault in ex-

plaining certain complexities associated with the whole rupture process like large scale

asymmetry in the slip pattern and even arrest of rupture propagation on the main fault due

to the branch.

3.3 Dynamic rupture model

3.3.1 Model geometry and properties

We consider a two dimensional mode II rupture propagating in a medium that is un-

bounded, homogeneous, isotropic and linear elastic. The rupture propagates right-laterally

as in Kame et al. [2003]. We also assume that the slip along the fault is purely tangential

and hence do not allow any opening.

The aim is to understand the influence of a finite branch fault [Figure 3.2] on rupture

propagation along a main fault. We compare results with those established by Kame et al.

[2003] and Bhat et al. [2004] who analyzed an “infinite” branch, in the sense that their

branch fault had no end, or other imposed barrier-like feature, that was encountered during

the time of simulation and hence that would would stop the rupture along it.
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0 1kmSCALE

Figure 3.1: Map from Sowers et al. [1994] showing region of transition from the Johnson
Valley to the Kickapoo and to the Homestead Valley faults during the 1992 Landers earth-
quake. The thickest lines show fault breaks with surface slip > 1 m, intermediate lines
> 0.05 m, and thinnest lines > 0.01 m.
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Figure 3.2: Model geometry and parameters used in the numerical simulations. Here Ψ is
the orientation of the maximum principal compressive stress with the main fault, vr is the
incoming rupture velocity at the branching junction, ϕ is the inclination of the branch with
the main fault and Lbr is the length of the finite branch fault.

As proposed in Poliakov et al. [2002], and verified by detailed simulations and refined

in Kame et al. [2003] and Bhat et al. [2004], the three key parameters that determine rupture

path selection at an infinite branch junction are:

1. Inclination of the maximum principal compressive stress with the fault, Ψ

2. Rupture velocity when approaching a branching junction, vr

3. Fault geometry, the inclination of the branch fault with the main fault, ϕ

Kame et al. [2003] have shown that types of faults most susceptiple to branch activation

are those for which the maximum principal compressive pre-stress direction of the regional

stress field is at a steep or shallow angle Ψ relative to what might be regarded as an optimal

Coulomb direction, namely Ψ = 45o − φCoulomb/2 ≈ 29.5o for tan(φCoulomb) = fs =

0.6. It was shown in their simulations that when Ψ = 25o, the rupture always continued

on the main fault and rupture on a branch, if it began at all, soon arrested on it. Thus



Chapter 3: FINITE BRANCHES AND RUPTURE DYNAMICS 47

branch activation is principally a feature of faults which are not near to Coulomb-optimal

orientations in their regional pre-stress fields.

Some aspects of the results may also be controlled by the magnitude of the shear pre-

stress, e.g., as measured by the seismic S ratio [Andrews, 1976]. In addition to these

parameters, we must now, for finite branches, also introduce the new parameter, Lbr, which

describes the length of the branch. We non-dimensionalize this length by the size of the

slip-weakening zone at low rupture speeds, R0. Rice et al. [2005] have estimated the value

of R0 to be in the range 1−70m, with typical sizes of 10−30m, at mid-seismogenic depth,

from their slip pulse model, assuming a peak friction coefficient of 0.6 for a fault with high

peak strength and low dynamic strength, and fitting the model to seismic slip inversions by

Heaton [1990].

3.3.2 Slip-weakening coulomb friction law

To describe the failure criterion on the faults, we use the slip-weakening friction law

[Ida, 1972; Palmer and Rice, 1973; Andrews, 1976]. This is discussed earlier in section

2.5.

3.3.3 Rupture nucleation

There are different ways of nucleating a rupture. We could have imposed a very high

initial shear stress along the nucleation zone, greater than the failure stress, so that the

crack would have been statically unstable or imposed a reduction of normal stress there.

The other way of nucleating rupture is to impose a slip distribution, compatible with the

slip-weakening law along the total crack length equal to the nucleation size, Lnucl, and zero
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everywhere else. This will produce stress concentration, higher than the failure criterion,

near the crack tips if Lnucl > Lc. This minimal nucleation size (which refers here to the

total crack length), Lc, is derived from the fracture mechanics energy balance and has a

simple expression when using the slip-weakening Coulomb friction law, if we assume as

in Palmer and Rice [1973] and Rice [1968] that the slip-weakening zone size, R0, for low

rupture velocities is small compared to all geometric dimensions of the model. Further if,

as in Palmer and Rice [1973], we consider that in the slip-weakening zone the shear stress

varies linearly with distance along the crack within the end zone, then with a Poisson ratio

equal to 0.25 (λ = µ), we get

Lc =
16µG

3π(σoyx − τr)
; R0 =

9µG

4π(τp − τr)2
(3.1)

whereG =
∫∞
o (τ(∆u)− τr)d(∆u) is the fracture energy for the slip-weakening model,

µ is the shear modulus of the medium and σoyx is the initial shear stress in the medium.

The size of the slip-weakening zone, R, depends on the rupture velocity [Rice, 1980;

Poliakov et al., 2002; Rice et al., 2005; Bhat et al., 2007a], at least for essentially steady

state dynamic rupture configurations with vr nearly uniform over a transit timeR/vr. In the

range vr < Rayleigh wave speed cR of the medium, of primary interest here, it diminishes

with increasing rupture velocity to reach the value of zero at the limiting speed cR, as

R =
R0

F (vr)
(3.2)

where F (vr) increases from one to infinity when vr increases from 0 to cR. To obtain

correct results, the slip-weakening zone should be adequately represented in any numerical

model. As in Kame et al. [2003] we will take the cell size, ∆s, equal to R0/5 for low and

intermediate rupture velocities (vr = 0.60cs and 0.80cs respectively) and ∆s = R0/10 ,

and for the high velocity vr = 0.90cs.
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3.3.4 Rupture propagation

Assuming that the normal stress is compressive (σn < 0), the rupture will propagate

the following way. If τ > −fdσn the rupture will slip right-laterally; else, if τ < fdσn the

rupture will slip left-laterally. Here, we focus on right-lateral rupture. If the slip-velocity

is predicted to be negative we then set it to zero. We do not allow any backward slipping,

i.e., we do not allow left-lateral slip.

3.4 Choice of parameters

Different parameters play a major role when explaining the propagation of an earth-

quake, such as the state of stress in the region before the earthquake nucleates, the rupture

velocity, the direction of propagation of the fault and the length of the fault [Poliakov et al.,

2002; Kame et al., 2003].

3.4.1 Influence of rupture velocity

Some earthquakes are observed to be very slow and others propagate very quickly. In

their two dimensional steady state slip pulse model, Rice et al. [2005], building on the

semi-infinite mode II crack model of Poliakov et al. [2002], have shown that the closer is

the rupture velocity vr to the Rayleigh wave speed of the medium, the larger is the off-fault

stress concentration, around the rupture tip and extending away from the fault to distances

of the order of the size of the slip-weakening zone in the low rupture velocity, low stress

drop limit, as shown in Figure 3.3.

Thus different rupture velocities, when approaching the branching point, may or may
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Figure 3.3: (a) Elastically predicted regions of cohesionless Mohr-Coulomb failure around
a slip pulse propagating with a steady speed of vr, scaled by the shear wave speed, cs. Fault
constitutive behavior characterized by spatially linear strength weakening criterion with
the peak strength, τp = −0.6σoyy and the residual strength, τr = 0.2τp at pre-stress ratio
σoxx/σ

o
yy = 2.0. The size of the slip-weakening zone, R, is 0.001 times the length of the slip

pulse, L. R∗0 is the value of R in the low rupture velocity, low stress drop, limit. The light
gray region represents the zone of potential Mohr-Coulomb failure and the failure planes
are shown. The dark line represents the main fault. The dark gray region represents the
region where one of the principal stress components turns tensile. (b) Same as (a) except
σoxx/σ

o
yy = 0.8. [Rice et al., 2005]
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Figure 3.4: Position of the branch with respect to the nucleation zone in order to achieve
different rupture velocities at the branching junction.

not nucleate rupture on the branched fault. We choose three values for the rupture velocity

near the branching region, 0.60cs, 0.80cs and 0.90cs, low, medium and high rupture velocity

respectively, characterized in Kame et al. [2003]. We control the rupture velocity, when

approaching the branching junction, by nucleating rupture at various distances from the

branching junction as shown in Figure 3.4.
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3.4.2 Friction coefficient and fracture energy

The slip-weakening law depends on the values of fd and fs, the friction coefficients,

and on Dc, the critical slip. In Poliakov et al. [2002] and Rice et al. [2005] it is shown that

the ratio fd/fs has a large influence on the shape of the high-stress region. For our study

we take the same values as those in Kame et al. [2003], which are fs = 0.60 and fd = 0.12.

3.4.3 Influence of initial stress

From Poliakov et al. [2002] and Kame et al. [2003] we know that although rupture

velocity plays a key role in triggering high off-fault stresses, the sustenance of rupture on

a branch is controlled by the inclination of the principal maximum compressive stress with

respect to the main fault. All stresses can be normalized by the initial compressive normal

stress, −σoyy (σoyy is positive in tension), on the main fault. The normalized shear stress was

fixed at 0.24 to set the seismic S ratio, (τp − σoxy)/(σoxy − τr),Andrews [1976], to be equal

to 3 (which leads to sub-Rayleigh rupture). σoxx/σ
o
yy was then chosen to fix the inclination

of the principal maximum compressive stress on the main fault.

For a given value of rupture velocity Poliakov et al. [2002] and Rice et al. [2005] showed

that the size and the shape of off-fault high-stress region depended on the value of the initial

stresses, and especially on the inclination of principal maximum compressive stress along

the main fault. Poliakov et al. [2002] concluded that generally for low principal maximum

compressive stress inclination, Ψ, with respect to the main fault, the high stress region

would be on either side of the fault as in Figure 3.3a. For large values of Ψ, especially

angles greater than 45o, the damage would be mainly on the extensional side. Kame et al.

[2003] showed in their numerical simulations that similar results held for the side of the
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fault plane on which branches would be activated. They fixed the friction coefficient values

as discussed before and also fixed σoxy/σ
o
yy = 0.24.

The only initial value of pre-stress that was varied was σoxx/σ
o
yy, which fixes the orien-

tation of the principal maximum compressive stress inclination. They then considered four

different angles of inclination, ϕ, for the branch with respect to the main fault, 15o and 30o

(compressional side) and −15o and −30o (extensional side).

Kame et al. [2003] showed that with increasing orientation angle Ψ of the maximum

principal compressive stress with respect to the main fault, the favored branch for rupture

propagation changes from the one on the compressional side to the one on extensional

side. Also, the rupture path becomes more and more exclusively along the branch when

the extreme values (0o and 90o) of the maximum principal compressive stress orientation

are approached. This exclusivity is lost with increasing rupture velocity but once again, as

the limits of Ψ are reached, the exclusivity becomes more and more independent of rup-

ture velocity. So branches on the compressional side are taken, with or without exclusivity,

when Ψ = 13o and branches on the extensional side are taken, with or without exclusivity,

when Ψ = 56o. In addition to this, Bhat et al. [2004] also have studied rupture propagation

through a branched fault system with Ψ = 70o, ϕ = −15o and for different rupture veloci-

ties at the branching region. They observed that the branch is taken exclusively for low and

intermediate values of rupture velocity but this exclusivity is lost at a high value of rupture

velocity, very close to cR. However, when Ψ is increased to 80o, even for the high rupture

velocity case the branch was taken exclusively.

We hence choose Ψ = 13o, 56o and 70o in our simulations and compare our results with

those for infinite branches of Kame et al. [2003] and Bhat et al. [2004], for different branch
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angles and rupture velocities near the branching junction.

3.4.4 Influence of the branch orientation with respect to the main fault

The extensional and the compressional sides of a fault are stressed asymmetrically. The

final rupture pattern depends on the orientation of the branch fault with the main fault (i.e.,

with the x-axis) as shown in Kame et al. [2003]. For instance if we look at Figure 3.5 we

see that for a given rupture velocity, 0.60cs , and a maximum stress inclination of 13o the

rupture will not propagate on a branch after it has been nucleated on a main fault if the

branch makes an angle of 30o with the main fault, but will propagate if the angle is 15o. We

will, hence, consider different inclinations of the branch with respect to the main fault. We

will consider for Ψ equal to 13o, ϕ equal to 15o and 30o (compressional side), and for Ψ

equal to 56o and 70o, ϕ equal to −15o and −30o (extensional side).

3.4.5 Influence of the length of the branch

Maps of surface slip of large earthquakes [e. g. Sowers et al., 1994] reveal many minor

branches, along and beyond the damage zone of a fault structure, and that these branches

are of varying lengths with mapped lengths extending from one hundred to a few hundreds

of meters. For example, during the 1992 Landers event, one can hypothesize that the main

rupture made several attempts to branch on the extensional side of the Johnson Valley fault

before finally branching off to the Kickapoo fault. The influence of these features has not

been studied precisely yet. The small ones have always been neglected until now while the

larger ones were considered to be infinite, effectively, for purposes of analyzing whether

the branch path was followed. In this work we will try to explain the role of branches,
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specifically their length, Lbr, on rupture propagation along the main fault.

3.5 Discussion of results

3.5.1 Role of finite branches as compared to ‘infinite’ branches

A very detailed study of rupture propagation along a branched fault system had been

conducted by Kame et al. [2003] for the case where rupture was never terminated on the

branch (‘infinite’ branch case). The three main parameters delineated by them, based on

the earlier work by Poliakov et al. [2002], were the orientation angle Ψ of the maximum

principal compressive direction of the pre-stress field with respect to the main fault, the

incoming rupture velocity vr at the branching junction, and the orientation angle ϕ of the

branch fault with respect to the main fault. Bhat et al. [2004], making use of the Boundary

Integral Equation Method for the same set of parameters mentioned above, tried to ex-

plain the exclusivity of the branching phenomenon observed during the 2002 Denali Fault

earthquake in Alaska.

We would like to categorize the results of Kame et al. [2003] and Bhat et al. [2004],

where branching was observed, into two cases, as follows:

1. The rupture took the branch exclusively and stopped on the main fault.

2. The rupture propagated on both the main and the branch fault.

The goal here is then to study the effect of finite short and long branches on the rupture

propagation characteristics along the main fault, as compared to the infinite branches of

Kame et al. [2003] and Bhat et al. [2004].
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Kame et al. [2003] observed that for extreme inclinations of Ψ (=13o and 56o), the

rupture almost always propagated, exclusively, on the compressional (ϕ > 0) or the ex-

tensional branch (ϕ < 0), respectively. This exclusiveness was no longer observed when

either the branch angle was high (ϕ = 30o or −30o) or when the rupture velocity was close

to the limiting speed, the Rayleigh wave speed. In both these cases, the authors hypothe-

sized that the stress-shadow effect was less dominant (due to high rupture velocity or high

inclination of the branch) making the two propagating ruptures, on the main and the branch

fault, almost independent of each other. Bhat et al. [2004] observed exclusivity of branch-

ing with the 2002 Denali fault earthquake, where Ψ = 70o with ϕ = −15o, for low and

intermediate values of rupture velocities.

We hence chose the above-mentioned values for Ψ (=13o, 56o and 70o) and considered

branch angles for which rupture was taken along the branch in the infinite branch case.

These are ϕ = 15o and 30o for Ψ =13o and ϕ = −15o and −30o for Ψ =56o and ϕ = −15o

(the only case studied in Bhat et al. [2004]) for Ψ = 70o. We also consider all incoming

rupture velocities at the branching region, namely vr = 0.60cs, 0.80cs and 0.90cs as in Kame

et al. [2003] and Bhat et al. [2004].

3.5.2 Case with exclusive branching

When Ψ = 13o and when the branch was inclined at an angle of 15o to the main fault,

the Kame et al. [2003] infinite branch analysis showed that irrespective of the incoming

rupture velocity at the branching junction, the rupture always stopped on the main fault

almost immediately beyond the branching junction. There was also stoppage of rupture

on the main fault when the branch angle was 30o but only at the lowest speed studied,
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Figure 3.5: Summary of the results from Kame et al. [2003] and Bhat et al. [2004] “infinte”
branch analyses. Lstop indicates the length of stopped rupture front from the branching
junction. BB indicates cases with Branching Behind; i.e., the rupture front on the main
fault had propagated somewhat beyond the junction before slip initiated on the branch fault.
Solid line shows the ruptured part of the fault and the dashed lines represent the unbroken
section of the fault.
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vr = 0.60cs.

When the rupture on the branch is terminated due to finite branch length, in simulations

analogous to those discussed in the previous paragraph, we observe some very interesting

dynamical behavior of rupture on the main fault. For the case when Ψ = 13o, ϕ = 15o,

the perturbation of the stress field on the main fault during rupture propagation on the

branch was sufficient to terminate propagation on the main fault, irrespective of the incom-

ing rupture speed, for both short (Lbr = 6R0) and long branches (Lbr = 30R0 for vr =

0.60cs, 0.80cs and Lbr = 20R0 for vr = 0.90cs). For the above case, when vr = 0.80cs,

we studied the precise sensitivity of rupture to branch length and noticed that only when

the branch is extremely short, Lbr = 1R0, rupture continues to propagate on the main fault.

This shows that short branches, in general, can cause earthquake ruptures to renucleate on

the main fault, at least on faults like this one which are in a regional stress field which

is poorly aligned relative to the optimal alignment for Coulomb rupture on the main fault

(Ψ = 13o vs. ΨCoulomb = 29.5o based on fs = 0.60). This result for the finite branch

case could have been suspected from the infinite branch case [Figure 3.5], in which rupture

chose to follow the branch and soon abandoned the main fault.

For branches on the extensional side, exclusive branching was observed by Kame et al.

[2003] in the infinite branch case when Ψ = 56o and ϕ = −15o when vr = 0.60cs and

vr = 0.80cs [Figure 3.5]. For the above cases, the rupture once again stops on the main fault

beyond the branching point for both short (Lbr = 6R0) and long branches (Lbr = 30R0)

for vr = 0.60cs and for long branch (Lbr = 30R0) when vr = 0.80cs.

When the length of the branch was reduced from 30R0 to 10R0 and when the incoming

rupture velocity was 0.80cs, the rupture slowed down and stopped temporarily on the main
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Figure 3.6: Effect of increasing branch length on the state of rupture front on the main fault
(its length is x), plotted as a function of normalized time, for the case when vr = 0.80cs.
Lbr is the length of the branch, cd and cs are the dilatational and shear wave speeds of the
medium respectively.

fault until the large perturbation in the stress field, due to the stoppage of rupture on the

branch, reached the main fault to kick-start the rupture again on the main fault. Thus a

short enough branch (with a length up to 10R0, Figure 3.6) , with an intermediate rupture

velocity like 0.80cs on the main fault, was sufficient to renucleate the rupture on the main

fault. Figure 3.7 shows this phenomenon quite clearly. When the branch length was 6R0,

the scaled shear stress evolution on the main fault around the branching junction shows

clear propagation of the rupture front, corresponding to the peaks in the figure. The time

steps shown in the plots correspond to the time when the rupture front on the main fault was

approaching the branching junction to the time when the rupture has completely stopped

on the branch. When the branch length was increased to 30R0 we see the peaks in the

shear stress never reaching the peak strength (τp = 0.6σyy) resulting in no further rupture
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propagation.
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Figure 3.7: Effect of increasing branch length on the final state of rupture and the
corresponding evolution of scaled shear stress distribution on the main fault around the
branching junction (stress scaled by fault normal stress, −σyy) for various time steps (non-
dimensionalized as cdt/R0) for the case when Ψ = 56o, ϕ = −15o and vr = 0.80cs. The
time steps correspond to time from when the rupture on the main fault is approaching the
branching junction to the time when the rupture has completely stopped on the main fault.
τp is the peak strength of the fault in the slip-weakening relationship. Here τr/σyy = 0.12
and Lbr is the length of the branch.

When Ψ = 70o and ϕ = −15o Bhat et al. [2004] observed in the infinite branch

case that the rupture stops on the main fault for low and intermediate rupture velocities

(vr = 0.60cs and vr = 0.80cs) [Figure 3.5].

For branch lengths greater than 6R0 our simulations show that a finite branch has the
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same effect on the rupture on the main fault, i. e. the rupture terminates on the main

fault, although the distance covered by the rupture, before stopping, on the main fault de-

pended on the branch length. We also studied sensitivity to branch length for the particular

case when the incoming rupture velocity was 0.80cs. We introduced branches of length

1, 2, 3, 4, 5 and 6R0 and studied their effect of rupture propagation characteristics on the

main fault. We observe a transition length of the branch, at 6R0, where the rupture on the

main fault transitions from a continuously propagating state to a state in which it arrests

[Figure 3.8].

Bhat et al. [2004] also studied a case, for the Denali event, in which the approaching

rupture velocity at the branching junction was supershear at vr = 1.41cs and they observed

exclusive branching. Our simulations of the above case with branch lengths of 6R0 and

30R0 show that the shorter branch slows the rupture temporarily on the main fault before

accelerating it whereas the longer branch halts the rupture on the main fault.

3.5.3 Case with rupture propagation on both the main and the branch

fault

For certain orientations of the maximum principal compressive stress with respect to the

main fault, branch angles and incoming rupture velocities at the branching junction, Kame

et al. [2003] (and Bhat et al. [2004]) observed, for the infinite branch case, no stoppage of

rupture on the main fault once the branch is taken [Figure 3.5].

For the case when Ψ = 13o, ϕ = 30o the termination of rupture on the branch did

not alter, from the infinite branch case, in any way the final state of rupture on the main

fault for all incoming rupture speeds (vr = 0.60cs, 0.80cs and 0.90cs) and branch lengths
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Figure 3.8: Effect of increasing branch length on the state of rupture front, plotted as a
function of normalized time, for the case when vr = 0.80cs. Lbr is the length of the branch,
cd and cs are the dilatational and shear wave speeds of the medium respectively.

(Lbr = 6, 30R0 for vr = 0.60cs, Lbr = 6, 8, 10, 20, 25R0 for vr = 0.80cs and Lbr = 6, 20R0

for vr = 0.90cs) except for the case when Lbr = 30R0 and vr = 0.80cs. Figure 3.9 shows

the evolution of scaled shear stress on the main fault around the branching junction starting

from the time when the rupture is approaching the branching junction to the time when the

rupture has completely terminated on the branch for this case. The peaks in the shear stress

distribution correspond to the rupture front. When the stress at the peak is less than the

shear strength, clearly the rupture front is not able to progress. For Lbr = 6R0 case we see

that for a brief period of time, the rupture front fails to progress before picking up speed

again. When Lbr = 30R0 the magnitude of the peak decreases with time, even after the

rupture has stopped on the branch, indicating the termination of rupture on the main fault.

The transition length appears to be between 25 and 30R0 [Figure 3.10].
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cd and cs are the dilatational and shear wave speeds of the medium respectively.

We suspect this to happen due to the interaction between the rupture front on the main

fault and the large stress perturbation emanating from the branch end when rupture stops

there. In the short branch case, the rupture on the main fault had already accelerated past

the branching junction to a distance where the effect of the branch termination is barely

felt. Hence the brief slow down and acceleration of the rupture. For long branch length,

Lbr > 25R0, the rupture on the main fault did not accelerate fast enough to outpace the

effect of the large stress perturbation, emanating due to branch termination, which led

ultimately to its stoppage.

When Ψ = 56o and ϕ = −15o and when vr = 0.90cs the rupture propagated both on the

main and the branch fault in the Kame et al. [2003] infinite branch simulations. This was

attributed by the authors to the reduction in the stress-shadow effect with increasing rupture

velocity. Another case where the rupture always continued on the main fault, irrespective
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of vr, after branching was when the branch angle in the above case was increased to −30o.

The relatively high branch angle in this case made the ruptures on the main and the branch

fault almost independent of each other irrespective of the incoming rupture velocity at the

branch junction [Figure 3.5].

We notice no significant change in rupture propagation characteristics for the above

case when the rupture was terminated on the branch.

Bhat et al. [2004] observed, when trying to numerically simulate the branching phe-

nomenon for the 2002 Denali fault earthquake, that when Ψ = 70o and ϕ = −15o and

for extremely high but sub-Rayleigh incoming rupture velocity near the branching junction

(0.90cs) the rupture propagated on both the main and the branch faults in the infinite branch

analysis. [Figure 3.5].

When the rupture is terminated on the branch then both the short (6R0) and long branch

(20R0) have the effect of stopping the rupture completely on the main fault unlike the

infinite branch case where the rupture propagates on the main fault [Figure 3.11].
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Figure 3.11: Effect of increasing branch length on the final state of rupture for the case
when Ψ = 70o, ϕ = −15o and vr = 0.90cs. Lbr is the length of the branch.
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3.5.4 Seismic complexities due to a finite branch

A dynamically propagating rupture when stopped radiates stress perturbations as it tries

to establish a static stress field. The zone of influence of this static-like field depends

on many parameters including the length of the rupture. Harris and Day [1993]; Harris

et al. [2002] and Fliss et al. [2005] have studied the phenomenon of rupture jumping to

an adjacent fault due to stoppage on the main fault. In our studies, with finite branched

systems, we thus expect some complexity in the rupture propagation process on the main

fault due to the stoppage of rupture on the branch.

As outlined in section 3.5.1, a dynamic shear rupture propagating through a branched

fault system behaves quite differently depending on whether the rupture is terminated on

the branch or not. It was also noted that the length of the branch plays a key role in

influencing the rupture on the main fault. The presence of a finite branch alters the rupture

propagation characteristics along the main fault, near the branching junction, as observed

in our simulations. In this section we delineate resulting complexities in rupture velocity

patterns on the main fault, and on slip patterns, based on the parameters of our model (will

therefore be expected to have a bearing on high-frequency ground acceleration).

Two key observations were made regarding the complexities in rupture velocity induced

by fault branches. One, there was a general slow down and then a speed up in the rupture

velocity and the temporal duration and the spatial extent of this complexity decreased with

increasing rupture velocity. Two, there could be a complete slow down and stoppage of

rupture propagation on the main fault; that is, the branch could arrest the earthquake.

In the case where the orientation of the maximum principal compressive stress with the

main fault, Ψ, is 56o and the inclination of the branch with respect to the main fault, ϕ,
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is −15o we observe a general slow down and speed up of rupture on the main fault. The

duration of this slow down period, before speed up, is longer with increasing length of the

branch. When the branch angle is increased to ϕ = −30o the effect of the branch in the

slowdown-speedup process is also significantly reduced. For the case when Ψ = 13o, ϕ =

−15o when the length of the branch is 6R0 we see complete stoppage of the rupture on the

main fault. We in-fact see, for this case, that the rupture stops on the main fault for branch

lengths between 2R0 and 30R0.
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Figure 3.12: Complexities in the evolution with time of rupture velocity vr (normalized by
the shear wave speed cs) on the main fault, for various configurations. Rupture velocity vr
when approaching the branching junction is 0.80cs for all cases.

The rupture slow down and speed up process decreases both in spatial and temporal

extent with increasing rupture velocity near the branching junction. This could be attributed
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to the fact that as the rupture velocity increases, the stress shadow effect of one fault on

the other decreases and the two ruptures behave more and more independently of each

other. With increasing rupture velocity near the branching junction two phenomena can be

observed.

First, the stress shadow effect of the branch fault on the main fault diminishes. Sec-

ond, because of the high rupture velocity on the main fault, any factor promoting slow

down causes a higher energy flux into the rupture tip, thus mitigating against slow down;

that makes it easier for a fast moving rupture to overcome the stress shadow effect of the

branch than would its slow moving counterpart, and results in shorter duration of rupture

complexities [Figure 3.12].

Some interesting features can be observed in the slip distribution along the main fault

as well. Firstly, on average, the slip deficit on the main fault beyond the branching junction

is compensated by the slip on the branch. Secondly, the gradient in slip near the branching

junction is higher for longer branches than the same for short branches, for cases where

finite branches significantly perturbed the rupture process on the main fault. We could

attribute this to the strength of the arresting pulse arriving from the end of the branch.

From a singular elastic fracture mechanics perspective, the strength of this pulse depends

on the rest stress intensity factor, KII , of the branch, which could be expected to increase

with Lbr and hence be stronger for the long branch than the shorter one. Figures 3.13 and

3.14 provide some illustrative slip distribution plots.

In general, sudden gradients in slip distribution on the main fault could be observed

when a geometric complexity like a branch is introduced to the main fault. Depending on

wether the rupture on the main fault is terminated or not various complexities are intro-
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duced in the slip distribution. A sudden drop in the slip accumulation around the branching

junction is indicative of rupture termination on the main fault. Small gradients in the slip

accumulation process indicate possible slow down and speed up of rupture propagation on

the main fault. Figure 3.15 shows a summary slip distribution on the main fault for all

values of Ψ, ϕ considered when vr = 0.80cs and Lbr = 6R0.

In the above cases (Ψ = 56o and 70o) when the branch angle was increased to −30o

the slow down and speed up process on the main fault is remarkably reduced than the same

for a smaller branching angle of −15o. Also, interestingly, the length of the branch does

not then seem to change remarkably the rupture slow down and speed up process on the

main fault. This could be because the increased branch angle has already decreased the

interaction between the main and the branch fault to such an extent that the length of the

branch is then immaterial.

For a branch on the compressional side, ϕ = 15o, and low pre-stress inclination, Ψ =

13o, the slow down and speed up process seems to be more gradual than the same for

branches on the extensional side. Of course, the rupture on the main fault slows down for a

shorter period of time with increasing rupture velocity. When the branch angle is increased

to 30o the behavior of rupture on the main fault is very interesting. When vr = 0.60cs

the slow down in rupture velocity is almost negligible as is the case when vr = 0.90cs.

However, when vr = 0.80cs there is short period where the rupture slows down before

picking up when the branch length is 6R0. The same is observed when the branch length

is increased to 30R0 there is a similar slow down and speed up in rupture velocity before

the rupture completely stops on the main fault at a distance of 13R0 from the branching

junction.
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Figure 3.13: Complexities in normalized slip, around the branching junction, for both the
main and the branch fault. Here d is the slip, µ, σoyy, Lbr are the shear modulus, initial fault
normal stress and the length of the branch respectively.
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3.6 Summary and conclusions

We have studied the effect of fault branches on dynamic rupture propagation charac-

teristics along a main fault. This adds to the work of Kame et al. [2003] and Bhat et al.

[2004] which focussed on the role of pre-stress state, rupture velocity at the branching

junction, and the branch angle in controlling rupture path selection on branched fault sys-

tems, without terminating the rupture on the branch (referred to as “infinite” branch cases

in this study). In brief, their results showed that a shallow branching angle (ϕ = ±15o)

and a pre-stress state conducive for branching (Ψ = 13o for ϕ = 15o and Ψ = 56o, 70o for

ϕ = −15o) resulted in rupture termination on the main fault for all rupture velocities, when

approaching the branch junction, except high valued ones (vr = 0.90cs) because of reduced

interaction between the main and the branched faults. However, when the orientation of the

principal maximum compressive stress, Ψ, approached its extremum, Ψ = 0o or 90o, even

the high rupture velocity cases led to exclusive branching.

In this body of work we considered the role of the length of the branches on rup-

ture propagation characteristics on the main fault. We studied the cases by Kame et al.

[2003] and Bhat et al. [2004] where branching was observed and terminated rupture on the

branched fault at various distances from the branching junction. A dynamically propagat-

ing rupture when stopped radiates stress perturbations as it tries to establish a static stress

field. The zone of influence of this static-like field depends on many parameters including

the length of the rupture. Harris and Day [1993]; Harris et al. [2002] and Fliss et al. [2005]

have studied the phenomenon of rupture jumping to an adjacent fault due to stoppage on the

main fault. In our studies, with finite branched systems, we thus expect some complexity

in the rupture propagation process due to the stoppage of rupture on the branch.
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We have noticed that for branches on the compressional side termination of rupture

on the same barely affects the rupture on the main fault except for the case when Ψ =

13o, vr = 0.80cs, ϕ = 30o and Lbr = 30R0. For the above case we pointed out that

a propitious combination of parameters led to the direct interaction between the rupture

front on the main fault and the large stress perturbation from the branch end led to the

termination of rupture on the main fault. A short or an infinite branch would have allowed

for the rupture to continue on the main fault [Figure 3.10].

For branches on the extensional side, while an infinite branch would have allowed con-

tinuation of rupture on the main fault for high incoming rupture velocity and shallow branch

angle, termination of rupture on the branch led to its continuation on the main fault for and

Ψ = 70o, Lbr = 6, 20R0. We also showed that, for the above cases, when vr was reduced

to 0.80cs terminating the rupture on the branch closer to the main fault led to re-nucleation

of rupture on the main fault.

We observed complexities in slip distribution and rupture velocity evolution on the

main fault. The complexities in the slip distribution process, which might normally have

been attributed to a rupture encountering a barrier or an asperity were the result of rupture

propagation and termination on the main fault. Complexities in rupture velocity evolution,

like deceleration and acceleration of rupture, are directly associated with the finiteness of

the branch and could be the source of the high-frequency content of strong ground motion.
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4.1 Abstract

Could the directivity of a complex earthquake be inferred from the ruptured fault branches

it created? Typically, branches develop in forward orientation, making acute angles rela-

tive to the propagation direction. Direct backward branching of the same style as the main

rupture (e.g., both right lateral) is disallowed by the stress field at the rupture front. Here

we propose another mechanism of backward branching. In that mechanism, rupture stops

along one fault strand, radiates stress to a neighboring strand, nucleates there, and devel-

ops bilaterally, generating a backward branch. Such makes diagnosing directivity of a past

earthquake difficult without detailed knowledge of the branching process. As a field exam-

ple, in the Landers 1992 earthquake, rupture stopped at the northern end of the Kickapoo

fault, jumped onto the Homestead Valley fault, and developed bilaterally there, NNW to

continue the main rupture but also SSE for 4 km forming a backward branch. We develop

theoretical principles underlying such rupture transitions, partly from elastostatic stress

analysis, and then simulate the Landers example numerically using a two-dimensional elas-

todynamic boundary integral equation formulation incorporating slip-weakening rupture.

This reproduces the proposed backward branching mechanism based on realistic if simpli-

fied fault geometries, prestress orientation corresponding to the region, standard lab friction

values for peak strength, and fracture energies characteristic of the Landers event. We also

show that the seismic S ratio controls the jumpable distance and that curving of a fault

toward its compressional side, like locally along the southeastern Homestead Valley fault,

induces near-tip increase of compressive normal stress that slows rupture propagation.
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4.2 Introduction

The rupture zones of major earthquakes often involve geometric complexities including

fault bends, branches and step-overs. Recently some understanding of the mechanics un-

derlying dynamic processes of fault branching and jumping has started to emerge. A new

question has emerged as well: Is it possible to judge the directivity of a large earthquake

from the rupture pattern it left? The answer to that question would be very useful for risk

assessment of future earthquakes, even if it is currently unknown if large earthquakes do

systematically repeat their rupture direction (while not necessarily the entire rupture pat-

tern). Here we address a particular, narrower version of that question, namely: Could we

associate the directivity of a major earthquake with the pattern of branches that it left?

That question has been posed by Nakata et al. [1998], who proposed to relate the ob-

served surface branching of fault systems with directivity. Their work assumed that all

branches were through acute angles, in the direction of rupture propagation. However

Dmowska et al. [2002] pointed out that, for at least some field observations, the rupture

paths seemed to branch through highly obtuse angles, as if to propagate “backwards” along

the branch. In general there are no observational proofs that this is what really happened

in these cases. It is even possible that some obtuse branches are due to early aftershocks.

However, in the case examined here involving a particular backward branch in the 1992

Landers, California, earthquake, Poliakov et al. [2002] showed that the pattern of damage

to a single side of the fault clearly indicates such a backward direction of propagation on

that branch. Here we analyze and numerically simulate the mechanics of such backward

branching, and relate the results to understanding rupture directivity.
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4.2.1 Diagnosing rupture directivity

The basic mechanical questions when relating fault branching to rupture directivity

are summarized in Figure 4.1. Figure 4.1(a) presents the typical fault branching through

acute angle, readily observed in the field and recently analyzed by Poliakov et al. [2002]

and Kame et al. [2003]. The propensity of the fault to branch in that way depends on the

orientation of the local pre-stress field relative to that of the main fault, the rupture velocity

at branching junction and the geometry of the branch (the angle between the main and

branching faults). The turn of rupture path through an obtuse angle while continuing on

main fault is illustrated in Figure 4.1(b) and is never favored by the stress field; see below.

What is proposed here as the mechanism of creation of a backward branch is presented

in Figure 4.1(c) and consists of arrest of rupture propagation along an initial fault strand,

radiating stress increase and hence jump of the rupture to a subsidiary fault [Harris et al.,

1991; Harris and Day, 1993] on which it nucleates and then propagates bilaterally. Part of

the rupture along the neighboring fault creates the backward branch.

Figure 4.1(d) presents the mechanical dilemma of backward branching: Did the rupture

arrive from the right and branch through an acute angle, as illustrated in the top panel? Or,

did it arrive from the left, stop, jump, and nucleate on a neighboring fault, then develop

bilaterally, as illustrated in the lower panel of Figure 4.1(d)? The jump here is exaggerated,

in real field cases the observation of surface ruptures might not at once provide the right

answer. The purpose of the present paper is to document a field example of the latter case

as well as to develop theoretical understanding and numerical simulation of the process.
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Figure 4.1: Issues in fault branching (see text).
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4.2.2 Field examples of backward branching

We study the transition of the rupture path from the Kickapoo to the Homestead Valley

faults, Figure 4.2, during the 1992 Landers earthquake, so as to leave a backward branch in

the rupture path along the southern end of Homestead Valley fault. The rupture started to

the SSE of the area covered by the map, along the Johnson Valley fault, and continued far

to the NNW, first along the Homestead Valley fault and then the Emerson and Camp Rock

faults [Rockwell et al., 2000; Sowers et al., 1994; Spotila and Sieh, 1995; Zachariasen and

Sieh, 1995].

In the 1992 Landers earthquake [Sowers et al., 1994], right-lateral slip on the John-

son Valley Fault propagated first along that fault but then, after several aborted attempts

signaled by the short surface breaks shown, it branched to the dilational side onto the Kick-

apoo fault, at an angle ϕ ≈ −30o. The rupture also continued a few kilometers to the

NNW on the main (Johnson Valley) fault. That exemplifies the type of branching typically

considered, through an acute angle relative to the direction of propagation along the pri-

mary fault. (The Johnson Valley and Kickapoo branch has been analyzed as a field case

in support of recent theoretical work [Poliakov et al., 2002; Kame et al., 2003], explain-

ing how such typical branching depends on pre-stress state, branch geometry, and rupture

propagation speed as the branch junction is approached.)

What is of interest here, however, is that the rupture, after propagating along the Kick-

apoo segment, transitioned to the Homestead Valley fault and progressed not just to the

north on that fault, in continuation of the main Landers rupture, but also backwards along

the Homestead Valley fault where it curves to the SSE. That forms the backward branch

(backward relative to the main direction of rupture propagation) that we consider, a promi-
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Figure 4.2: Map from Sowers et al. [1994] showing region of transition from the Johnson
Valley to the Kickapoo and to the Homestead Valley faults during the 1992 Landers earth-
quake. The thickest lines show fault breaks with surface slip > 1 m, intermediate lines
> 0.05 m, and thinnest lines > 0.01 m.
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nent feature of 4 km length. Measurements of surface slip along that backward branch

[Sowers et al., 1994], show right-lateral slip, decreasing towards the SSE. Prominent sur-

face breaks were also observed along the western side of the Homestead Valley fault (Figure

4.2). From those it can be argued [Poliakov et al., 2002; Kame et al., 2003] that, given the

local principal pre-stress orientation [Hardebeck and Hauksson, 2001], the western side of

the southern Homestead Valley fault should have been the dilational side of the rupture.

That, along with the slip pattern, suggests that rupture initiated on the Homestead Valley

fault in the region where it is closely approached by the Kickapoo fault, near the north-

ern termination of the latter, and then propagated bilaterally, both N and SSE along the

Homestead Valley fault.

The following are other cases, also from the Eastern California Shear Zone, of rup-

ture transitions that leave backward-branched rupture patterns: As rupture continued along

the Homestead Valley fault, NNW of the region mapped in Figure 4.2, there was a transi-

tion of the rupture path to the Emerson fault but, while primarily propagating to the NW,

the rupture also progressed backwards along different SSE splays of the Emerson fault

[Zachariasen and Sieh, 1995]. The rupture path next transitioned from the Emerson to the

Camp Rock fault, and in doing so again generated a backward branch to the SSE on the

Camp Rock fault. Another case is in the 1999 Hector Mine earthquake. Rupture originated

on a buried fault without surface trace [Li et al., 2002; Hauksson et al., 2002; Oglesby

et al., 2003a] and progressed bilaterally south and north. In the south it met the Lavic Lake

fault and progressed a large distance south on it, but also progressed backward, i.e. NNW,

along the northern stretch of the Lavic Lake fault. The angle between the buried fault and

the northern Lavic Lake fault is ϕ ≈ −160o, and that NNW stretch extends around 15 km,
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defining a major backward branch.

4.2.3 Backward branching mechanisms

Such examples with highly obtuse branch angles (backward branching) suggest that

there may be no simple correlation between fault geometry and directivity. An important

question is whether those obtuse branches actually involved a rupture path which directly

turned through an obtuse angle (while continuing also on the main fault) like in Figure

4.1(b), or rather involved arrest by a barrier on the original fault and jumping to a neigh-

boring fault, on which rupture propagated bilaterally (Figure 4.1(c)). The importance of

stopping on the main fault to making the jumping mechanism possible will be discussed

later.

Stress fields around a dynamically moving mode II crack tip with right-lateral slip have

been reported by Poliakov et al. [2002]. At the obtuse angles considered, they predict

strongly left-lateral shear stress, and hence are inconsistent with having the rupture path

directly turn through highly obtuse angles like in Figure 4.1(b), if slip is to remain right-

lateral on the branch. Thus we discount that mechanism. Note, that there is no inhibition to

obtuse-angle branching with left-lateral slip on the branch; that situation was observed in

lab experiments under impact loading [Rousseau and Rosakis, 2003]. In that work, small

tensile fracture arrays along the extensional side of the rupture diagnosed where the slip

was right- vs. left-lateral.

On the other hand, there is evidence that the Kickapoo and Homestead Valley faults

are disjoint from one another, so that the transition fits the stopping and jumping scenario

of Figure 4.1(c). First, mapping of observable fault slip (> 10 mm) in the vicinity of the
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transition ([Sowers et al., 1994]; see Figure 4.2 here) suggests that the faults do not actually

intersect one another at the surface. Second, Li et al. [1994] used studies of fault zone

trapped waves to show that there was transmission in a channel along the southern Johnson

Valley and Kickapoo faults and in another channel along the Homestead Valley fault, but

no communication between those channels. Those results suggest that the Kickapoo and

Homestead Valley faults do not join, at least at the possibly shallow depths controlling the

observations. Finally, precise relative relocations of Landers aftershocks have been used to

image the fault strands at depth [Felzer and Beroza, 1999], and suggest that they form two

discrete structures throughout the seismogenic depth range.

4.2.4 Branching and rupture directivity

If such a jumping mechanism turns out to be a reasonably general mechanism of back-

ward branching, then an implication for the Nakata et al. [1998] aim of inferring rupture

directivity from branch geometry is that such will be possible only when rather detailed

characterization of fault connectivity (by surface geology, microearthquakes relocation,

trapped waves) can be carried out in the vicinity of the branching junction. Such studies

must ascertain whether direct turning of the rupture path through an angle, or jumping and

then propagating bilaterally, were involved in prior events. Those two possibilities have

opposite implications (Figure 4.1(d)) for how to associate directivity with a (nominally)

branched fault geometry.

In the following sections of the paper, we analyze the mechanics of rupture propaga-

tion and slip transfer for faults with complex geometries similar to those near the Kick-

apoo to Homestead Valley transition. We show that these considerations strongly support



Chapter 4: BRANCHING AND DIRECTIVITY 85

the possibility that the backward branch formed by the jumping and bilateral propagation

mechanism of Figure 4.1(c). (Further, we note that Aochi and Fukuyama [2002] tried to

simulate the Kickapoo to Homestead Valley rupture transition by assuming that the faults

were actually connected in an inverted “y” type of branch junction, rather than forming the

stepover configuration that we assume here. They could then achieve rupture continuation

from Kickapoo onto the northern Homestead Valley fault, but not onto the southeastern

part of the Homestead Valley fault which is the object of our study here, and which hosted

the backward branch of rupture observed.)

4.3 Choice of prestress and modeling parameters

For convenience, we treat the Kickapoo fault near its northern termination as being

straight and coincident with the x axis, which runs south to north (like the fault itself does

approximately in that region; Figure 4.2). The fault plane is y = 0, with the y axis positive

to the west, and we perform 2D modeling in that x, y plane. Here and later, all faults are

considered to undergo right-lateral strike-slip.

The prestress, i.e., the tectonic stress in the region, has the form

σ0
ij =

 σ0
xx σ0

xy

σ0
yx σ0

yy

 . (4.1)

as regards in-plane components, where normal stresses are positive if tensile. We should

actually think of these as effective stresses (σ0
ij)

tot + p0δij , where p0 denotes initial fluid

pore pressure. Like in [Kame et al., 2003] where the branching from the Johnson Valley to

Kickapoo faults during this earthquake is studied, the static friction coefficient tan(Φs) =

fs is taken as 0.6, generally consistent with laboratory values, and cohesion is neglected.
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It is less clear what to take for the dynamic coefficient tan(Φd) = fd after slip-weakening,

or how reasonable it is to regard it as actually constant at large earthquake slip, especially

when thermal weakening and possible fluidization is considered. Values of fd/fs = 0.8 and

0.2 have been tested and the results do not show significant differences. Only the results

for fd/fs = 0.2 will be shown here. We choose the shear modulus µ = 30 GPa and the

Poisson ratio ν = 0.25 (λ = µ).

y

x

Direction of the principal

compressive stress (Ψ = 30
o
)

Homestead Valley fault

30
o

Johnson Valley and 

   Kickapoo faults

30
o

Figure 4.3: Simple modeling of the faults involved in the 1992 Landers earthquake.

Most of our results can be expressed in non-dimensional form but when necessary for

numerical illustrations here, we have used G = 1 MJ/m2 for the crack energy release

rate and σ0
yy = −50 MPa. For the corresponding σ0

xx, to be discussed subsequently, the

in-plane invariant (σ0
xx + σ0

yy)/2 = −59.5 MPa. Assuming ideal strike-slip rupture (i.e.,

vanishing intermediate deviatoric stress), that invariant is equal to the effective overburden,

and assuming hydrostatic pore pressure, that corresponds to a depth of 3.3 km. Given

the nondimensionalization of our problem, features of the solution such as the speed of

rupture propagation and its time evolution, and details of if, where and how slip transfers
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between faults, would be unchanged for the choice of parameters G = 4 MJ/m2 and σ0
yy =

−100 MPa. That change, which keeps the slip-weakening zone length R at the same (time

dependent) size throughout the rupture as for the above case, would correspond to a depth

of 6.6 km. Such depth is a reasonable estimate of the centroidal depth of rupture during

the Landers event, and the fracture energy is close to the 5 MJ/m2 inferred for it by seismic

slip inversions, fitted to 3D analyses of slip-weakening rupture [Olsen et al., 1997; Peyrat

et al., 2001].

To properly determine the in plane prestress field around the faults, if all the stresses

are normalized by −σ0
yy, two further quantities have to be specified. First, on the basis of

inference of principal stress directions from microseismicity by Hardebeck and Hauksson

[2001], the maximum principal compressive stress direction around the faults is approxi-

mately 30o east of north. Because the tangent direction to the Kickapoo fault is about north.

Thus there is an angle Ψ ≈ 30o between the most compressive stress and that fault (Figure

4.3).

We have to specify one more value, for example the shear stress ratio, σ0
yx/(−σ0

yy).

There is no rigorous way to specify that. We choose it according to considerations of

rupture propagation velocity vr. Supershear vr is sometimes, but only relatively rarely,

inferred for natural events. Thus we choose parameters so that vr remains sub-Rayleigh.

Andrews [1976] shows the influence on vr of the ratio

S = (τp − σ0
yx)/(σ

0
yx − τr) (4.2)

where τp = −fsσ0
yy is the peak strength and τr = −fdσ0

yy is the residual strength after

slip-weakening. When S is small enough, a transition from sub-Rayleigh to supershear

propagation will occur, so we do not want S to be so small as to allow that in our modeling.
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Figure 4.4: Mohr circle of the pre-stress: conditions required to not violate the failure con-
ditions in any orientation and to favor the propagation of the rupture for some orientations.

However, in a simple static study to follow, we show that the smaller is the value of S,

the larger is the the maximum distance that can be jumped, and vice-versa. So it won’t do

to make S too large, and a compromise has to be reached. Using Figure 9 of Andrews

[1976] (which shows the vr achieved as a function of S and the ratio of the length L

of the ruptured zone to the minimum unstable crack length Lc), and the static study, we

have chosen S = 1.3. For that, vr remains sub-Rayleigh in our configuration. It leads to

σ0
yx/(−σ0

yy) = 0.33.

Given the principal direction at Ψ = 30o, we can then calculate, the remaining in-plane

stress ratio as σ0
xx/σ

0
yy = 1.38. That corresponds to the in-plane invariant (σ0

xx + σ0
yy)/2 =
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1.19σ0
yy.

4.3.1 Strength constraints on prestress

In order to make the prestress field realistic we have to satisfy some mechanical condi-

tions. Since large regions of earth cannot sustain tensile stresses, no principal stress should

be tensile. Also, the prestress field should not violate the Mohr-Coulomb criterion for onset

of frictional rupture.

With the two parameters, Ψ and σ0
yx/(−σ0

yy), the condition to avoid tension is:

σ0
yx

−σ0
yy

tan(Ψ) < 1, (4.3)

which is respected with our parameters. Secondly, to make sure that the prestress does not

violate the Coulomb failure condition, i.e., that |σ0
21| < −fsσ0

22, for any orientation of the

faults (Figure 4.4), σ0
yx/σ

0
yy has to satisfy:

σ0
yx

−σ0
yy

<
sin(Φs) sin(2Ψ)

1− sin(Φs) cos(2Ψ)
(4.4)

In this case, the condition is σ0
yx/(−σ0

yy) < 0.60 which is also respected.

4.4 Elastostatic singular crack modeling

The goal of this section is to give a general idea of stressing near the end of an arrested

rupture, to begin to determine conditions so that a rupture can jump to another fault, parallel

[Harris and Day, 1993] or not. For simplicity, we start with the study of an elastostatic

singular crack model of a mode II rupture.

We suppose that the two ends of a finite rupture have finished their motion and that

all along the crack there is sustained a stress equal to the residual shear strength, σyx =
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Figure 4.5: Singular elastic crack model (mode II shear) for static rupture. Stress state
shown (left) behind the tip, near the fault surface, and (right) far ahead, where it coincides
with the prestress.

τr = −fdσ0
yy (as represented in Figure 4.5). This static study can be understood as a

study after the motion. It is suggestive only, because we cannot preclude the possibility

that dynamic stresses very close to the stopped rupture tip were higher than in the final

static field; they cannot be on the crack plane itself, from basic results on unsteady crack

dynamics [Fossum and Freund, 1975], but the situation is more complex in the near tip

field at other orientations relative to the rupture, as well as at more distant locations.

4.4.1 The faults

In the branching transition from the Johnson Valley to the Kickapoo faults, we will

neglect the few km continuation along the former, and consider it and the Kickapoo fault

as one, and only one, main fault, whose length is 15 km. (Of course the actual length is
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longer, but we do not want to allow crack lengths in a 2D model which are much greater

than the seismogenic thickness of the crust. From 3D considerations that thickness sets a

limit, which is not contained in 2D models, on how much further increase of crack length

along strike can increase the stress concentration at the crack ends.) To determine the

stress distribution due to the crack for the singular static model, the Johnson Valley and

Kickapoo faults are represented, just here but not in the elastodynamic study to follow,

as a straight fault of 15 km length. Figure 4.3 gives one simple modeling of the faults,

with the Homestead Valley fault at orientation angles ω = 0o and 30o, in pieces, relative

to the straight fault. Actually, the smallest distance between the Kickapoo and Homestead

Valley fault is a few hundred meters (between 200 and 300 m) [Sowers et al., 1994], and the

orientation angle ω of the closest parts of the latter fault, relative to Kickapoo is between

0o and 10o.

4.4.2 Static stress distribution

Consider a single straight crack extending from x = −X to 0 on the x-axis, with

X = 15 km, in the infinite x, y plane, in a mode II configuration. We study the stress

distribution near the crack tip x = 0. As explained by Rice [1980] and Poliakov et al.

[2002], the final stress σij is the sum of the initial stress σ0
ij and stress change ∆σij due to

introduction of the crack, and is given by

σij =
KII√
2πr

Σij(θ) +

 σ0
xx τr

τr σ0
yy

+O(
√
r) (4.5)

where (r, θ) are the polar coordinates (the origin is the crack tip), the Σij(θ) are certain

universal functions normalized to Σyx(0) = 1 (see, e.g.,[Lawn and Wilshaw, 1993] or
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[Rice, 1968] or other sources on elastic crack theory) ... and τr = −fdσ0
yy the residual

shear strength .... In the present case the stress intensity factor is

KII = (σ0
xy − τr)

√
πX/2, (4.6)

and O(
√
r) denotes term which vanish in proportion to

√
r or faster as r → 0.

The full representation of the stress field, effectively identifying explicitly all terms in

equation (4.5) including those denoted O(
√
r), may be done using standard techniques in

the 2D elasticity analysis of cracked solids (e.g., [Rice, 1968]) to solve for ∆σij . Thus

letting the complex position be denoted by z = X/2 + x+ iy,

σxx + σyy = σ0
xx + σ0

yy + 4Re[φ′(z)] (4.7)

σyy − σxx + 2iσyx = σ0
yy − σ0

xx + 2iσ0
yx + 2[zφ′′(z) + ψ′(z)]

where for our mode II problem

φ′(z) =
σ0
yx − τr

2i
[

z

(z2 −X2/4)1/2
− 1] , ψ′(z) = −2φ′(z)− zφ′′(z) (4.8)

Representation of the stress field for purposes of our plots in Figure 4.6 is done using

the full equations (4.7) and (4.8), although the plots are very similar in appearance when

we use equation (4.5) and simply neglect the terms denoted O(
√
r).

4.4.3 Conditions for rupture nucleation on a nearby fault

In the Coulomb friction model, rupture can nucleate at any point if the shear stress is

higher that the static friction strength. So, it is relevant to consider the normal and shear

stresses (σ22, σ21) at a point on a potential fault, whose polar coordinates are (r, θ). Differ-

ent orientation angles ω given to the second fault are analyzed, and different situations of

nucleation may arise as follows:
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Figure 4.6: Areas where nucleation of a rupture is possible, for various orientation angles ω
of the second fault. Angles ω = 0o, 5o and 10o, are chosen with reference to the geometry
of the Homestead Valley fault. The medium grey regions (bright red in color version) are
those for which σcoul = σ21 + fsσ22 > 0 on a fault trace with orientation ω (i.e., areas
where right-lateral failure nucleation is possible). Small, dark grey regions (dark blue in
color version) near the crack tip are areas where the elastically calculated normal stress on
the second fault is tensile (σ22 > 0); see enlarged view of region, for the ω = 0o case, in
upper right panel. The black lines in the upper two panels, for the ω = 0o case, represent
the points where, for each fixed y, σcoul attains its maximum with respect to x.



94 Chapter 4: BRANCHING AND DIRECTIVITY

x*

y
*

-200 0 200
-200

-100

0

100

Johnson Valley Fault

Kickapoo Fault

Homestead
Valley Fault

Geometry of the faults

o

x*

y
*

60 80 100 120

-20

0

20

40

Kickapoo Fault

Homestead Valley Fault

and around the stepover

Figure 4.7: Geometry of faults in the x, y plane, x∗ = 3x/Ro
0, y∗ = 3y/Ro

0. The x-axis
corresponds to the orientation of the portion of the Kickapoo fault that is modeled straight
NS. The orientation of the Johnson Valley fault decreases from 0o to 26o. The orientation
of left half of Homestead Valley fault decreases from 0o to 30o.

1. If σ22 < 0 and σ21 > fs(−σ22), right-lateral slip nucleates. The area where this

condition is met is represented in medium grey (bright red in color version).

2. If σ22 < 0 and σ21 < −fs(−σ22), left-lateral slip nucleates. The area where the

condition is met is represented in light grey (light green). In fact, we’ll find none

such for our ω range studied..

3. If σ22 > 0, the area is represented in dark grey (dark blue). Compressional remote

stress fields only are studied so that the faults remained closed but it is interesting to

test if there are local areas where the normal stress is predicted to be extensional.

With these different representations, we analyze where a nearby nucleation on a second

fault could occur, at least as based on the static field. This allows a preliminary estimate

of the influence of different parameters: characteristics of the stepover (width and overlap
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of the second fault, its local orientation ω), prestress, stress drop σ0
yx − τr, and ratio S =

(τp − σ0
yx)/(σ

0
yx − τr).

4.4.4 Results for some second-fault orientations

Results based on our model parameters as above are shown in Figure 4.6 for local ω =

0o, 5o and 10o. We see that this simple static analysis is consistent with some conclusions of

the Harris and Day [1993] dynamic study of stepovers between parallel fault strands (case

ω = 0o). First is the difference between the compressional and the dilational sides. Indeed,

there is no symmetry, and the areas of possible nucleation and the maximum “jumpable”

distance are very different according to the overlap.

Moreover, for these orientations only right-lateral slip is possible; there are no light

grey (light green) regions signaling left-lateral. The higher is the orientation of the second

fault the smaller are the maximum jumpable distance and the area where the nucleation is

possible.

There are very small regions adjoining the crack tip on the dilational side where the

normal stress is positive, signaled by dark grey (dark blue) shading. That means a possible

opening of the secondary fault, but strong conclusions cannot be drawn because this is

particularly near the crack tip (where the simple model adopted has a singularity of the

stress), and also because we have not analyzed effects on the stress field of plastic yielding

in the Coulomb failure regions shown to envelop those zones.

Comparing the stress distribution calculations for several orientations which represent

where the nucleation of a rupture is possible, given the position of the curved Homestead

Valley fault and its orientations, we can anticipate that the rupture should jump from Kick-
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apoo fault and might nucleate in several positions along the Homestead Valley fault, Figure

4.6, although this analysis cannot tell us which one will nucleate first.

4.4.5 Some analytical results

We can use our representation of the stress field to make simple estimates of the maxi-

mally stressed offset location (x coordinate) for a given stepover width (y coordinate), and

of the scaling of maximum vulnerable width with other parameters, especially S. First

note that the upper two panels of Figure 4.6 correspond to the case of two parallel faults

(ω = 0o). They show that the loci of maximal Coulomb stress σcoul = σ21 + fsσ22, for

various y, define a pair of nearly straight lines emanating from the crack tip. Considering

points where the normal stress is compressive and the slip is right lateral, that geometry

and other features of the stressing can be understood when stresses are written like in equa-

tion 4.5 and we neglect the O(
√
r) terms to simplify (as commented above, they have little

effect on the shapes shown in Figure 4.6). Using x, y variables instead of r, θ, equation 4.5

leads to

σcoul = (σ0
21 + fsσ

0
22) + [

√
X

|y|
F (
x

y
) + C](σ0

yx + fdσ
0
yy) (4.9)

Here the first pair of terms give the Coulomb prestress; they are dependent on ω and are

linear in the σ0
ij . In the remaining terms F (x/y) is a dimensionless function proportional

to
√
| sin(θ)|[Σ21(θ) + fsΣ22(θ)] and having different forms in y > 0 and y < 0, whereas

C is a constant; both F and C depend on ω and vary linearly with fs.

That expression makes it clear that σcoul is maximum relative to x, at any given y, when

F is a maximum relative to its dimensionless argument x/y. That defines loci x/y =

constant in y > 0 and y < 0, thus predicting that the heavy lines in the upper panels of



Chapter 4: BRANCHING AND DIRECTIVITY 97

Figure 4.6 should be precisely straight, to the neglect of the O(
√
r) terms in equation 4.5.

As noted, they are indeed nearly straight, when we include all terms like in equations (4.7)

and (4.8).

Finally, for the ω = 0o case of parallel faults [Harris and Day, 1993] we can estimate

the influence of the S ratio on the maximum jumpable distanceHmax. Writing τr = −fdσ0
yy

in equation 4.5, and making C explicit in equation 4.9 leads to

σcoul = (−fdσ0
yy + fsσ

0
yy) +

√
X

|y|
F (
x

y
)(σ0

yx + fdσ
0
yy) (4.10)

where F (x/y) is linear in fs. Identifying the terms corresponding to τp and τr, and setting

the argument x/y of F to correspond to the maximal value, say Fm (> 0, but different on

the two sides of the fault), and using the definition of S, this becomes

σcoul
σ0
yx − τr

= Fm

√
X

|y|
− (1 + S) (4.11)

Hence the maximum jumpable distance Hmax is the largest value of |y| for which the right

side is positive, and that yields

Hmax

X
= (

Fm
1 + S

)2 = F 2
m(
σoyx − τr
τp − τr

)2 (4.12)

in which the coefficient of proportionality (F 2
m) depends on fs. Thus Hmax increases when

S decreases (i.e., when prestress σ0
yx is larger); Figure 4.6 is for S = 1.3 but the results can

thereby be scaled to other S.

4.4.6 Long-range dynamic rupture propagation

If the rupture has nucleated along a suitable direction, will the prestress be consistent

with an arbitrary amount of propagation along that direction? This condition will be met
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for at least some orientations if some part of the Mohr Circle lies outside the wedge of

angle 2Φd, as represented in Figure 4.4.

Typically, σ0
yx/(−σ0

yy) > fd makes long range dynamic rupture possible along the part

of Homestead Valley fault parallel to the x-axis. The condition to make it possible along

the other part of the fault, with a maximum misorientation ω = 30o, is that σ0
12 > −fdσ0

22,

which is satisfied if σ0
yx/(−σ0

yy) > 0.122.

Thus the prestress field allows dynamic rupture along the Homestead Valley fault. Such

has been inferred, to the N and at least for about 4 km to the SSE, in the earthquake.

From this simple static analysis, we have guidelines for knowing if a fault is near

enough to the tip of another one for slip to be nucleated. But we do not know if the rupture

can propagate and if it does so bilaterally. A dynamic study is required, and that analysis

follows. It includes the time dependence of fault rupture, stress waves, and time dependent

stress concentrations generated during the rupture process (e.g., we will show important

dynamic normal stress changes on curved parts of the fault along which ω is changing).

4.5 Elastodynamic slip-weakening rupture modeling

4.5.1 Geometric modeling of the faults

We again choose the x axis parallel to the northern part of the Kickapoo fault, treating

its last 4 km as straight. We do not consider the short rupture along the Johnson Valley

fault north of its branch with Kickapoo, and treat that pair of faults as a single fault, curved

before reaching the straight Kickapoo segment. Because the 2-D model is not sensible for

crack lengths greater than the seismogenic thickness of the crust, we have to reduce the
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rupturing length of the Johnson Valley fault to 10km, but we keep the actual length of the

Kickapoo fault, about 5 km. The angle ϕ between the two faults is≈ 30o. The origin of the

x, y system is taken at the beginning of the straight part of the Kickapoo fault. That is also

the origin for the curvilinear distance s along the fault, so that s > 0 on the 4 km straight

part.

The geometrical modeling is shown in Figure 4.7 in the x-y plane.

For the boundary integral equation (BIE) numerical analysis, we cover all potentially

rupturing faults with uniformly sized cells of length ∆s. Our parameter choices allow us

to choose ∆s = 40 m (25 cells over 1 km length), and still reasonably meet requirements

[Kame et al., 2003] for discretized numerical BIE solutions to suitably represent the con-

tinuum limit of the slip-weakening rupture model.

Thus, the straight northern segment of the Kickapoo fault has length 4 km = 100∆s.

In the s < 0 region the Johsonn Valley-Kickapoo fault begins to curve progressively SSE

along 2 km (50∆s) and then keeps the same orientation at 26o east of south along 9 km

(225∆s).

For the modeling of the Homestead Valley fault, we know that the stepover with the

Kickapoo fault is between 200 and 300 m) at closest approach. From Sowers et al. [1994],

the backward propagation seems to stop at about 4 km SSE from that closest region. Thus

we choose to represent the entire part of the fault modeled with a length of 10 km (250∆s).

Although rupture continues along Homestead Valley well to the north, in our model slip

propagation is blocked on it 6 km north of the nucleation. We have verified that all of the

action as regards forming the backward branch is over before waves from that artificial

northern blockage of rupture propagate back into the region of interest.
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The northern terminus of Kickapoo is offset in a direction perpendicular to Kickapoo

by 200 m from the Homestead Valley fault. Thus for the simulation, the center of the 10 km

long Homestead Valley fault is chosen to be at 160 m east (y = −4∆s) and 280 m north

(x = 107∆s) of the terminus of Kickapoo. The northern half of the Homestead Valley fault

(125∆s) is straight and parallel to Kickapoo. Along the curved SSE half, the orientation

of the fault varies from 0o to 30o along 2 km (50∆s) to reach the value of 30o and finally

keeps it along the last 3 km (75∆s).

4.5.2 Slip-weakening Coulomb friction law

In our modeling, the rupture was allowed to propagate spontaneously using a slip-

weakening friction law [Ida, 1972; Palmer and Rice, 1973]. The fault strength τ , once

reaching the peak strength τp, decreases linearly (in the most commonly adopted variant

of slip-weakening) with the slip, to the residual strength τr, and becomes constant when

the slip ∆u exceeds an amount Dc, the critical slip. Dc is considered to be a parameter

inherent in the rupture process. Moreover, the Coulomb friction concept is added to the

slip-weakening law so that τ is proportional to the normal stress −σn at any particular

amount of slip, as in Figure 2.8. That is,

τ = τr + (τp − τr)(1−
∆u

Dc

)H(1− ∆u

Dc

) (4.13)

where

τp = fs × (−σn) τr = fd × (−σn) (4.14)

This criterion, contrary to the critical stress intensity factor criterion, does not suffer

the unphysical infinite stresses at the edges: there is a continuous stress distribution at the
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crack tip. (see Figure 4.8 ). The notation R denotes the length of the slip-weakening zone,

i.e. the zone in which 0 < ∆u < Dc and σ21 > τr.

Palmer and Rice [1973] and Rice [1968] showed that if the length of the slip weakening

zone,R0, of a static crack is small compared to all geometric dimensions of the model, such

as overall crack size, then we can estimate from the energy balance of elastic-singular crack

theory, with fracture energy G expressed in terms of the slip-weakening law, the minimum

nucleation size of an initial crack so that the rupture can propagate. For λ = µ that is

Lc =
16

3π

µG

(σ0
xy − τr)2

=
8

3π

µ(τp − τr)
(σ0

xy − τr)2
Dc (4.15)

Here, following the notation of Kame et al. [2003], Lc is the total length of the nucleating

crack (not half-length like in Andrews [1976]).

The initial crack has to be long enough to permit the rupture to propagate along the

fault but should be small compared to the fault length to not affect the dynamic results.

In order to simply estimate R0, Palmer and Rice [1973] use another slip weakening law

chosen to make τ vary linearly with x within the end zone. For the case when the end zone

size is small in comparison to the other lengths such as the crack length and the minimum

nucleation size, they determine

R0 =
3π

8

µ

τp − τr
Dc (4.16)

Rice [1980] pointed out that for the same slip weakening law, during dynamic prop-

agation under locally steady-state conditions on the scale of the end zone, the dynamic

end zone size R is a function of the rupture velocity and diminishes with the velocity in

particular way. That is:

R =
R0

f(vr)
(4.17)
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Figure 4.8: Fault and distribution of shear stress σ21 and slip displacement ∆u.

where f = 1 when vr = 0+ and f(vr) increase with vr, without limit as vr → cR, where

cR = 0.9194cs (for λ = µ) is the Rayleigh wave speed. In our model, we cannot calculate

in closed form an exact value of the end zone length R. The results of equations 4.16 and

4.17 are quite realistic, according to mode II simulations by Kame et al. [2003] and our

own results, and can often used as estimation of the end zone size.

Characteristics of the rupture velocity vr attained during spontaneous dynamic propa-

gation depend on S of equation 4.2 [Andrews, 1976; Das and Aki, 1977]: vr < cR always if

S is above a threshold (1.7-1.8), but given enough propagation distance L when S is below

that threshold, vr will ultimately transition to the range cs < vr < cp; L/Lc diverges at

the threshold. In natural earthquake studied until now, the rupture velocity seems usually
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to be below the shear wave velocity. We have chosen S = 1.3 on the straight segment of

the Kickapoo fault, which has the property that the maximal jumpable distance calculated

in the static study is large enough but also that vr < cR during the entire propagation along

our representation of the Johnson Valley and Kickapoo faults.

First fault

Second fault

iL1

iR1

iL2

iR2

j Test : T > τ  ?
t p 

Figure 4.9: Multiple nucleations: the first fault has ruptured. iL and iR represent respec-
tively the left and the right tip of each ruptured region.

Procedures for rupture transfer to the second fault

We will apply our procedures to study rupture along the Johnson Valley-Kickapoo fault

and then address whether and how rupture could jump to the second fault, the Homestead

Valley fault. As shown by Harris and Day [1993], three scenarios are possible, depending

on the geometrical characteristics of the faults: (i) The rupture dies at the end of the first

fault segment. (ii) The rupture triggers on the second fault segment but cannot absorb

enough energy to propagate. (iii) The rupture triggers the second fault segment and then

continues propagating.

With the slip rate history of the first fault given from a prior calculation, we study the

possibility for the rupture to jump, considering time steps when the rupture has not yet
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completed on the first fault. We calculate the tangential and normal tractions all along the

second fault for each time step, understanding that slip, if not a propagating rupture, can

nucleate when in one cell the tangential traction is higher than the local peak strength. If this

happens we later apply the algorithm explained above for the calculation of slip velocity

in the ruptured region and the propagation of the rupture. To reduce computation time we

suppose that the rupture on the second fault has no influence on the first; that means that we

do not calculate the change of the stress on the first fault due to the rupture on the second

one. This is sensible because slip on the first fault has stopped or nearly stopped by the time

waves would reach it from the second fault. By the time waves from any small further slip

on the first fault made their way back to the second, the rupture front would have moved

much further along the second fault.

Depending on the geometry of the second fault, multiple nucleation sites may exist, as

showed in the static study. A rupture can nucleate in different time steps and at different

isolated locations. So, if a rupture has already nucleated, we continue to test along the

region which has not ruptured if a nucleation is possible (Figure 4.9). If two nucleations

are possible for example, we just must take care to join the tips (iL(i) and iR(j) represented

in Figure 4.9 ) of the two ruptured regions when it is possible.

For the propagation of the rupture and the calculation of slip velocities for each region,

the same algorithm as above is used.

4.6 Rupture along the Johnson Valley and Kickapoo faults

The nucleation is simulated near the center of the Johnson Valley segment of the fault

around cell -150 (represented by a circle in Figure 4.7). According to the prestress σ0
ij and
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the 26o orientation of the fault around this location, equation 4.15 determines the minimum

nucleation size as Lc = 5∆s. That is about 2R0, which does not fully respect the assump-

tion needed to validate equation 4.15 (R0 should be much smaller than Lc). To enable the

initiation of the rupture, the length of the initial crack is taken as Lnucl = 20∆s.

The rupture propagates bilaterally along the Johnson Valley segment, and continues

along the curved part and along the Kickapoo fault. That is shown in Figures 4.10 and

4.11, which represent respectively the slip ∆u (as D∗ = 3µ∆u/(−σ0
yyR

o
0) for each 0.18s

(that is 9Ro
0/cp) and the slip velocity V (as V ∗ = µV/(−σ0

yycp)) for several time steps

(N = 6cpt/R
o
0), all along the fault (as s∗ = 3s/Ro

0 where s is the curvilinear coordinate).

Here the scale length Ro
0 refers to the static end zone size R0 as calculated from the normal

prestress on the straight part of the Landers fault; R0 depends on the orientation considered.

Note that the slight decrease in slip at the nucleation location is an artifact of the nucleation

process.

Actually the rupture reaches the SSE end of the region of Johnson Valley fault modeled

at N = 531 (1.77 s). Going NNW, it reaches the curved part (at cell -50) at time step

N = 437 (1.47 s), the straight part of Kickapoo fault at N = 629 (2.1 s) and its end at

N = 1011 (3.37 s).

The slip velocity increases slighly along the curved part and it is higher along the Kick-

apoo than along the Johnson Valley fault. This is partly because of the decrease of the

normal stress along the fault and because the ruptured zone is getting longer. We notice

too that, as we wanted at the beginning, reaching the SSE end of Johnson Valley seems to

have no influence on the propagation of the rupture at the other end. After slipping, the end

of the Kickapoo fault seems to lock very rapidly and stop slipping, which is represented
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Figure 4.10: Along Johnson Valley and Kickapoo faults, slip ∆u (as D∗ =
3µ∆u/(−σ0

yyR
o
0) vs. s∗ = 3s/Ro

0 where s is the curvilinear coordinate) for each 0.18s
(that is 9Ro

0/cp).

between the time N=1060 and N=1200 but continues after.

According to the representation of slip, Figure 4.10, the maximum of slip is approxi-

mately 4.4m. The average along Johnson Valley is approximately 3.3m whereas in Harde-

beck and Hauksson [2001] it is reported as 2.0± 0.5m. The difference is likely because of

the assumptions of the slip weakening model and perhaps because of the simplicity of the

pre-stress field and the 2D approximation itself. The average predicted along Kickapoo is

about 3.6m.

As shown in Figures 4.10 and 4.11, the rupture is not inhibited by the curvature of the

fault towards its extensional side (an inhibiting effect of curving away from the extensional

side will be seen later for the SSE Homestead Valley fault). This is consistent with the
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Figure 4.11: Along Johnson Valley and Kickapoo faults. Slip velocity V (as V ∗ =
µV/(−σ0

yycp) vs. s∗ = 3s/Ro
0 where s is the curvilinear coordinate) for several time steps

N = 6cpt/R
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0.
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results of Kame et al. [2003] which suggest that for this orientation of the compressive

principal stress, rupture along the branch (Kickapoo fault) is favored.

Figure 4.12 represents the propagation of each tip of the ruptured zone. The velocity

of the right tip does not change when it reaches the curved part (s∗ = −50) or the straight

part parallel to the x axis (s∗ = 0). The rupture velocity vr, represented in Figure 4.13 (as

vr/cs) increases and keeps a roughly constant value along the curved and the straight parts.

That is around 0.9cs, i.e., very close to cR. The vr reported by our procedures is in the form

3∆s/n∆t where n is the number of time steps for the rupture to advance by 3 cell sizes;

hence vr is always quantized, as in the figure.

s*

N

-200 -100 0 100
0

400

800

Figure 4.12: Position of the left and right ends of the ruptured zone along Johnson Valley
and Kickapoo (as s∗ = 3s/Ro

0 where s is the curvilinear coordinate, the origin is the be-
ginning of the part of the fault parallel to the x-axis) for each time step (as N = 6cpt/R

o
0).

The two lines at each edge indicate the length of the ruptured zone.The length of the right
part of the fault is about 4 km (s∗ = 100) the length of the left part is 11km (s∗ = −275).
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4.7 Does the rupture jump from the Kickapoo fault to the

Homestead Valley fault?

Using the slip history rate of the Johnson Valley-Kickapoo fault, we want to know now

if a rupture, or more than one, can nucleate along the Homestead Valley fault and if it does,

if it propagates bilaterally or not and finally what is the influence of the geometry on the

propagation.

4.7.1 Stress distribution near the Homestead Valley fault

We first ignore rupture on that latter fault, and simply evaluate the stresses radiated

from the first one, and if and where they are large enough to initiate slip-weakening else-

where. For that we have considered a region (contoured in Figure 4.14) with the same local

orientation as the Homestead Valley fault, with the same length and a thickness of 320 m

(8 cells). The Homestead Valley fault is in the center of the region. For purposes of defin-

ing stress components on the 1, 2 system, the 2 direction at any point in the region is the

local perpendicular direction to the Homestead Valley fault. The quantity σ21/(−fsσ22) is

contoured for several time steps in Figure 4.14.

First, we notice something which does not happen in the stress distribution around

the straight fault for parallel elements described in the static study: this is the region

which moves from the time step N=800 to N=1200 and which represents a negative ratio

σ21/(−fsσ22). (The static study in the first part suggests that a tensile domain (σ22 > 0¿)

will not exist in the region now studied.) Indeed, the calculations shows that for these

regions the shear stress is negative which would imply a left-lateral slip if the ratio ever
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Figure 4.13: Rupture velocity vr (as vr/cs) between the initiation of the rupture and the mo-
ment when it reaches the end of Kickapoo fault (in terms of time step N = 6cpt/R

o
0) along

first the Johnson Valley fault and afterwards Kickapoo fault. [No smoothing procedures
applied here.]

becomes more negative than −1. Only right-lateral slip was allowed in our calculation.

The critical value of 1 for the ratio σ21/(−fsσ22) (which means that a rupture is possi-

ble) is first reached in the curved part around the time stepN = 1040. The region where the

rupture is possible expands especially in the straight part and keeps a constant shape after

the time step N = 1300 which is shown in the last picture. Note that there is reasonable

correspondence, at the longer times shown here, of the region σ21/(−fsσ22) > 1 and the

static prediction of that region in Figure 4.6.



Chapter 4: BRANCHING AND DIRECTIVITY 111

Figure 16. Stress distribution around Homestead Valley fault for elements locally parallel to it. The
contoured quantity is s21/(!mss22), where (x1, x2) are the tangential and the normal directions relative to
the Homestead Valley fault (see text). Here x* = 3x/R0

o and y* = 3y/R0
o. Representation for several time

steps is N = 2cpt/R0
o.

B06312 FLISS ET AL.: BRANCHING AND DIRECTIVITY

15 of 22

B06312

Figure 4.14: Stress distribution around Homestead Valley fault for elements locally parallel
to it. The contoured quantity is σ21/(−fsσ22), where (x1, x2) are the tangential and the
normal directions relative to the Homestead Valley fault (see text). Here x∗ = 3x/Ro

0 and
y∗ = 3y/Ro

0. Representation for several time steps: N = 2cpt/R0.
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4.7.2 Stopping as an aid to jumping

We can see in Figure 4.14 that a rapidly propagating rupture is much more effective at

generating high stresses on parallel, or roughly parallel, nearby faults once its propagation

has been abruptly stopped by a barrier than it was just before that blockage. For example,

the rupture reaches the barrier formed by the northern termination of Kickapoo, moving at

high speed, at time step N ≈ 1000. As Figure 4.14 shows, it is only some time later, as

something resembling the static field of Figure 4.6 starts to develop, that a large region near

the fault experiences failure-level stressing near the rupture tip.

Thus, it is much more likely for rupture to jump from a first to a roughly parallel second

fault if its propagation has been abruptly stopped on the first. Jumps not associated with

sudden slowing of propagation on the first fault are expected to be rare in nature. These

observations are in accord with a basic result of dynamic crack theory for the singular

model [Fossum and Freund, 1975], namely, that the stress intensity factor at a rapidly

propagating crack tip increases significantly when that propagation is suddenly stopped.

A case of rupture jumping when rupture velocity slows (rather than stops) is examined in

Oglesby et al. [2003a], and other cases of rupture jumping between faults are examined

in Harris et al. [1991] and Harris and Day [1993, 1999] as mentioned earlier, as well as

in Yamashita and Umeda [1994], Kase and Kuge [1998, 2001], Harris et al. [2002] and

Oglesby et al. [2003b].

We can conclude from this analysis that a rupture is likely to nucleate along the Home-

stead Valley fault and perhaps in several location. Further, stresses large enough to initiate

right-lateral slip-weakening ultimately extend over the entire region between the Kickapoo

and Homestead Valley faults.
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Figure 4.15: Slip velocity V (as V ∗ = µV/(−σ0
yycp) vs. x∗ = 3x/Ro

0 and y∗ = 3y/Ro
0) for

several time steps N = 4cpt/R
o
0,along the faults, around the step-over.
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4.7.3 Jump of the rupture and bilateral propagation

The last calculations lead to the possibility of multiple nucleation along the second

fault. However, as a matter of fact, a detailed calculation of the rupture shows that it nu-

cleates at a single location: along the curved part at cell -8 (x∗ = 99 and y∗ = −4.18),

which is just below the termination of Kickapoo (in terms of x∗, y∗, the end of the Kick-

apoo fault is at x∗ = 100 and y∗ = 0) and which has an orientation of ω = 2.8o. The

initiation of slip occurs at N = 1022 (3.4s) and rupture starts propagating bilaterally, al-

most instantaneously, at N = 1028 (3.43s). Figure 4.15 represents the slip velocity V (as

V ∗ = µV/(−σ0
yycp)) along the Kickapoo and Homestead Valley faults represented in the

x-y plane around the step-over before and after the jump. Figure 4.16 represents the slip

velocity and so the rupture propagation at larger scale, along Johnson Valley and Kickapoo,

and finally Homestead Valley, showing all the region modeled.

The rupture propagates bilaterally on the Homestead Valley fault: forward along the

straight part parallel to the Kickapoo fault and backward along the curved part and then the

straight part at orientation ω = 30o.

The rupture velocity slows down noticeably along the curved part of the Homestead

Valley fault, as Figure 4.17 shows. The northern end of the ruptured zone moves forward

more quickly than the SSE end, which has to contend with the curvature, which in this

case is away from the extensional side. The effect is to increase normal stress along that

curved part. Bouchon and Streiff [1997] have investigated rupture of a curved fault similar

to the Homestead Valley fault, and also found a reduction in rupture velocity and slip. In

more severe cases it is clear that such adverse curvature could arrest rupture propagation,

although that does not happen in this case.
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Figure 4.16: Slip velocity V (as V ∗ = µV/(−σ0
yycp) vs. x∗ = 3x/Ro
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Figure 4.17: Position of the left and right ends of the ruptured zone (as s∗ = 3s/Ro
0 where

s is the curvilinear coordinate, the origin is the center of Homestead Valley fault) for each
time step (as N = 6cpt/R

o
0). The two lines at each edge indicate the length of the ruptured

zone. The half length of the fault is fixed to about 5km (s∗ = 125).

Forward, the rupture reaches the end atN = 1513 (5.04 s) of the northern portion of the

Homestead Valley fault modeled. The actual rupture did not end there (instead continuing

well to the NNW), but its stoppage in the simulation is too late for waves from that to

compromise the modeling of the propagation to the SSE. Backward, it finishes crossing the

curved part at N = 1287 (4.29 s). Its velocity increases again (as the discontinuity of the

line at the cell -50 suggests) and then remains roughly constant along the oblique straight

part. It reaches the end of the SSE zone at N = 1648 (5.49 s), leaving in its wake the

backward branch which motivated our study.

In Figure 4.18 we compare the slip velocity along the different part of the fault. It is

higher along the straight part than along the curved part where it decreases dramatically.

However when the rupture reaches the oblique straight part, the slip velocity increases
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again, but remains lower than the section with an orientation parallel to the x-axis. Besides,

as remarked, the end of the rupture forward has no influence for the rupture backward.

Finally, the Figure 4.19 represents the slip ∆u (as D∗ = 3µ∆u/(−σ0
yyR

o
0)) all along

the fault (in terms of cells s∗ = 3s/Ro
0). It is not the location of nucleation which cor-

responds to the maximum slip (approximately 4m), but rather the region around cell -10.

That corresponds to the beginning of the straight north-directed segment which is close

to the nucleation site and on which high shear stress is applied, as the stress distribution

around the fault (Figure 4.14) suggests. The average of slip is approximately 2.4m. We

observe thus the high drop of slip along the adversely curved part. The rupture would stop

if the fault did not stop curving, both because of the induced compressional normal stress

discussed and because of increasingly unfavorable orientation relative to the prestress field.

4.8 Discussion and conclusions

Our work has addressed the relation between fault branches left after a large, complex

earthquake and rupture directivity in the event. For that we investigated a new dynamic

mechanism which leaves behind a feature that looks like a backward fault branch, that is, a

branch directed opposite to the primary direction of rupture propagation. The mechanism

consists of the stopping of the rupture on one fault strand and jumping to a neighboring

strand, by stress radiation to it and nucleation of rupture on it which propagates bilaterally.

Rare as such a feature might be, it could mislead observers attempting to understand the

directivity of a past complex earthquake [Nakata et al., 1998]. We conclude that it is

difficult to judge the directivity of the main event from the pattern of branches it left, and

that additional understanding of the structure near the fault junction is needed to reach
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definitive conclusions.
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Figure 4.19: Along the Homestead Valley fault, slip ∆u (as D∗ = 3µ∆u/(−σ0
yyR

o
0) vs.

s∗ = 3s/Ro
0 where s is the curvilinear coordinate) for each 0.18s (that is 9Ro

0/cp).

We analyze a field example of a backward fault branch formed during the Landers

1992 earthquake, when rupture propagating along the Kickapoo fault stopped at the end

of that strand and then jumped to the Homestead Valley fault, where it developed bilater-

ally. The southern end of the Homestead Valley rupture formed a backward branch, while

the main rupture continued NNW. We have no observational proof, other than the clear

patterns of damage to a particular side of the Southern Homestead Valley fault (see Fig-

ure 4.2 and Poliakov et al. [2002]), that this is what really happened; existing analysis of

co-seismic observations have not clarified that picture. It is even possible to assume that

the southern end of the Homestead Valley fault broke in an early aftershock. However we
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have developed relevant theory for rupture transfer, and have simulated such a mechanism

numerically, with a simplified geometry of the region under discussion.

We conclude that what we describe is definitely possible mechanically, that it very plau-

sibly was the rupture mechanism in the Kickapoo to Homestead Valley transition, and that

it could act more generally in other large earthquakes which rupture through complex fault

systems. This means that caution is needed when relating fault branches of past earth-

quakes with their directivity. Simple forward branching, even if probably most common,

might not be the only branching mechanism.

Our work has broadened the mechanical analysis of fault jumping, the basis of which is

due to Harris et al. [1991], Harris and Day [1993] andHarris and Day [1999] who numer-

ically analyzed ruptures jumping between parallel faults. Here we analyzed ruptures jump-

ing onto possibly non-parallel faults, and subsequent propagation along gradually curving

faults, using the elastodynamic boundary equation (BIE) method with a Coulomb type of

slip-weakening. A fully systematic analysis of such jumps has to be left for future work.

However we can offer some insights into the mechanics of such jumps.

First, it seems important that the rupture on the main fault stops or at least slows down

if successful transfer of rupture to the neighboring, non-parallel fault is to be accomplished.

This is because the stress concentration carried by the rupturing front diminishes with rup-

ture velocity [Fossum and Freund, 1975] and is largest when propagation stops.

We showed that stresses radiated to the curved Homestead Valley fault, while the rup-

ture tip was still propagating along the Johnson Valley-Kickapoo fault system, would be

unlikely to nucleate rupture on the Homestead Valley fault. Rather, the jump was made

possible by the much higher stresses radiated when the rupture stopped at the northern ter-
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mination of the Kickapoo fault. Those stresses succeeded in nucleating on the Homestead

Valley fault because the two fault traces are close to parallel there; the less parallel orienta-

tion of the curved Homestead Valley fault further to the southeast would not have allowed

jumping.

When rupture stops at the termination of one fault strand, like on the Kickapoo fault

here, the Coulomb stresses radiated to neighboring strands which are either parallel or only

slightly misoriented relative to the first strand will increase in an approximately mono-

tonic manner with time, and approach the final static stress distribution associated with the

stopped rupture ([Harris and Day, 1993]; also, compare dynamic stressing in Figure 4.14

with the static results of Figure 4.6).

Thus, to simply estimate maximum jumpable distances, we have provided an analysis

here of the static stress field also. We find that there is a strong sensitivity to the orientation

of the target fault, even for misorientations as small as 5o to 10o (Figure 4.6). Focusing

on parallel faults, we show that the maximum jumpable distance scales as a function of

the seismic S ratio, being proportional to 1/(1 + S)2. Thus lower S values (i.e., pre-stress

σ0
yx closer to the static friction strength −fsσ0

yy) favor jumping a greater distance from a

blocked rupture tip.

Low S values also favor transition to supershear propagation speed vr [Andrews, 1976].

We chose S = 1.3 for the simulation presented here, which was large enough to keep vr

sub-Rayleigh on our representation of a part of the Johnson Valley fault and the Kickapoo

fault. The jumpable distance was then, nevertheless, still great enough to enable nucleation

of propagating rupture on the Homestead Valley fault. While not shown here, we have

also done a version of the same analysis with a lower S ratio, which allowed supershear vr
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along the Kickapoo fault. As would be expected because the maximum jumpable distance,

scaling as 1/(1 + S)2, was greater in that case, it too showed a jump of rupture to the

Homestead Valley fault. The case presented here provides a more stringent test because of

the larger S (i.e., because of the lower shear pre-stress).

Of course, there will exist a range of sufficiently larger S values for which rupture

could not jump from the Kickapoo fault, then under yet lower pre-stress, to the Homestead

Valley fault. In those cases the Landers earthquake could not extend beyond the northern

termination of the Kickapoo fault. Such differences in the jumpable distance, depending

on prestress along the main fault, might be responsible, among other mechanical reasons,

for repeat earthquakes behaving in a variety of ways, sometimes rupturing single fault

structures, and sometimes being able to continue, via multiple jumps, to other fault systems.

A phenomenon revealed in our simulations is how adverse curvature of a fault, like

for the southern Homestead Valley fault in this modeling, can slow (and surely, sometimes

stop) rupture propagation. By adverse curvature, we mean curvature towards the com-

pressional side of a fault, like seen for the southern Homestead Valley fault in Figure 4.2

[Sowers et al., 1994], just south of the presumed jump site, and Figure 4.7. Rupture is

right lateral and propagates to the SSE on that segment, so the compressional side, towards

which the fault curves, is the eastern side. With such curvature, nonuniform slip like that

occurring near the rupture tip induces locally increased normal stress, and assuming as

we have here that friction strength is proportional to effective normal compression, that

locally increases the resistance to slip-weakening failure compared to that which coud be

estimated based on the fault-normal component of the pre-stress field. While the curvature

sugnificantly slowed, but did not stop, the rupture propagation in our simulations (Figures
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4.15, 4.17 and 4.19), it is clear that stronger curvature could stop propagation.

Our analyses here have been based on 2D modeling. Such modeling has obvious limita-

tions since we address 3D phenomena. For example, in a 3D study of the backward branch

left by the rupture path in the 1999 Hector Mine earthquake, discussed previously,Oglesby

et al. [2003b] found that the branch could not be produced if they allowed, in their simu-

lation, for slip to extend all the way to the Earth’s surface along the fault on which rupture

nucleated and propagated into the branch junction. They could, however, produce that

backward branch if they assumed that rupture on the first fault was blocked at shallow

depths by a strong barrier, thus radiating stress increases to the second fault; that is, in fact,

consistent with lack of observed surface slip on the first fault. These results suggest that

3D dynamic effects may be quite important in determining the rupture path through some

complex fault junctions.

Nevertheless, given current computer limitations, it is possible in 2D modeling, but of-

ten not in 3D, to choose sufficiently small numerical cell sizes as to reasonably resolve the

underlying continuum solution (e.g., by having several cells within the region of the fault

undergoing slip weakening, a region which contracts in size as rupture speed increases

[Rice, 1980; Kame et al., 2003]. Also, the 2D representation may often be justified when

length scales of phenomena modeled are small compared to the thickness of the seismo-

genic zone, as in this case for the small jump distance involved in the transition from the

Kickapoo to Homestead Valley faults.

Such a process as we have investigated, of stopping on one fault strand but thereby ra-

diating stresses to nucleate bilateral propagation on a nearby strand, may provide a general

mechanism of backward branching.
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5.1 Abstract

We extend a model of a two-dimensional self-healing slip pulse, propagating dynami-

cally in steady-state with slip-weakening failure criterion, to the supershear regime, in order

to study the off-fault stressing induced by such a slip pulse and investigate features unique

to the supershear range. Specifically, we show that there exists a non-attenuating stress field

behind the Mach front which radiates high stresses arbitrarily far from the fault (practically

this would be limited to distances comparable to the depth of the seismogenic zone), thus

being capable of creating fresh damage or inducing Coulomb failure in known structures at

large distances away from the main fault. We allow for both strike-slip and dip-slip failure

induced by such a slip pulse. We show that off-fault damage is controlled by the speed

of the slip-pulse, scaled stress drop and principal stress orientation of the pre-stress field.

We apply this model to study damage features induced during the 2001 Kokoxili (Kunlun)

event in Tibet, for which it has been suggested that much of the rupture was supershear.

We argue that an interval of simultaneous induced normal faulting is more likely due to

a slip partitioning mechanism suggested previously than to the special features of supers-

hear rupture. However, those features do provide an explanation for otherwise anomalous

ground cracking at several kilometers from the main fault. We also make some estimates

of fracture energy which, for a given net slip and dynamic stress drop, is lower than for

a sub-Rayleigh slip pulse, because part of the energy fed by the far-field stress is radiated

back along the Mach fronts.
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5.2 Introduction

There have been increased recent reports of supershear earthquake ruptures (for which

the propagation speed lies between the shear and the dilatational wave speed of the sur-

rounding medium). The earliest inference of supershear was during the 1979 Imperial

Valley earthquake for which Archuleta [1984] noticed that for a better fit of near-fault

strong motion records, the rupture speed had to exceed the shear wave speed. More re-

cent inferences were made during the 1999 Izmit and Düzce events [Bouchon et al., 2000,

2001] the 2001 Kokoxili (Kunlun) event [Bouchon and Vallee, 2003] and the 2002 Denali

event [Ellsworth et al., 2004; Dunham and Archuleta, 2005]. Laboratory verification of

supershear rupture was provided for the first time by Rosakis et al. [1999]. However, the

theoretical work on these ruptures dates back to the early 1970’s when Burridge [1973]

studied the growth of a self-similar mode-II crack with a critical stress fracture criterion.

His work suggested a possible mechanism for the transition of rupture from sub-Rayleigh

to supershear regime by formation of daughter cracks ahead of the main crack and their

subsequent coalescence. Andrews [1976, 1985] subsequently confirmed this in his numeri-

cal simulations with a linear slip-weakening failure criterion. Andrews [1976] also showed

that for a sufficiently low seismic S ratio [= (σ0
yx − τr)/(τp − σ0

yx) where σ0
yx, τp and τr

are the initial shear stress, peak failure and residual failure strengths of the medium, re-

spectively], supershear transition of rupture may occur after a propagation distance which

scales with the size of the nucleation zone for that σ0
yx. Burridge et al. [1979] showed that

supershear ruptures whose speed were less than
√

2cs (cs being the shear wave speed of the

medium), the Eshelby speed [Eshelby, 1949] at which the shear wave contribution (also the

Mach front) vanishes, had features suggesting that steady propagation would be unstable,
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although no complete stability analysis has been done of a steady state rupture. However,

the small set of supershear earthquakes, laboratory and numerical studies do seem to con-

firm their analysis. Bhat et al. [2004] do find a numerical solution that appears stable at

speed<
√

2cs, but for a supershear rupture emanating from a fault branch that is interacting

with a sub-Rayleigh crack from the other arm of the branch.

There remains still, however, much uncertainty about the observation of supershear

ruptures in large crustal earthquakes because of the lack of sufficient strong ground mo-

tion records. For example, the 2002 Denali event is hypothesized to have propagated at

supershear speed for about 40 km [Ellsworth et al., 2004] based on a single ground mo-

tion record. Other claims of supershear rupture propagation come mainly from trying to

fit a rupture speed for inversion of ground motion data, although recently Dunham and

Archuleta [2005] have identified specific features of the near-fault waveform that indicate

supershear rupture and have shown that a record written near the Denali rupture has that

form.

The aim of this work is to point out some unique features of supershear ruptures that

manifest themselves as patterns of off-fault damage which should be, in favorable circum-

stances, directly observed in the field. Earlier work by Poliakov et al. [2002] and Rice et al.

[2005] for steady sub-Rayleigh rupture speeds has revealed expected off-fault damage pat-

terns. Those were dependent on rupture speed, orientation of the pre-stress field among

other parameters, and were shown to have some consistency with field observations. We

thus adopt the Dunham and Archuleta [2005] extension of the speed regime of the Rice

et al. [2005] solution for a steady self-healing slip pulse (right-lateral in nature to be con-

sistent with Poliakov et al. [2002], Kame et al. [2003], Bhat et al. [2004], Rice et al. [2005]
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and Dunham and Archuleta [2005]), to the supershear regime, and study the off-fault dam-

age created during rupture propagation. Dunham and Archuleta [2005] focused on radiated

ground motions.

5.3 Off-fault stress field due to an elastodynamic slip pulse
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Figure 5.1: Supershear slip pulse of length L propagating at steady state in a two-
dimensional homogeneous elastic medium under plane strain conditions. vr is the rupture
speed limited between the shear wave speed (cs) and the P wave speed (cp =

√
3cs for

Poisson ratio, ν = 0.25) of the medium. The shear strength of the pulse degrades linearly,
with distance, from a peak value, τp to a residual value, τr over a distance R, the size of
the slip weakening zone. σ0

ij is the pre-stress in the medium. σ1 and σ3 are the minimum
and maximum principal compressive stresses, of the pre-stress field, in the medium and Ψ
is the angle of inclination of σ3 with the slip pulse. [Rice et al., 2005]

Following the work of Poliakov et al. [2002], and building on earlier studies of Broberg
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[1978, 1989, 1999], Freund [1979], Rice [1980] and Heaton [1990], Rice et al. [2005] cal-

culated the stress field near an elastodynamic slip pulse of length L propagating in steady

state at the rupture speed vr (the speed of the pulse) when vr was in the sub-Rayleigh wave

speed regime (The Rayleigh wave speed is the limiting speed for Mode-II ruptures, when

the supershear transition can be avoided.). They used a non-singular slip-weakening model

[Ida, 1972; Palmer and Rice, 1973], in a special simplified form introduced by Palmer and

Rice [1973] in which stress is assumed to vary linearly with spatial position. Weakening be-

gins when shear stress on the fault, τ , first reaches a finite peak strength τp on an unslipped

part of the fault. When slip begins, τ decreases with slip, approaching τr at large slip, as

illustrated in Figure 5.1; the simplified model assumes linear degradation of strength with

distance over the slip-weakening zone length, R, and then a constant strength value over

the remaing part of the pulse. The decrease of τ with slip δ is then not linear in δ, but is

moderately different from linear and, in the sub-Rayleigh range, it is independent of vr for

a given R/L, and is only weakly dependent on R/L [Rice et al., 2005]. We show later

here that a similar feature holds for the supershear range, but with a small dependence on

vr. The peak strength τp is generally assumed to be proportional to the compressive normal

stress acting on the fault and is set equal to −fs(σyy). We take the static friction coefficient

fs = 0.6 based on lab values for typical rocks. The residual strength τr = −fd(σyy) is

determined by the dynamic coefficient of friction, fd. We choose fd/fs = τr/τp = 0.2

as in Poliakov et al. [2002] and Rice et al. [2005] but note that this number cannot be as-

certained precisely. However, some results with appropriately scaled measures of stress

changes (scaled with σ0
yx − τr or τp − τr) do not depend on τr/τp.

The complete solution for the stress and particle velocity fields associated with the
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extension of the model to supershear has been derived in work by Dunham and Archuleta

[2005].

Let the total stress tensor during the propagation of the slip-pulse be given by σij =

σ0
ij + ∆σij where σ0

ij and ∆σij are, respectively, the tensors of pre-stress and perturbation

of stress. The perturbation of the stress field in a homogeneous, isotropic, elastic medium

due to a slip pulse propagating at supershear speeds (under plane strain conditions in an

unbounded solid) must have a form in terms of a single analytic function S(z) [Freund,

1979], such that the stress perturbations are given by

∆σxx =
1 + α̂2

s + 2α2
d

2αd
=S(zd) +

α̂2
s − 1

2αd
=S(zs)

∆σxy = <S(zd) +
(α̂2

s − 1)2

4αdα̂s
=S(zs)

∆σyy =
α̂2
s − 1

2αd
=[S(zd)− S(zs)]

∆σzz = ν(∆σxx + ∆σyy) (5.1)

where α̂s =
√
v2
r/c

2
s − 1; αd =

√
1− v2

r/c
2
d; zs = x − vrt + α̂s|y| and zd = x − vrt +

iαdy; i =
√
−1; we show results here at time t = 0. ν is the Poisson ratio for the medium

and is chosen later to be 0.25, so that cd =
√

3cs, in our numerical evaluations. cd and cs

are the P (dilatational) and S (shear) wave speeds of the medium respectively. S(z), with

different arguments, expresses the contributions of the P (dilatational) and the S (shear)

waves propagating through the medium; it must be chosen so that the stresses follow the

linear strength degradation boundary conditions like in Fig. 1. <S(z) and =S(z) are the

real and imaginary parts of S(z), respectively, and following the development of Dunham

and Archuleta [2005], S(z) is given by
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S(z) = −sin(πq)

π
z1−q(z + L)q ×∫ 0

−L

(τ(ξ)− σ0
yx)

(−ξ)1−q(ξ + L)q(ξ − z)
dξ (5.2)

Here

q(vr) =
1

π
tan−1

[
4α̂sαd

(α̂2
s − 1)2

]
(0 ≤ q ≤ 1/2) (5.3)

τ(x) =


τr +

(
1 + x

R

)
(τp − τr) for−R < x < 0

τr for− L < x < −R
(5.4)

and σ0
yx is the initial shear stress (pre-stress) in the medium. A condition for such a

solution to exist, giving bounded stresses at the leading and trailing edges of the pulse, is

that S(z) → 0 as |z| → ∞ [Muskhelishvili, 1953]. This results in a constraint equation

on the shear pre-stress level which is consistent with a given R/L and vr. That can be

determined as follows. Define

σdrop =
σ0
yx − τr
τp − τr

(5.5)

Then

σdrop =
I1

I2

(5.6)

where

I1 =
∫ 1

0

(1− t)dt
(t)1−q(L/R− t)q

; I2 =
∫ 1

0

dt

(t)1−q(1− t)q
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Figure 5.2: Variation of scaled dynamic stress drop (σ0
yx− τr)/(τp− τr) with rupture speed

vr and R/L where R and L are the size of the slip weakening zone and the length of the
slip pulse respectively. τp and τr are the peak and residual strengths respectively and σ0

yx is
the initial shear stress.

in non-dimensionalized form. Note that since q = q(vr) is involved, the scaled dynamic

stress drop, (σ0
yx− τr)/(τp− τr) depends on both R/L and vr/cs (Figure 5.2), unlike for its

sub-Rayleigh analogue in which case the dependence was only on R/L [Rice et al., 2005].

Similarly S(z) can be non-dimensionalized as follows

S(ẑ)

σ0
yx − τr

= −sin(πq)

π
ẑ1−q

(
ẑ +

L

R

)q
×[

R

L
I3 −

(
τp − τr
σ0
yx − τr

)
I4

]
(5.7)
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where

I3 =
∫ 1

0

dt

(t)1−q(1− t)q(t+ ẑR
L

)
;

I4 =
∫ 1

0

(1− t)dt
(t)1−q(L

R
− t)q(t+ ẑ)

and ẑ =
z

R

5.4 Non-dimensional parameters in the model

We now have the perturbation ∆σij from the pre-stress field, if normalized by the dy-

namic stress drop σ0
yx − τr, or by the strength drop τp − τr, expressed in terms of non-

dimensionalized parameters, namely z/R, R/L and vr/cs. Refer to section 7 for estimates

of the physical size of R. The in-plane pre-stress is characterized by a non-dimensional

parameter, σ0
xx/σ

0
yy which is a proxy for the angle of inclination of the maximum in-plane

principal stress (compressive) with the slip-pulse, Ψ, measured clock-wise from the top of

the slip pulse [Figure 5.1]. The in-plane stress components are then given by

σ0
yy

σ0
yx − τr

=
−1/fs

σdrop(1− fd/fs)
σ0
yx

σ0
yx − τr

= 1 +
fd/fs

σdrop(1− fd/fs)
(5.8)

To examine out-of-plane failure modes (reverse or normal faults) we must also assign

a value for σ0
zz/σ

0
yy. We choose various values for σ0

zz lying between, or equal to one of,

the maximum (σ3) and minimum (σ1) in-plane compressive principal stresses, determined

from the initial in-plane stresses. That is, we consider pre-stress states which are at least as

favorable to strike-slip as to normal or to thrust failure (Refer to Appendix C).

Thus the model has six non-dimensional parameters that need to be declared a priori
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(if the total stress tensor is to be evaluated), namely vr/cs, R/L, fs, fd/fs, σ0
xx/σ

0
yy and

σ0
zz/σ

0
yy. On this list, σdrop can replace R/L (Figure 5.2).

5.5 Off-fault stressing due to a supershear slip pulse

Supershear ruptures differ from their sub-Rayleigh analogues in many different ways.

The stressing due to the P and the S waves in the medium is almost decoupled. The S wave

field stresses the region only behind the Mach-front emanating from the rupture front. In

case of a slip pulse, as studied here, two Mach fronts develop at the leading and the trail-

ing edge of the slip pulse and the band between these fronts defines the S wave stressing

region (Figure 5.1). Within the band, the stress field is non-attenuating with distance and is

constant (neglecting the modest, attenuating, contributions of the P wave field) along lines

parallel to the leading Mach front. The non-attenuation feature in the band is a unique sig-

nature of supershear pulses which could potentially lead to damage at distances far away

from the slip pulse. The three-dimensional nature of the actual problem presumably re-

stricts this distance to be of the order of the depth of the seismogenic zone (once the rupture

saturates in depth the dominant length scale in the problem is related to this depth and 3D

effects can no longer be ignored), usually around 10-15 km. However this distance is still

substantial and of the order of a few tens of kilometers.

Outside the Mach band, the stressing is only due to the P waves and attenuates with

distance. However, as the rupture speed approaches the upper limiting speed, i.e., the P

wave speed of the surrounding medium, the Lorentz-like contraction of the stressing region

in the fault parallel direction (with a corresponding extension in the fault normal direction)

also increases significantly leading to a greater extent
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Figure 5.3: Perturbation in fault parallel stress, ∆σxx/(σ
0
yx − τr) normalized by dynamic

stress drop due to a supershear slip pulse propagating steadily at various rupture speeds, vr.
All results are for R/L = 0.1 where R and L are the size of the slip weakening zone and
the length of the slip pulse respectively and σdrop = (σ0

yx − τr)/(τp − τr).

of the P wave stressing region in the medium hosting the slip pulse. Once again we no-

tice a greater spatial influence by supershear ruptures compared to sub-Rayleigh ruptures.

Figure 5.3 showing the perturbation in ∆σxx illustrates the non-attenuating and Lorentz-

like contraction features of supershear ruptures.

To characterize the off-fault stressing induced by a supershear slip pulse, we look at

the change of Coulomb stress on fault structures with assumed orientations, and also on

structures which are optimally oriented for Coulomb failure based on the total stress tensor.

Note that in calculating dynamic Coulomb stress changes on optimally oriented structures

and in the evaluation of off-fault failure, all the six non-dimensional parameters are to be

specified. However, when evaluating the change in the dynamic Coulomb stress on fault

structures with assumed orientations, only three non-dimensional parameters need to be

specified (if stresses are normalized by the dynamic stress drop) a priori, namely, vr/cs,
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R/L and fs.

We evaluate the change in the Coulomb Stress ∆CS = ∆τ+fs∆σ (here ∆τ > 0 in the

direction of possible slip and ∆σ > 0 for tension) on faults, both optimally oriented and

the ones with assumed orientations, at each grid point and only the region where failure

is encouraged is contoured, i.e. the region where ∆CS > 0. The optimal orientation

was determined from the final stress state. We also evaluate Coulomb stress changes for

structures slipping out of the plane, i.e., normal and reverse faults. Refer to Appendix C

for more details.

5.6 The 2001 Mw 8.1 Kokoxili (Kunlun) earthquake

The Kokoxili surface rupture (Figure 5.4) has been studied by a number of workers,

Xu et al. [2002], Lin et al. [2002, 2003], Lasserre et al. [2005] and Klinger et al. [2006]

among others, and mapped in detail using Ikonos satellite images and supporting fieldwork

by Klinger et al. [2005]. Particular attention was paid to the slip-partitioned section, which

is also discussed by King et al. [2005]. Kikuchi and Yamanaka [2001], Lin et al. [2003],

Bouchon and Vallee [2003], Antolik et al. [2004] , Tocheport et al. [2006] and Robinson

et al. [2006] did seismological studies of the rupture process associated with the Kokoxili

event. The field team noted other interesting features, but unfortunately could not study

them in detail so that we do not have careful field documentation. Thus although the ob-

servations may be consistent with rupture propagation at supershear speeds the correlation

should be treated with caution.

North of the fault, bridge abutments crossing minor drainages on the Kunlun Pass to

Golmud road were damaged. Since fragile walls and poorly constructed buildings were
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Figure 5.4: (a) Simplified map of the surface rupture (red line) for the 2002 Kokoxili earth-
quake (adapted from Klinger et al. [2005]). The epicentre is indicated by a red triangle
so that rupture propagated mainly to the east. The slip-partitioned section extends from
the Hong Shui river to north of the middle of Kusai Hu (lake). Extensive cracking was
observed (with approximate crack orientations drawn by authors) from east of the Kusai
Hu to about halfway to the Kunlun Pass. North of the pass (where the road to golmud is
outlined in blue) bridge abutments were damaged. The extent of the region of cracking
parallel to the strike of the fault is likely to be correct, but the extent perpendicular to it
is simply not determined, and it is only sure that the cracking extended to the horizon on
both sides of the road. (b)Perturbation in fault normal stress, ∆σyy/(σ

0
yx − τr) normalized

by dynamic stress drop due to a ‘left-lateral’ supershear slip pulse propagating steadily at
various rupture speeds, vr (all other figures in this paper are drawn for right lateral slip).
The results are for R/L = 0.1 where R and L are the size of the slip weakening zone and
the length of the slip pulse respectively and σdrop = (σ0

yx − τr)/(τp − τr).
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undamaged even closer to the fault and such bridges are not normally sensitive to shak-

ing, a likely explanation is that the damage resulted from large ground strains probably in

extension. The damage did not appear to be due to compression although, without more

careful examination, it cannot be excluded.

South of the fault, on the road between the Kunlun Pass and Kusai Hu, extensive ground

cracking occurred (Figure 5.5) oriented at approximately fault parallel as shown in Figure

5.4a. The cracking was not mapped since the cracks were too small to appear on Ikonos

images. Direct mapping of a large region would have required an extended period at an

altitude of nearly 4000 meters which was not possible. The extent of the region of cracking

(shown in Figure 5.4) parallel to the strike of the fault is likely to be correct, but the extent

perpendicular to it is simply not determined, and it is only sure that the cracking extended

to the horizon on both sides of the road. Whether or not the map is accurate, the cracks were

substantial distributed features that did not have the character of primary fault ruptures. The

field team did not constrain the orientation of these features relative to the main Kokoxili

rupture trace. However, the road track shown in Figure 5.5 is roughly oriented in the West-

North-West direction (the absence of the Kunlunshan mountain range at the horizon of

Figure 5.5 supports this conclusion). That means that the cracks are oriented at shallow

angles to the main rupture trace. Our estimates of the far-field stresses (Appendix D) show

that, for a left-lateral supershear rupture as the Kokoxili event, the region where the cracks

were observed suffered from large fault normal extensional stress perturbation (∆σyy ≈

5 − 15 MPa for a 3 MPa dynamic stress drop, on the pulse, consistent with the average

stress drop inferred by Rice et al. [2005] for other large, sub-Rayleigh ruptures) leading to

the formation of tensile cracks oriented roughly parallel to the main rupture trace [Figure
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5.4b].

Figure 5.5: Cracks along the road from Kusai Hai to the Kunlun pass. At this point the
road is several kilometers from the fault. The cracks were not mapped and their orientation
was not specifically measured, but was close to the orientation shown in Figure 5.4. The
cracking is consistent either with extension, or with compression and inelastic yielding
followed by tensional failure when the compression was relaxed.

Because there is only the limited constraint mentioned of the cracking direction, it

is instructive to examine other possibilities. If these extensional features were oriented

at some near-perpendicular angle to the main rupture trace then this could mean that the

extensional features observed were created by the unloading phase following the traversal

of a large compressional loading pulse. For such orientation, it would bepossible that the

brittle near-surface material (frozen soil sediments) could yield in compaction when the

Mach front traversed through the material, and then unloaded as tensile cracks when the

compressional strain was removed in the wake of the Mach front. Our estimates of far-

field stresses (see Appendix D) show that at Kunlun rupture speeds the fault parallel stress

perturbation (∆σxx), is compressional and quite large (≈ 5−15 MPa) for a 3 MPa dynamic

stress drop on the pulse [Figures 5.3 and 5.6]. Thus there is a plausible mechanism for any

angle of the tensile cracks with respect to the main fault trace, except for angles in the
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vicinity of ±450, in which case the normal stress on these features (whether tensile or

compressive) is small in magnitude.

We also checked for the possibility of normal and thrust structures, striking perpendic-

ular to the slip pulse, being activated due to the supershear slip pulse. Figure 5.7 shows the

change in the dynamic Coulomb stress on such structures. Note that the southern side of

Kunlun (left-lateral) is the y > 0 domain in our model (right-lateral). (Also, in the interpre-

tation for left-lateral faulting, in our figures, we are not looking down onto earth’s surface

from space, but rather up to the surface from the interior.) The figure clearly shows that

thrust faulting structures (striking perpendicular to the slip pulse) could be activated in the



Chapter 5: 2D SUPERSHEAR SLIP PULSE 141

southern side of Kunlun at large distances. In fact the region of highest positive change in

the dynamic Coulomb stress lies along the leading Mach front which extends to distances

comparable to the seismogenic depths in our two dimensional model.

At sub-Rayleigh speeds (0.7− 0.9cs) at a distance of 5km (using Rice et al. [2005] es-

timates of R∗0 (size of the slip weakening zone for a static semi-infinite crack), an average

value of 30m used here, and factoring in the Lorentz-like contraction of R this would cor-

respond to approximately 250-1000R) the stresses are quite negligible, at around 0.1% of

dynamic stress drop. Thus a sub-Rayleigh rupture could not have created features discussed

above.

Klinger et al. [2005] have mapped in detail that a normal fault strand, about 70km long,

striking parallel to the Kunlun fault at a distance of approximately 1-2.5km to the north of

Kunlun slipped during the 2001 event (see the slip partitioned section in Figure 5.4). The

rupture speed is constrained by the inversion studies of Bouchon and Vallee [2003] to be

between 1.5 and 1.6cs. King et al. [2005] have related the activation of this normal strand

during the event to slip-partitioning at depth where the normal and strike-slip structures are

connected. We look for direct Coulomb stress changes on the normal fault strand due to

a supershear rupture on an adjacent fault, to see if supershear ruptures could activate such

features and possibly provide a complementary mechanism. Figure 5.8 shows this change

in Coulomb stress for normal faulting structures striking parallel to the main slip pulse and

dipping at 600. Since Kunlun is a left-laterally slipping fault and our calculations are for

a slip pulse slipping right laterally, the northern side of Kunlun represents y < 0 domain

in our figure (looking towards the earth’s surface from beneath). Normal faulting, in the

y < 0 domain, is discouraged (negative change in Coulomb stress) in the non-attenuating
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part of the field when a supershear slip pulse propagates on the main fault at speeds like

those inferred, vr >
√

2cs.

Though normal faulting is favored in the attenuating part of the stress field (correspond-

ing to the P wave field) at higher speeds, the extent of this field, corresponding to 20% of

dynamic stress drop, is only up to 200-300m (takingR∗0 =30m and referring to figure 5.15).

There is a positive change at speeds vr <
√

2cs, but these speeds, especially in the range

1.2cs to 1.3cs at which the effects become numerically significant are thought unlikely.

Since Coulomb stress changes are significant at short distances for all rupture velocities

considered here, a supershear slip pulse might have nucleated the normal faulting event at,

or near, its junction with the strike-slip strand.

We note that the above mentioned mechanism of nucleating normal faulting event is,

however, not unique to the supershear regime as discussed below. Similar calculation in the

sub-Rayleigh speed regime shows that the positive change in the Coulomb stress is quite

low (around 1% of the dynamic stress drop) at a distance of about 20R from the main fault.

Using Rice et al. [2005] data on R∗0 and factoring in the Lorentz-like contraction of R, the

above distance would be roughly between 100 and 400m.

Thus it seems most unlikely that a sub-Rayleigh rupture could have activated the normal

fault structure. We thus find that at the rupture speeds for the Kunlun event normal fault

activation by positive changes in Coulomb stress on the same is unlikely to happen,

and no viable alternative is provided to the hypothesis that the normal faulting resulted

from slip-partitioning at depth [King et al., 2005].

The value of Ψ (defined earlier [Figure 5.1] and bearing in mind that the fault is left-

lateral) about 200 km to the east of the Kunlun-Xidatan junction was estimated to be be-



144 Chapter 5: 2D SUPERSHEAR SLIP PULSE

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x/R

y
/R

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x/R

y
/R

vr = 1.5cs vr = 1.6cs 

        Normal fault

Strike = 0o ; Dip = 60o

        Normal fault

Strike = 0o ; Dip = 60o

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x/R

y
/R

vr = 1.2cs 

        Normal fault

Strike = 0o ; Dip = 60o

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x/R

y
/R

vr = 1.3cs 

        Normal fault

Strike = 0o ; Dip = 60o

S

S

(∆τ+fs∆σ)/(σyx−τr)
o

0 0.2 0.4 0.6 0.8 1

Figure 5.8: Contours of positive change in Coulomb stress (scaled by dynamic stress drop),
due to a supershear rupture, on Normal faults striking parallel to the slip pulse and dipping
at 600. Open circle represents normal faults with their strike shown by the bisecting line.
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Figure 5.9: Effect of rupture velocity on positive Coulomb stress changes (maximum of
the two on optimally oriented structures) induced by an intersonic slip pulse on optimally
oriented structures. Here Ψ = 450 and σdrop = (σ0

yx − τr)/(τp − τr). σ0
zz is chosen such

that the pre-stress field favors pure strike-slip faulting. Dumb-bell shaped lines represent
optimal right-lateral strike-slip structures and simple lines represent left-lateral strike-slip
structures.
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Figure 5.10: Effect of the size of the slip weakening zone relative (R) to the length of
the slip pulse (L) on Coulomb stress changes (maximum of the two on optimally oriented
structures) induced by an intersonic slip pulse on optimally oriented structures. Here Ψ =
450. σ0

zz is chosen such that the pre-stress field favors pure strike-slip faulting. Refer to
figure 5.8 for explanation of symbols.



Chapter 5: 2D SUPERSHEAR SLIP PULSE 147

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x/R

y
/R

vr = 1.3cs ; Ψ = 11o

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x/R

y
/R

vr = 1.3cs ; Ψ = 59o

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x/R

y
/R

vr = 1.5cs ; Ψ = 10o

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x/R

y
/R

vr = 1.5cs ; Ψ = 59o

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x/R

y
/R

vr = 1.6cs ; Ψ = 11o

−15 −10 −5 0 5 10 15
−15

−10

−5

0

5

10

15

x/R

y
/R

vr = 1.6cs ; Ψ = 58o

(∆τ+fs∆σ)

o
  (σyx−τr)

0

0.2

0.4

0.6

0.8

1

Figure 5.11: Effect of Ψ on positive Coulomb stress changes (maximum of the two on
optimally oriented structures) induced by an intersonic slip pulse on optimally oriented
structures. σ0

zz is chosen such that the pre-stress field favors pure strike-slip faulting. Refer
to figure 5.8 for explanation of symbols.
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Figure 5.12: Same as Figure 5.11 except σ0
zz is chosen such that the pre-stress field favors

equally both strike-slip and thrust faulting. Refer to figure 5.8 for explanation of symbols.
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Figure 5.13: Same as Figure 5.11 except σ0
zz is chosen such that the pre-stress field favors

equally both strike-slip and normal faulting. Refer to figure 5.8 for explanation of symbols.
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tween 30 and 45 degrees from orientations of active faults in the region. It was noted

for Denali fault in Alaska, which has similar tectonic features as Kunlun, by Ratchkovski

[2003], that the orientation of the maximum principal stress rotated about the normal to the

strike as one traversed along the strike of the fault. This might be the case with Kokoxili

but no similar stress direction estimate exists for the region to the east as of now. The ori-

entation of the cracks and the existence of both normal and strike-slip structures gives us

an additional constraint on Ψ. Firstly, if the cracks were created by the unloading phase

following the traversal of a large compressional loading pulse then the orientation of the

cracks might give us some constraint on the direction of the maximum in-plane compres-

sive stress, Ψ. The average orientation of the cracks seem to be between 50 and 55 degrees

(no precise measurements were made in the field) with respect to the fault and these features

are expected to form perpendicular to the maximum in-plane compressive stress direction,

provided that the stress perturbation added to that compression. This suggests that Ψ should

be roughly between 35 and 40 degrees. The simultaneous existence of normal and strike-

slip faulting, if interpreted (too strictly) to mean that the τ/σ were the same on both the

structures, that σzz, the maximum principal compressive stress, and the remaining principal

stresses be compressive and not greater than σzz, puts Ψ in the range of 16 to 27 degrees (for

τ/σ between 0.3 and 0.6). The direction Ψ∆σ of the principal compression in the pertur-

bation far-field lies between 0 and 10 degrees when vr >
√

2cs, specifically between 3 and

6 degrees when 1.5cs < vr < 1.6cs. In fact, in the far-field Ψ∆σ = 0.5 tan−1 (− cot 2β)

where sin β = cs/vr. For the far-field compressive stress along the principal direction

to become yet more compressive we must have Ψ − Ψ∆σ < π/4 which implies that

Ψ < π/4 − 0.5 tan−1 (cot 2β) = 390 to 420 when 1.5cs < vr < 1.6cs. Thus the above
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constraints on pre-stress direction make it plausible that stresses in the far-field caused the

ground cracking.

5.7 Effect of various model parameters on the change in

dynamic Coulomb Stress

Since the perturbation in the elastic field due to S-wave radiation from a supershear

slip pulse extends to infinity in our 2-D model (practically this would be limited to the

depth of the seismogenic zone) we expect significant effects at larger distances from the

supershear slip pulse than its sub-Rayleigh analogue. Below we will explore the influence

of various non-dimensional model parameters, outlined earlier, on off-fault damage. This

is done generically without specific application to the Kokoxili event. All the figures have

the maximum positive change in Coulomb stress, due to a supershear pulse, contoured for

an optimally oriented structure at each grid point.

5.7.1 Effects of vr and R/L

The effects of rupture velocity and R/L on the off-fault stress field (for optimally

oriented structures) are shown in Figures 5.9 and 5.10. These results were obtained for

σ0
xx/σ

0
yy = 1.0 (Ψ = 450), R/L = 0.1 and σ0

zz chosen such that pre-stress favors strike-slip

faulting i.e σ0
zz = 0.5(σ1 + σ3). With increasing rupture velocity and decreasing R/L, the

off-fault stressing, in a medium hosting a supershear slip pulse, increases. Both cases show

significant far-field effects on the extensional side of the fault and increasing near field ef-

fects (outside the Mach front) with increasing rupture velocity. Increasing R/L results in a
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reduction in the stress concentration ahead of the rupture tip resulting in reduced off-fault

stressing.

5.7.2 Effect of Ψ

Pre-Stress favors pure strike-slip faulting (σ0
zz = 0.5(σ1 + σ3))

We consider two different σ0
xx/σ

0
yy ratios, 2.0 and 0.8, for which Ψ = 100 − 110 and

580 − 590 respectively. The slight variation in Ψ is due to the fact that σ0
xy varies with

rupture velocity. We consider the effects of the above parameters for vr = 1.3, 1.5 and

1.6cs. As seen in Figure 5.11 switching from low value of Ψ to a higher value results in the

shift of the domain of positive Coulomb stress change from mainly on the compressional

side to mainly on the extensional side.

Pre-stress equally favors both thrust and strike-slip faulting (σ0
zz = σ1)

As in the previous sub-section the region where there is a positive change in Coulomb

stress switches from being predominantly on the compressional side to the extensional side

as Ψ is increased. The region of maximum increase Coulomb stress change also increases

with rupture velocity. [Figure 12].

Pre-stress equally favors both normal and strike-slip faulting (σ0
zz = σ3)

Referring to Figure 5.13 we see the same general features outlined earlier stand out. The

main difference between the three cases discussed is the nature of faulting which follows

again the choice of pre-stress parameters.
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5.8 Energy balance and estimates

As explained in Dunham and Archuleta [2005], the proper energy balance for a super-

shear slip pulse is given by σ0
yxδ = τrδ + Gfrac + Grad, where σ0

yx is the far field shear

stress, τr is the residual strength of the fault, δ is the locked-in slip left in the wake of the

slip pulse. Here τrδ is the dissipation at the residual strength level, Gfrac is the dissipation

at stresses excess of the residual which defines the fracture energy, and Grad is the energy

flow away from the slip pulse associated with the S waves.

The locked-in slip δ is given by the expression,

δ

R
=

1

vr

∫ L/R

0
V (ξ)dξ (5.9)

where V is the slip velocity distribution which depends on R/L and vr/cs and is given by

V (ξ) = −2vr[(α̂
2
s + 1)/4µαd]=S(ξ) when approaching the fault from y > 0 and ξ denotes

x/R. Gfrac is given by

µGfrac

(τp − τr)2R
=
∫ 1

0
V ∗(ξ)(1− ξ)dξ (5.10)

where V ∗(ξ) = µV (ξ)/[(τp − τr)vr] = −2{(α̂2
s + 1)/[4αd(τp − τr)]}=S(ξ). Grad is

then evaluated from the energy balance equation. The energy flux associated with Grad

extends all the way to infinity and vanishes when the rupture velocity is
√

2cs. We non-

dimensionalize energy in our model, following Rice et al. [2005], with seismically observ-

able parameters, as Ĝ = πLG/µδ2 = F (vr/cs, R/L) where µ is the shear modulus of the

medium hosting the slip pulse. The non-dimensional function, F cannot be reduced to a

simple analytical expression, as in the sub-Rayleigh case, but has to be numerically deter-

mined. Also, unlike the sub-Rayleigh case, the dependence of F on rupture speed andR/L
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are no longer separable. Figure 5.14 shows the variation of Gfrac and Grad with rupture

velocity for a fixed ratio of dynamic stress drop to strength drop, (σ0
yx−τr)/(τp−τr) = 0.3.

The total energy, Gfrac + Grad, decreases monotonically with increasing fracture energy.

Since this ratio is dependent on both the rupture speed and the size of the process zone with

respect to the length of the slip pulse we have to vary R/L with rupture velocity to obtain

the energy values at fixed stress drop.

One can also use the energy balance equation to evaluate how the size of the slip-

weakening zone, R, varies with R/L and vr/cs. We scale this value of R with the size of

the process zone at static limit for a semi-infinite crack, R∗0 as in Rice et al. [2005] where

R∗0 =
9π

16(1− ν)

µGfrac

(τp − τr)2
(5.11)

Here ν is the Poisson ratio of the medium, set at 0.25 in our model, and Gfrac is the

fracture energy release rate. Using this with equation 5.11 we get R/R∗0.

Figure 5.15 shows the variation of R/R∗0 for the complete range of admissible speeds

for a dynamic shear crack. The expression for R/R∗0 for the sub-Rayleigh range was ob-

tained from Rice et al. [2005] equation 14. R/R∗0 undergoes Lorentz-like contraction in

the sub- Rayleigh regime, diminishing to zero at the Rayleigh wave speed, cR. The speed

range between cR and cs, the S wave speed, is inadmissible on energetic grounds for a

steady shear crack. Beyond cs, R/R∗0 monotonically diminishes to zero again as the rup-

ture speed approaches the P wave speed. For the supershear speed range inferred from

various earthquakes, between 1.5-1.7cs, R/R∗0 lies between 0.3 and 0.6. Estimates of R∗0

by Rice et al. [2005], for the Heaton [1990] event set, varies between 1.3-36 m (with an un-

certainty of factor of two since this value depended on R/L). This was obtained under the
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Figure 5.14: Scaled fracture energy release rate, Gfrac, energy radiated by S-wave, Grad

and the total energy as a function of rupture speed, vr for (σ0
yx − τr)/(τp − τr) = 0.3.

assumption of high peak strength and low residual strength implying (τp−τr) ≈ τp = fsσ̄n

where fs = 0.6 and σ̄n is the effective normal pressure

calculated at median depth for each of the earthquakes in the set. For low strength drop

case, their estimates of R∗0 varied between 73m to 3.3 km.

We evaluate the spatial slip distribution, ∆u(x), on the fault by numerically integrating

the expression for slip velocity, V = ∂∆u/∂t = −vr∂∆u/∂x. This spatial distribution of

slip is then used along with the spatially linear failure criterion used in our model to deter-

mine the slip weakening law implied by our model. Figure 5.16 shows this slip-weakening

behavior. There is little deviation from the linear slip-weakening law, that is often (but

somewhat arbitrarily) assumed in numerical simulations of dynamic shear ruptures, re-

gardless of the choice of R/L. There is also some sensitivity to rupture velocity in the

slip-weakening curves unlike the sub-Rayleigh case but that too is modest.
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Figure 5.15: Variation in the scaled size of the process zone, R/R∗0, with rupture velocity,
vr. R∗0 is the size of the process zone at static limit for a semi-infinite shear crack. cR, cs
and cp are the Rayleigh, S and P wave speeds of the medium respectively.

5.9 Summary and conclusions

We have studied here the off-fault stressing induced by a 2-D steady slip pulse prop-

agating at supershear speeds in a homogeneous isotropic elastic medium with a linear

strength degradation boundary condition like in Figure 5.1. This work is an extension

of the Rice et al. [2005] model which looked at the sub-Rayleigh speed regime. Unlike

its sub-Rayleigh analogue the dependence on rupture velocity, as vr/cs, and the relative

size of the slip-weakening zone, as R/L, for the elastic field of a supershear slip pulse are

inseparable.
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Because of the supershear nature of the pulse, Mach fronts develop at the two ends of

the slip pulse and, because our model is 2D and steady state, the elastic field within this

band of Mach fronts does not attenuate with distance (practically up to distances compara-

ble to the seismogenic zone depth) leading to a unique feature of the supershear slip pulse.

We expect significant effects of the supershear slip pulse to be observed as damage at large

distances. Bernard and Baumont [2005] also show, in their analytic and numerical model

for kinematic ruptures, that the ground acceleration due to a supershear rupture is unusu-

ally high at distances of the order of few tens of kilometers. We observe that this feature

is consistent with extension-like failure features observed a few kilometers away from the

Kunlun fault during the 2001 Kokoxili event, thus lending support to the suggestion that its

rupture speed was supershear in that region. We used our slip pulse model to also examine

the simultaneous normal faulting observed during the 2001 Kokoxili event. However that

strand, lying parallel to the main strike-slip fault on the extensional side, does not experi-

ence positive change in Coulomb stress, so the specific features of supershear rupture do

not provide an alternative to the slip partitioning explanation of that feature [King et al.,

2005].

We also evaluated the change in Coulomb stress, in the medium hosting the slip pulse,

on optimally oriented structures allowing for out-of-plane failure too. Failure is encour-

aged (∆CS > 0) mainly on the extensional side of the fault and increases in extent with

increasing rupture velocity (vr) and decreasing R/L. Increasing angle of orientation of

the maximum in-plane principal compressive stress (Ψ) with the slip pulse results in the

switching of the zone of ∆CS > 0 from the compressional to the extensional side of the

slip pulse.
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We also evaluated the radiated seismic energy and fracture energy due to a supershear

slip pulse for a fixed dynamic stress drop (scaled by the strength drop), (σ0
yx−τr)/(τp−τr)

= 0.3, and showed that the total of radiated and fracture energy decreases monotonically

with increasing rupture velocity. Using those results we also showed that the size of the

slip-weakining zone decreases monotonically too with increasing rupture velocity in the

supershear regime. We also showed that our spatially linear failure criterion deviates very

little from the linear slip weakening behavior regardless of the choice of R/L.
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6.1 Abstract

Radiating shear and Rayleigh waves from supershear ruptures form Mach waves that

transmit large-amplitude ground motion and stresses to locations far from the fault. We

simulate bilateral ruptures on a finite-width vertical strike-slip fault (of width W and half-

length L with W << L) breaking the surface of an elastic half-space, and focus on the

wavefield in the near-source region (i.e., at distances much less than L). In the immediate

vicinity of the fault (at distances much smaller than W ), two-dimensional slip-pulse mod-

els (i.e., models in which the lateral extent of the slip zone is unbounded) [Dunham and

Archuleta, 2005; Bhat et al., 2007a] accurately predict the wavefield at sub-surface loca-

tions, although Rayleigh wave Mach fronts will always exist at the surface. Amplitudes

associated with the Mach wedge in these models are undiminished with distance from the

fault, but at these close distances, dilatational field components have equally large ampli-

tudes. When viewed from distances far greater than W , the fault is accurately modeled as

a line source that produces a Mach cone. Geometrical spreading of the Mach cone occurs

radially and amplitudes for the shear Mach cone there decrease with the inverse square-

root of distance [Ben-Menahem and Singh, 1987]. The amplitudes for the Rayleigh Mach

cone should not attenuate with distance for the ideally elastic material considered here.

The transition between these two asymptotic limits occurs at a distance comparable to W .

The rate at which the fault weakens at the rupture front exerts a strong influence on the

off-fault fields only in the immediate vicinity of the fault for both sub-Rayleigh ruptures,

but also at the Mach fronts of supershear ruptures. Rapid weakening, which is known to

produce larger slip velocities on the fault, also generates larger amplitudes at the Mach

front. We thus conclude that radiating Mach waves of three-dimensional supershear rup-
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tures do transmit large-amplitude ground motions and stresses far from the fault, but with

amplitudes moderated at distances greater than the fault width by decay with distance due

to geometrical spreading.

6.2 Introduction

The velocity at which a rupture propagates influences the amplitude and character of

the radiated ground motion and stresses. A distinct manifestation of this occurs when

ruptures exceed the S-wave speed and generate shear Mach waves that efficiently transmit

ground motion and stresses away from the fault. When a supershear rupture propagates

in an elastic half space Rayleigh Mach fronts are to be expected too. Near the rupture

front, at the surface, the rupture would have a tendency to perturb the out-of-plane stress

component. To satisfy the traction free surface criteria Rayleigh waves have to be emitted

from the crack front. Since the rupture velocity is greater than the Rayleigh wave speed

Rayleigh Mach fronts would thus be generated from the rupture front. The Rayleigh Mach

front originates from the rupture tip but, since the Rayleigh wave speed is less than the

S-wave speed of the medium, lags behind the shear Mach front as one moves along the two

Mach fronts. The objective of the current work is to quantify how the amplitude of radiated

waves, specifically of those associated with the Mach wave, diminishes with distance from

the fault. We further compare fields from supershear ruptures to those produced by sub-

Rayleigh ruptures with the aim of contrasting the rate at which amplitudes decay with

distance from the fault for both classes of ruptures.

Supershear propagation, first suggested by analytical [Burridge, 1973] and numerical

[Andrews, 1976; Das and Aki, 1977] studies, has since been confirmed in laboratory exper-
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iments [Rosakis et al., 1999; Xia et al., 2004]. Supershear speeds have been reported for a

number of earthquakes, primarily from analyses of near-source records of the 1979 Impe-

rial Valley [Archuleta, 1984; Spudich and Frazer, 1984], 1999 Izmit and Düzce [Bouchon

et al., 2001, 2002], and 2002 Denali fault [Ellsworth et al., 2004; Dunham and Archuleta,

2004] events. As Savage [1971] and Ben-Menahem and Singh [1981] have shown, there are

also distinctive features of supershear ruptures at regional and teleseismic distances (e.g.,

changes in the radiation pattern), and an inversion of the 2001 Kokoxili (Kunlun) event

[Bouchon and Vallee, 2003] using regional Love waves suggests supershear propagation.

The unique characteristics of near-source records from supershear events, particularly of

records at Pump Station 10 (located only 3 km from fault) in the 2002 Denali fault event,

prompted a closer look at characteristics of radiated ground motion from supershear rup-

tures.

We build on a number of previous studies that have examined the influence of rupture

speed on near-source ground motion. Ben-Menahem and Singh [1987] studied the accel-

eration field generated by a point velocity dislocation (a singularity moving along a line

in a full space and leaving in its wake a fixed moment per unit length) that travels a fi-

nite distance at a supershear speed before stopping. In addition to starting and stopping

phases, shear Mach waves were implicated as carriers of large-amplitude accelerations.

Their results further demonstrate how the Mach wave only passes through a particular re-

gion surrounding the fault. By considering propagation only along a line, their analysis

applies only to observation points sufficiently removed from the fault (i.e., at distances

much greater than the fault width). A number of other researchers have focused primarily

on the wavefield in the immediate vicinity of the fault (extending out to distances compara-
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ble to the fault width, but not much beyond that). By examining a sequence of kinematics

models with various rupture speeds, Aagaard and Heaton [2004] demonstrated how the

well-known two-sided fault-normal velocity waveform of sub-Rayleigh ruptures (the so-

called “directivity pulse” that has been of primary concern in seismic hazard [Somerville

et al., 1997]) vanishes when ruptures exceed the S-wave speed. Instead, the largest am-

plitudes now occur at the Mach front. Bernard and Baumont [2005] combined kinematic

models of supershear ruptures with an asymptotic isochrone-based analysis of fields near

the Mach front to explore features of the Mach wave from supershear ruptures. Their

asymptotic analysis, which did not include any corrections for a finite fault width, showed

that for straight ruptures fronts, field amplitudes at the Mach front remain undiminished

with distance from the fault; rupture-front curvature leads to an inverse square-root decay

of amplitudes with distance due to a loss of coherence at the Mach front.

The starting point for our analysis is the two-dimensional steady-state slip-pulse model

developed by Rice et al. [2005] to examine stress fields near the rupture front of sub-

Rayleigh ruptures. This model was extended to supershear speeds by Dunham and Archuleta

[2005] and Bhat et al. [2007a]. Dunham and Archuleta [2005] focused on ground motion

(specifically, velocity records) from slip pulses in the context of models of the Denali fault

event [Ellsworth et al., 2004; Dunham and Archuleta, 2004]. Bhat et al. [2007a] stud-

ied the off-fault damage pattern due to supershear ruptures and hypothesized that anoma-

lous ground cracking observed at a few tens of kilometers from the fault during the 2001

Kokoxili (Kunlun) event resulted from the high stresses at the Mach front emanating from

a supershear rupture. This observation raises the possibility that radiated stresses from a

large supershear event might trigger slip on adjacent faults of the proper orientation. One
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Figure 6.1: (a) Rupture on a fault of width W and half-length L that expands bilateri-
ally at speed vr. (b) Mach wedge from a steady-state supershear rupture in 2D, which
approximates S-wave radiation from slip on a finite-width fault at locations close to the
fault (z � W ) and away from the fault edges. (c) Mach cone emitted by supershear line
source, which approximates radiation from slip on a finite-width fault when viewed from
afar (z � W ).
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objective of the current work is to quantify how the amplitude of Coulomb stresses on pre-

existing structures is influenced by rupture speed and the finite fault width, and whether or

not these amplitudes are sufficient to activate secondary faulting.

The most distinctive feature of the 2D supershear slip-pulse models is the shear Mach

wave. In addition to the shear Mach waves found in two-dimensional models, we also ex-

pect Rayleigh Mach waves emanating from the rupture front out along the free surface. The

two-dimensional plane-strain models feature large changes in the normal stress parallel to

the rupture front. These changes appear only in the vicinity of the fault and not further away

at the shear Mach front since fields there are nondilational. When considering rupture in a

half-space, the component of normal stress parallel to the rupture front is also normal to the

free surface, and must be negated there to satisfy the traction-free boundary condition. This

can be accomplished by the superposition of normal loads on the free surface that negate

the moving vertical normal stress pattern. These moving loads, which propagate at a super-

Rayleigh speed, will then excite Rayleigh Mach waves [Lansing, 1966; Georgiadis and

Lykotrafitis, 2001]. The combined assumptions of two dimensions (i.e., an infinite extent

of the slipping region parallel to the rupture front), steady-state propagation, and a homo-

geneous linear elastic medium cause the shear Mach waves to extend infinitely far from

the fault and for the amplitude of fields associated with the Mach wave to remain undimin-

ished with distance from the fault. This study addresses the first of these assumptions by

considering ruptures in three dimensions, specifically right-lateral strike-slip ruptures on a

finite-width vertical fault breaking the surface of an elastic half-space. The focus in on the

wavefield after the rupture has propagated many times further than the fault width.

To understand the effect of bounding the vertical extent of the slipping region, consider
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two limiting cases of a rupture on a vertical surface-breaking fault of width W and half-

length L (Fig. 6.1a). At locations close to the fault and away from its edges (specifically, at

locations much closer that W ), the fault width is unimportant and two-dimensional models

provide an accurate description of the fields, at least if the slip-weakening zone length R

is much less than W . In this extremely near-source region, the Mach front assumes the

form of a wedge (Fig. 6.1b) and Mach-wave amplitudes will not diminish with distance

from the fault. Of course, this region is further complicated by the presence of dilatational

fields of comparable amplitude. At the opposite extreme, consider points far removed from

the fault (specifically, at distances greatly exceeding W ). From these distant points, the

fault appears as a line source, and S-wave radiation now forms a Mach cone (Fig. 6.1c).

Since the cross-section of the cone is a circle, geometrical spreading dictates that shear

Mach-wave amplitudes will decrease with the inverse square-root of radial distance from

the fault. It is not clear that the Rayleigh Mach-wave amplitudes would attenuate at all, in

the ideally elastic material considered. It is of critical importance to hazard calculations to

understand exactly how the transition between these two extremes occurs. Specifically, to

what distances are large ground motion and stresses transported for realistic fault geome-

tries? Bhat et al. [2007a] hypothesized that the transition between the two limits occurs at

distances comparable to W , and our results confirm this hypothesis, although the Rayleigh

Mach fronts also contribute to the fields and, in the ideally elastic uniform material, they

would not decay at all with distance.
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6.3 Model Geometry

We model ruptures on a vertical right-lateral strike-slip fault that intersects the free

surface (Fig. 6.1a). W is the fault width, and vr is the rupture velocity; we study three

representative values of vr: 0.8cs, 1.3cs, and 1.6cs, where cs is the S-wave speed. The sub-

Rayleigh speed, 0.8cs, was chosen as mid-range of typical 0.7− 0.9cs speed range inferred

for various earthquakes. Bouchon and Vallee [2003] suggest a speed of around 1.6cs for

the 2001 Kokoxili (Kunlun) event and hence that speed was considered in our simulations.

The value of 1.3cs was chosen to see the effect of transitioning from the Eshelby speed of
√

2cs at which the shear Mach front is not generated at the rupture front [Eshelby, 1949].

For simplicity, we keep vr fixed (rather than considering a more natural transition from

sub-Rayleigh to supershear speeds, which would generate a more complicated set of wave-

forms) and consider symmetrically expanding bilateral ruptures that propagate a distance

L in each direction. We also wish to work in the context of a dynamic model, in the sense

that we specify a constant stress drop, ∆σ, within the rupture. In this sense, our models

are closely related to self-similar singular crack models in 2D. In our work, we prevent a

stress singularity at the rupture front by employing a cohesive zone model that can be in-

terpreted in the context of the commonly used slip-weakening friction law. The parameters

of this model are the peak and residual strengths, τp and τr, and the distance, R, over which

strength drops from τp to τr. As discussed by Dunham and Archuleta [2005] and Bhat et al.

[2007a], the extent of the cohesive zone (relative to the length of the rupture) plays a large

role in determining the maximum amplitude of fields at the Mach front.

The specific, simplified, procedure we use to force ruptures with the desired properties

was originally employed by Andrews [1985]. The shear strength of the fault, τstr, weakens
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linearly with distance (with weakening rate A) behind the rupture front:

τstr(x, t) = max{τr, τr + A(|x| − vrt)}. (6.1)

The fault is locked until stress reaches the fault strength, τp (which is not specified a priori

in this approach, but depends on τr and A, and varies moderately with the position of the

rupture tip), at which time slip commences and weakening occurs in such a way as to

ensure that stress always equals strength during sliding. This is illustrated in Fig. 6.2. In

this model, both τp and R evolve as the rupture expands in order to provide a solution with

non-singular and continuous stress at the tip. An associated energy release rate, or fracture

energy G, can then be inferred as the area under the resulting plot of τ − τr vs. slip. In

2D self-similar crack models, the energy release rate increases linearly with propagation

distance; the procedure we use, if applied in this context, results in an increase of both τp

and R to accomodate the increasing energy flux into the cohesive zone. Thus the shear and

Rayleigh Mach waves would be distinct, non-overlapping phases at distances well less than

a kilometer from the fault if R is indeed on the order of a few 10’s of meters.

We note several other important quantities that will be of interest to us. The first is the

seismic S ratio [S = (τp − σ0
zx)/(σ

0
zx − τr)], a measure of the initial load, σ0

zx, relative to

the peak and residual strengths. The stress drop is ∆σ = σ0
zx − τr and the strength drop is

τp − τr. The fracture energy, G, may be calculated for each point on the fault as

G =
∫

[τ(t)− τr]V (t)dt =
∫

[τ(δ)− τr]dδ, (6.2)

in which V is the slip velocity and the integrals are taken over all time t or all slip δ. Finally,

we define an equivalent slip-weakening distance Dc via the relation
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Figure 6.2: Fracture criterion used to force a rupture at speed vr with stress drop ∆σ.
Fault strength increases linearly from |x| = vrt (grey line). When shear stress on the fault
(black line and points from numerical model for sub-Rayleigh rupture at 0.8cs) reaches the
strength, slip commences.

G =
1

2
(τp − τr)Dc, (6.3)

which proves useful when interpreting our results in the context of the commonly used

linear slip-weakening law [Andrews, 1976].

We next non-dimensionalize the model by scaling all distances byW and time byW/cs.

Stress is scaled with ∆σ, particle and slip velocities by ∆σcs/µ where µ is the shear mod-

ulus. Displacements and slip scale with ∆σW/µ. When considering physical values of

these parameters, we take µ = 30 GPa, cs = 3 km/s, and W = 10 km. We consider a

Poisson material (i.e., one for which the P-wave speed is given by cp =
√

3cs), and choose
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stress drop
field, scale (units) low moderate large
stress, ∆σ (MPa) 0.3 3 30

velocity, ∆σcs/µ (m/s) 0.03 0.3 3
displacement, ∆σW/µ (m) 0.1 1 10

fracture energy, ∆σ2W/µ (MJ/m2) 0.03 3 300

Table 6.1: Representative dimensionalizing factors by which non-dimensional values re-
ported in this study may be converted to physical values; a range exists due to uncertaintly
in ∆σ. Other parameters employed in these relations are µ = 30 GPa, cs = 3 km/s, and
W = 10 km.

τr to yield a dynamic coefficient of friction of 0.2 (but note that the actual value of normal

stress, σ0
zz, is unimportant since normal stress on the fault remains unaltered by slip on

vertical strike-slip faults in a homogeneous medium). Estimates of stress drop vary widely,

and to encompass this range we consider three respresentative values of ∆σ: 0.3 MPa, 3

MPa, and 30 MPa. We report non-dimensional values (denoted by a superscript ∗) in our

figures, and these may easily converted to physical values by the scaling factors decribed

above and summarized for reference in Table 6.1.

We numerically solve our problem with a staggered-grid finite-difference code [Favreau

et al., 2002] with fault boundary conditions implemented with the staggered-grid split-node

(SGSN) method of Dalguer and Day [2007]. Rake rotation is permitted, in that the slip

vector rotates so as to be aligned with the shear traction vector. The degree of rake rotation

depends on the change in stress relative to the initial level of stress in the medium. In our

simulations, σ0
zx/(σ

0
zx−τr) = 1.2 and we have no transverse shear load (i.e., σ0

zy = 0). The

method is fourth order in space and second order in time for wave propagation in the body,

but the spatial order is reduced to second order at the fault. We implement the free-surface

boundary condition using the fourth-order W-AFDA scheme proposed by Kristek et al.
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[2002], and place perfectly matching layer (PML) absorbing boundaries on the remaining

sides [Marcinkovich and Olsen, 2003]. Ruptures propagate for 15W in each direction

before reaching the end of the fault (we lock the fault beyond this), but the computational

domain extends in this direction out to±20W to permit an examination of stopping phases.

The fault-normal extent of the computational domain is 15W . We run each simulation for

a duration that permits the S-wave stopping phase from the fault ends to reach 15W in the

fault-normal direction. We discretize the medium with a uniform grid spacing of h∗ = 0.02

(i.e., a grid spacing of h = 200 m for W = 10 km, which is far larger than desired if

the Rice et al. [2005] estimates of slip-weakening zone sizes R of a few tens of meters

at mid-seismogenic depths are accurate). Numerical resolution is discussed below, but we

note here that the resolution is determined by the choice of the cohesive-zone parameter

A∗; larger A∗ implies smaller R.

The two-dimensional case provides a convenient starting point to calibrate the numer-

ical method, and it further provides reference solutions to which we can compare our 3D

results to isolate the effects of the finite fault width. The immediately arising question

is which parameters should be held fixed when comparing sub-Rayleigh and supershear

ruptures. For expanding ruptures on homogeneous faults, the seismic S ratio determines

whether or not ruptures will achieve supershear speeds [Andrews, 1976]. While this pa-

rameter has less importance in the context of our constant-speed models, this knowledge

motivates our method of comparing sub-Rayleigh and supershear ruptures.

Consider the case that both G and τp − τr are intrinsic properties of the fault (which

immediately implies a particular Dc as defined above). Then what determines whether or

not a rupture propagates at a supershear speed is the stress drop ∆σ, relative to τp − τr.
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From this perspective, we wish to hold G, τp − τr, and Dc fixed while varying vr and ∆σ.

However, the former quantities all vary with propagation distance in our model. In the two-

dimensional self-similar case, G increases linearly with distance [Freund, 1990; Broberg,

1989]. Upon introducing a cohesive zone with characteristic size ∆σ/A, self-similarity is

lost and both τp−τr andDc become increasing functions of distance. A strictly self-similar

model—which would feature a constant τp − τr and a Dc that increased linearly with time

or propagation distance—could be achieved by making A inversely proportional to time,

but we do not follow this approach. Instead, we simply select a distance x∗ = 8 and match

G and τp − τr at this location. Matching G at any location suffices to match G for all

locations, but this is unfortunately not the case for τp − τr and Dc as discussed above.

The single tunable parameter in our models is A∗, and we first examined the sub-

Rayleigh case (vr = 0.8cs) with an eye on numerical resolution. Choosing A∗ = 7.00

places a minimum of (∆σ∗/A∗)/h∗ ≈ 7 grid points within the cohesive zone; this number

increases as the rupture expands (see Fig. 6.2 for an example of our resolution). By gath-

ering data from ruptures with various A∗ at the two supershear values of vr, we identified

the model parameters listed in Table 6.2.

We further need to explore how the particular choice of A (and hence τp − τr and Dc)

influences field amplitudes. There is considerable uncertaintly in the appropriate values

of τp − τr and Dc. From the perspective of seismic inversions, here are two primary rea-

sons for this. First, slip inversions are limited in bandwidth, and Guatteri and Spudich

[2000] and Spudich and Guatteri [2004] have shown that a strong trade-off exists between

strength drop and slip-weakening distance for sub-Rayleigh ruptures. Second, Dunham and

Archuleta [2005] have pointed out that, at least for two-dimensional steady-state ruptures,



174 Chapter 6: 3D SUPERSHEAR RUPTURES

vr/cs S A∗ G∗ D∗c ∆σ (MPa) A (MPa/km) R (km) Dc (m)
0.8 2.03 7.00 3.19 2.10 3.00 2.10 4.33 2.10
1.3 1.28 2.71 1.80 1.58 3.99 1.08 8.43 2.10
1.6 0.53 3.72 0.82 1.06 5.92 1.93 4.72 2.09

Table 6.2: Model parameters, reported as both non-dimensional values and when dimen-
sionalized in the case that ∆σ = 3 MPa for vr = 0.8cs (see Table 6.1 and text for further
discussion of the dimensionalization method). The dimensional values of G and τp − τr
are 9.57 MJ/m2 and 9.09 MPa respectively. Note that G, τp − τr, Dc, and S increase with
propagation distance in our model; the values reported here are measured at x = 8W in the
2D geometry.

the wavefield of sub-Rayleigh ruptures consists entirely of evanescent waves. This implies

that a given frequency component of the wavefield decays exponentially with distance from

the fault over a scale that is inversely proportional to the frequency. This also occurs for

the dilatational component of fields from supershear ruptures. In contrast to this, the fre-

quency content of the shear component of the wavefield (appearing as the Mach waves) is

preserved with increasing distance from the fault. To explore this issue in the context of

our three-dimensional rupture model, we conduct an additional two runs for vr = 1.6cs,

increasing A first by a factor of two and then by a factor of four.

6.4 Results

We proceed by propagating ruptures using the model parameters listed in Table 6.2 for

both the 2D and 3D geometries. Prior to examining the off-fault fields, it is appropriate to

examine the pattern of wavefronts generated by a bilaterally expanding supershear rupture

that stops (discussed here in the 2D context, although a similar pattern appears in 3D as

well). Only a certain region—a trapezoid on each side of the fault for each Mach front—
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experiences the passage of the Mach waves (Fig. 6.3), and it is within this region that the

largest amplitudes are expected. In the 2D case, after the rupture has stopped, amplitudes

at the planar edge of the Mach wave remain undiminished as it radiates from the fault.

P0 

S0 
PL 

SL 

M 

x 

z 

0 L 

R

Figure 6.3: Wavefronts from a bilaterially expanding supershear rupture (in 2D) that stops
after propagating a distance L. The starting phases are marked as P0 and S0, the stopping
phases as PL and SL, and the Mach front as M . Points within the hatched blue trapezoid
(marked by M ) have experienced the passage of the shear Mach wave. The points in the
hatched red trapezoid (marked by R) have experienced the passage of the Rayleigh Mach
wave. A number of other wavefronts—such as head waves, Rayleigh waves, and Rayleigh-
wave diffractions—are not shown.

Fig. 6.4 show snapshots of particle velocities from our 3D ruptures. The wavefronts

illustrated in Fig. 6.3 are clearly seen. As previous studies have revealed, the dominant

component of motion changes from the fault-normal to the fault-parallel direction as the

rupture exceeds the S-wave speed [Aagaard and Heaton, 2004; Dunham and Archuleta,

2005]. The two-sided fault-normal pulse dominates the ground motion from sub-Rayleigh

ruptures, but the largest amplitudes are concentrated within a distance ∼ W from the fault.
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Large amplitudes are also present in the region beyond the end of the fault; these are carried

by S-wave stopping phases. For supershear ruptures, the largest amplitudes, aside from

those in the immediate vicinity of the rupture front, occur along the (closely coincident)

Rayleigh and shear Mach fronts, which extend from the fault out to a distance determined

by how far the rupture has propagated.
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Figure 6.4: Snapshots of the free-surface velocity field for various ruptures speeds at two
times: just as the rupture arrives the edge of the fault and at a slightly later time (an addi-
tional 3W/cs after the arrival) to emphasize the stopping phases. Ruptures have identical
G, τp− τr, and Dc but different ∆σ. Note that the value of ∆σ used to non-dimensionalize
the velocities is different for each rupture speed (see Table 6.1). The color scale is saturated
for positive values to emphasize field amplitudes away from the rupture front. The closely
coincident shear and Rayleigh Mach fronts can be seen in the fault-normal component since
its sign are opposite for the the two fronts.

To further explore the ground motion histories, we plot seismograms at x = 10W for

various distances from the fault (Fig. 6.5). The location x = 10W is chosen because

the rupture is well-developed at this point (in the sense that the effects of the fault width
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are established), but the effects of the stopping phases are relatively minor. In addition

to the seismograms, we mark the arrival times of the P- and S-wave starting and stopping

phases and, for stations within the Mach beam for supershear ruptures, the Mach fronts.

For example, the S-wave stopping phase arrives at

t =
L

vr
+

√
(L− x)2 + z2

cs
. (6.4)

Within the Mach beam, the shear Mach front arrives at

t =
x+ z

√
v2
r/c

2
s − 1

vr
. (6.5)

and the Rayleigh Mach front arrives at

t =
x+ z

√
v2
r/(0.9194cs)2 − 1

vr
. (6.6)

Using these seismograms as a reference, we are now in a position to determine the

influence of the cohesive-zone size on ground-motion amplitudes. To illustrate the main

result, we compare velocity seismograms from supershear ruptures with three values of

A (Fig. 6.6). As A is increased (corresponding to more rapid weakening with a larger

τp − τr and smaller Dc but fixed G), amplitudes at the Mach fronts rise accordingly. This

occurs only at the Mach fronts. This is clearly evident when comparing the amplitudes of

the dilatational waveform that preceeds the Mach fronts; these amplitudes are completely

insensitive to how rapidly the fault weakens. It further follows that the entire wavefield

(both dilatational and shear components) of sub-Rayleigh ruptures will be rather insensitive

to details of the weakening process at the rupture front. A possible exception to this might

occur when the rupture process is highly unsteady. If this is the case, then the wavefield
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Figure 6.5: Velocity seismograms at x = 10W for various distances from the fault. Major
wavefront arrivals are marked. Ruptures have identicalG, τp−τr, andDc but different ∆σ.
Note that the value of ∆σ used to non-dimensionalize the velocities is different for each
rupture speed (see Table 6.1).
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consists of both evanescent and radiating waves; these radiating waves will transport high-

frequency signals away from the fault.
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Figure 6.6: Velocity seismograms at x = 10W and z = 5W for a supershear rupture
(vr = 1.6cs) illustrating the effect of decreasing the cohesive-zone size, which is inversely
proportional to A, the rate of weakening with distance from the rupture front. The two
insets show close-up views of the dilatational waveform, which is insensitive to A, and
the Mach fronts, which is highly sensitive to A. Due to low numerical resolution in our
simulations we are unable to use realistic values of R, as predicted by Rice et al. [2005],
and hence unable to separate out the effects of the shear and Rayleigh Mach fronts. A
precise definition of A is given in (6.1).

Our next step is to quantify the ground motion in our simulations by plotting the max-

imum peak-to-peak velocity amplitude experienced at each point on the free surface (Fig.

6.7). In all cases, the largest ground motion occurs in the immediate vicinity of the fault.

For sub-Rayleigh ruptures, the region beyond the fault end in the propagation direction

also experiences strong shaking; this is carried by the S-wave stopping phase. For super-

shear ruptures, locations within the Mach beam also experience large amplitudes; this is

most evident for vr = 1.6cs. As discussed above, the peak amplitudes transmitted along

the Mach front are quite sensitive to the particular details of the weakening process at the
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rupture front. As A is increased, the amplitudes within the Mach beam also increase and

eventually dominate any peak-to-peak motion generated by stopping phases.

The final step in our analysis is to plot of maximum peak-to-peak amplitudes on the

free surface along a line normal to the fault at x = 10W (Fig. 6.8). Amplitudes from the

supershear rupture at vr = 1.6cs are almost always the largest, except that fault-normal

motion close to the fault is largest from sub-Rayleigh ruptures. The contrast between su-

pershear and sub-Rayleigh ruptures is quite prominant at distances exceeding W . The

non-monotonic decrease of amplitude with increasing distance that appears for supershear

ruptures (e.g., around x = 2W for vr = 1.6cs on the fault-parallel component) stems from

the fact that close to the fault, peak amplitudes occur not at the Mach front but within the

dilatational waveform preceeding it. At a distance of about 2W , the Mach front, which

decays at a more gradual rate than dilatational field components, becomes the carrier of the

peak amplitudes. This can be seen by examining the seismograms in Fig. 6.5.

We also show a similar plot for supershear ruptures (vr = 1.6cs) with larger values

of A (corresponding to larger τp − τr and smaller Dc) in Fig. 6.9. As A is increased,

the Mach front becomes more concentrated and exhibits larger amplitudes. As discussed

previously, fields from sub-Rayleigh ruptures become increasingly insensitive to A away

from the fault. This means that larger values of A will result in an increase in peak-to-peak

amplitudes far from the fault for supershear rupture (as evidenced by Fig. 6.9). On the

other hand, sub-Rayleigh ruptures will have amplitudes only as large as those shown in

Fig. 6.8 regardless of the extent of the cohesive zone.

As stated earlier, one objective of this project is to evaluate the validity of using the

two-dimensional steady-state slip-pulse model of Dunham and Archuleta [2005] and Bhat
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Figure 6.7: Maximum peak-to-peak amplitude of the free-surface velocity field. The top
three rows compare ruptures with different speeds; these ruptures have identical G, τp −
τr, and Dc but different ∆σ. The bottom two rows illustrate the effect of increasing the
weakening rate, A, at the rupture front. Fracture energy is preserved, so increasing A
increases τp− τr and decreases Dc. For a precise definition of A in our model, see equation
(6.1). Note that the value of ∆σ used to non-dimensionalize the velocities is different for
each rupture speed (see Table 6.1). The color scale covers the entire range of amplitudes
for the top three rows, but is saturated for the bottom two rows.
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et al. [2007a] to predict fields around propagating ruptures. We consider only the case

of vr = 1.6cs, since we are primarily interested in how rapidly amplitudes at the Mach

front decay with distance from the fault (which we expect to be influenced by the finite

fault width). The parameters of the slip-pulse model are the rupture speed vr, the strength

drop τp − τr, the extent of the cohesive zone, and the length of the slip pulse. We assign

these parameters by matching our 3D results at the free surface when the rupture front

reaches x = 10W . This is shown in Fig. 6.10. Then, by evaluating the expressions

given in Dunham and Archuleta [2005], we obtain plots of the maximum peak-to-peak

amplitudes in the two-dimensional model as a function of distance from the fault; these

are compared to our three-dimensional results, calculated not over all time as before, but

now from the wavefield present at the time that the rupture front reaches x = 10W , in Fig.

6.11. As expected, the two-dimensional model provides an accurate prediction of the fields

in the immediate vicinity of the fault. This approximation breaks down at distances much

larger than W , where an inverse square-root decay of amplitudes of the shear Mach waves

diminishes amplitudes below that in the two-dimensional model, and contributions of the

Rayleigh Mach waves exist too.

6.5 Numerical Evidence for Rayleigh Wave Mach Fronts

The most distinctive feature of the 2D supershear slip-pulse models is the shear Mach

wave. However, in 3D calculations incorporating a free surface, we should also expect

Mach fronts from Rayleigh waves that are generated at the rupture front on the surface. In

fact our 3D simulations show rupture propagation as a slip pulse leading to a Mach band

that is bounded by Mach fronts from the leading and the trailing edge of the slip pulse.



Chapter 6: 3D SUPERSHEAR RUPTURES 185

6 8 10 12
0

1

2

3

4

x/W

 

 

3D

2D

6 8 10 12

0

0.2

0.4

0.6

0.8

1

x/W

 

 

3D

2D

Vx μ

cs(τp−τr)

σzx−τr

τp−τr

Figure 6.10: Slip velocity and shear stress for a three-dimensional supershear rupture (vr =
1.6cs) and its approximation by a two-dimensional steady-state slip pulse. Parameters are
matched to the solution on the fault at the free surface when the rupture reaches x = 10W .

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

z/W

 

 

vi μ

cs(τp−τr)

fault parallel (vx), 2D

fault normal  (vz), 2D

fault parallel (vx), 3D

fault normal  (vz), 3D

Figure 6.11: Maximum peak-to-peak amplitude of fields at in the medium when the rupture
reaches x = 10W as a function of fault-normal distance. The curves labeled “3D” are from
our numerical simulations; these are compared with the fields from a two-dimensional
steady-state slip-pulse model (labeled “2D”).



186 Chapter 6: 3D SUPERSHEAR RUPTURES

From each edge of the slip pulse we expect shear and Rayleigh Mach fronts to emanate

into the medium. Since the Rayleigh wave speed is less than the S-wave speed of the

medium the Mach band should be bounded at the leading edge by the shear Mach front and

at the trailing edge by the Rayleigh Mach front.

As a rupture propagates through an elastic half space it would, if constraints of plane

strain in the x−z plane were imposed, perturb the out-of-plane stress component, σyy, near

the surface. However, since there is nothing to supply such constraint, stress σyy, must be

zero. This means that the rupture tip near the surface would tend to bulge up the medium,

near the crack tip, on the compressional side and similarly bulge down on the extensional

side of the fault. However, since the traction free surface boundary condition also has to

be satisfied, inevitably, Rayleigh waves have to be generated at the rupture front. As the

rupture moves at supershear speeds and since the Rayleigh wave speed is less than the shear

wave speed (cR = 0.9194cs for a Poisson material) we should also expect the generation

and propagation of Mach fronts due to Rayleigh waves.

The difficulty in clearly distinguishing this feature arises from the fact that the Rayleigh

wave Mach front orientations is only slightly smaller than the shear wave Mach front ori-

entation. The orientation of the Rayleigh wave Mach front with respect to −x axis (or the

half-angle of the Mach cone) is given by βR = sin−1 (cR/vr) = sin−1 (0.9194cs/vr) (for

Poisson material) where cR is the Rayleigh wave speed of the medium. Similarly the orien-

tation of the shear Mach front is given by βs = sin−1 cs/vr. For vr = 1.6cs, βs−βR ≈ 3.6◦.

This makes it hard to visually distinguish the two Mach fronts.

To identify the Rayleigh wave Mach front we exploit the fact that it has some charac-

teristic effect on particle velocities and surface stresses. First we separate the dilatational
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188 Chapter 6: 3D SUPERSHEAR RUPTURES

and the rotational component of the fault-parallel and fault-normal velocities. To isolate the

dilatational field we take the divergence of the velocity vector. This field should filter out,

approximately, the shear component of the velocity (approximately in the sense that shear

waves impinging on a free surface may generate P- and Rayleigh waves) and the resulting

Mach band should be parallel to the expected orientation of the Rayleigh wave Mach front.

We indeed see this feature in Fig. 6.12.

To isolate the rotational component of the velocity field we take its curl and hence

approximately filter out the P-wave and some of the Rayleigh wave contributions. The

resulting Mach band then shows up parallel to the shear Mach front orientation Fig. 6.12.

Secondly, the direction of motion of surface velocity vector contributed within the shear

Mach front should be parallel to it while the same within the Rayleigh Mach front should

be perpendicular to it. Thus the component of velocity parallel to the Rayleigh Mach front

should isolate S-wave related motion within the shear Mach band. Similarly the component

of velocity normal to the shear Mach front should isolate Rayleigh wave related motion

within the Mach band. Fig. 6.12 shows this filtering effect quite clearly. In general we

notice that the Rayleigh Mach front effect dominates the trailing edge of the Mach band

and the shear Mach front effect dominates the leading edge.

A more convincing way to diagnose for the existence of Rayleigh Mach front is to look

at various stress components. For a 2D plane strain supershear rupture the dominant field

within the Mach front is due to the S-waves. This means that the volumetric part of the

stress tensor should vanish within the Mach front. Thus for 2D plane strain supershear

ruptures, ∆σii = 0, i = x, y, z. In 3D, if the only dominant field in the Mach front is due to

S-waves then the same condition should be valid within the Mach band. We check for this
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feature in our 3D results, at the surface (∆σyy = 0), and we see in Fig. 6.12 that this is not

the case. That is ∆σxx 6= −∆σzz within the Mach band. In fact we see large compressive

stressing in the Mach band and this is consistent with the expected sense of stressing due

to a Rayleigh wave which exerts compressional stresses in both the fault-parallel and fault-

normal directions on the compressional side of the fault. Further, the Mach band should be

parallel to the Rayleigh Mach fronts which is clearly seen in Fig. 6.12.

We have thus shown that, unlike the 2D supershear slip pulse models of Dunham and

Archuleta [2005] and Bhat et al. [2007a] where the Mach front was solely due to the S-

waves, supershear ruptures in a 3D elastic half space also lead to the generation of Mach

fronts from Rayleigh waves. We see that this leads to a more complex stress and velocity

field within a Mach band. Also, since the Rayleigh waves are not subject to geometrical

attenuation, they attenuate a lot slower that the S-waves (and not at all in an ideally elastic

medium), significant ground motion and off-fault stressing can be experienced at large

distances.

The Rayleigh and shear Mach bands have substantial overlap over the entire range of

Fig. 6.12, but they may be an artifact of the the extremely large slip-weakening zones, R,

(4.72 km for vr = 1.6cs compared to the few tens of meters estimated by Rice et al. [2005])

that we had to assume to make our simulations feasible. In fact the fronts may separate over

distances away from the rupture front that are much smaller thanW . If we assume that R̃ is

the part of the slip weakening zone R over which large gradients in the stress and velocity

fields are generated then the distance over which the Rayleigh and shear Mach fronts would

separate is given by
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zsep =
R̃

(cot βR − cot βs)
(6.7)

where βR = sin−1 (0.9194cs/vr) and βs = sin−1 (cs/vr). zsep = 5.7R̃ for vr = 1.6cs.

6.6 Off-fault Stressing and Activation of Secondary Faults

by Supershear Ruptures

We next turn our attention to the off-fault stress fields, in particular to explore the hy-

pothesis that the large stresses carried by the Mach waves (both shear Mach and Rayleigh

Mach) of supershear ruptures could activate secondary faulting on nearby faults. To char-

acterize the stress field, we look at Coulomb stress changes, ∆CS, on pre-existing fault

structures of a given orientation (Fig. 6.13). These are surely affected by our large slip-

weakening zone sizes, which cause the high-stress shear and Rayleigh Mach fronts to re-

main overlapped in the regions contoured (they do not seem to have reinforcing effects on
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Coulomb stress in general, but rather to have somewhat opposing effects). We specifically

focus on two fault orientations, motivated by potential rupture of the southern San Andreas

fault. The first is a thrust fault with a dip of 30◦ that strikes at 30◦ with respect to the main

fault, which provides a rough approximation to thrust features like the Sierra Madre fault

north of the Los Angeles basin. The second is a vertical strike-slip fault that also strikes at

150◦ with respect to the main fault. This orientation is based on the San Jacinto fault, and

like the main fault is right-lateral. Note that we do not specify any spatial dimensions of

the faults as we are only interested in resolving shear and normal stresses onto structures

of a particular orientation.

6.6.1 Coulomb Stress on a fault plane of known orientation

Consider a fault plane Σ lying in a 3D space (Fig. C.1). Let x, y and z form a right-

handed co-ordinate system where the surface of the earth is in the x-z plane and the y axis

points vertically downwards from the earth’s surface. The strike direction, ~s, is chosen

along the surface trace of the fault plane such that the dip, defined below, is ≤ 900. Let ~s

make an angle of φ with the x axis (measured positive for left-handed rotation about y) and

let γ be the dip of the faulting plane, measured positive for right-handed rotation about the

strike direction (i. e., angle from earth’s surface at right of the strike direction to the fault

plane). The positive strike direction is always chosen such that 0 < γ ≤ 900. Let Σ+ and

Σ− to be the positive and the negative side of the fault plane respectively (Fig. C.1a); Σ−

is the footwall (or is assigned arbitrarily if γ = 900).

Let ~n be the unit normal to the fault plane directed from Σ− to Σ+. This will imply that

any traction calculated with respect to this vector represents the action on the Σ− plane due
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Figure 6.14: a) Σ− side of the fault plane, taken as the footwall for the dipping fault, and
chosen arbitrarily if the fault is vertical. φ is the angle measured from the x-axis to the
surface trace of the fault corresponding with strike direction ~s, counter-clockwise about y.
γ is the angle from the x-z plane, at the right of the strike direction, to the fault plane. s, d
and n are the strike, updip and outward normal vectors respectively to the Σ− surface. b)
Projections of s and d on the (x-z) plane.

to the Σ+ plane.

Looking at Fig. C.1b the component of ~d on the x-z plane is then ~d cos γ. Since this

component is perpendicular to ~s, the strike vector, the projections of ~d on the x and z axes

are − sinφ cos γ and cosφ cos γ respectively. Thus

~d = (− sinφ cos γ)̂i+ (− sin γ)ĵ + (cosφ cos γ)k̂ (6.8)

The unit vector acting along the strike direction is then given by [Fig. C.1b]

~s = (cosφ)̂i+ (0)ĵ + (sinφ)k̂ (6.9)
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Then the vector acting along the updip direction is simply given by ~n = ~s× ~d which is

~n = (sinφ sin γ)̂i+ (− cos γ)ĵ + (− cosφ sin γ)k̂ (6.10)

The traction acting on the fault plane is then given by Ti = σjinj where σij are the

components of the stress tensor (tensile positive) in the original x-y-z coordinate system.

The normal stress on the fault plane is then given by σn = Tini.

Define rake angle (λ) as the angle between the unit slip vector, ~ξ, (slip vector ∆~u is

defined = ~u+ − ~u− where ~u is the displacement vector and ~ξ = ∆~u/|∆~u|) and ~s, measured

positive from the strike direction to that of ~ξ for counterclockwise rotation about the ~n

direction. In terms of the rake angle (λ) the unit slip vector ~ξ is given by

~ξ = ~s cosλ+ ~d sinλ (6.11)

It is then clear that a rake angle of 0 or π would result in pure left or right-lateral faulting

respectively and a rake angle of−π/2 or π/2 would result in pure normal or thrust faulting

respectively.

The shear stress in the slip direction is now given by τ = σijξinj and the normal stress

acting on the fault plane is given by σn = σijninj where σij are the components of the

stress tensor. τ is positive when slip occurs in the direction of the unit slip vector. That

direction is surface parallel for strike-slip faults and in the direction of the dip for dip-slip

faults. σn is positive when the fault is unclamped.

The Coulomb stress, CS, is then given by CS = τ + fsσn where fs is the static

co-efficient of friction. We emphasize that this is the CS component associated with an

assumed slip direction, ~ξ.
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6.6.2 Coulomb stress changes on San Jacinto and Sierra Madre-like

faults due to supershear ruptures

Figs. 6.15 and 6.16 show snapshots from our 3D simulations of ∆CS, evaluated at

the surface (y = 0W ) at two times: just as the rupture arrives the edge of the fault and

at a slightly later time (an additional 3W/cs after the arrival) to emphasize the stopping

phases. Stress fields are evaluated at every point on the free surface, and only the regions

of positive Coulomb stress change (∆CS > 0) are shown. It is well to note that the

figures would likely look notably different if calculations could be done with small enough

slip-weakening zone size that the shear and the Rayleigh Mach fronts did not overlap so

substantially as in the present work.

We evaluate the temporal evolution of Coulomb stress change, akin to the synthetic

seismogram plots in Fig. 6.5, on the above structures, along a line extending perpendicu-

larly away from the fault at x = 10W and at mid-seismogenic depth (y = 0.5W ). This

is shown in Figs. 6.17 and 6.18. We also calculate the maximum positive Coulomb stress

change, ∆CSmax, and study how this quantity decreases with distance from the fault in Fig.

6.19.

Since the calculations for Coulomb stress changes in Figs. 6.15 and 6.16 were made

at the surface we expect significant contributions to this stress change from the shear and

Rayleigh Mach fronts.

While Bhat et al. [2007a] have obtained simple expressions for the far-field stress per-

turbation along a Mach front due to a 2D supershear slip pulse, any comparison of their

results with the 3D calculations would be invalid as the dilatational part of the stress field

in the Mach front is non-negligible except at distances away from the fault at which the
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value of ∆σ used to non-dimensionalize the velocities is different for each rupture speed
(see Table 6.1). Contours are evaluated on the earth’s surface (y = 0W ).
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Figure 6.16: Same as Fig. 6.15 but for San Jacinto-like strike-slip structures. Contours are
evaluated on the earth’s surface (y = 0W ).
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Figure 6.17: Temporal evolution of ∆CS on Sierra Madre-like fault structures at various
fault-normal distances at mid-seismogenic depth (y = 0.5W ).
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Figure 6.18: Temporal evolution of ∆CS on San Jacinto-like fault structures at various
fault-normal distances at mid-seismogenic depth (y = 0.5W ).
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Figure 6.19: Evolution of maximum positive Coulomb stress change ∆CSmax on San
Jacinto-like and Sierra Madre-like fault structures with fault-normal distance. ∆CSmax

is evaluated at x = 10W at mid-seismogenic depth (y = 0.5W ).

shear and Rayleigh Mach bands are non-overlapping (such distances are probably unreal-

istically large in our simulations). The vanishing dilatational contribution to the stresses,

within the Mach band was an essential ingredient in the 2D approximations.

Fig. 6.15 shows ∆CS for Sierra Madre-like structures due to a rupture propagating at

various speeds and opposite directions of propagation on the San Andreas fault. We see

that in general these structures are favorably oriented for activation at distances upto 5W

when the supershear rupture is propagating from SE to NW on San Andreas. The fault

structures strike almost perpendicular to the Mach fronts for this direction of propagation.

We do see Mach front stressing of Sierra Madre-like structures for NW to SE propagation
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of supershear rupture on San Andreas, at vr = 1.6cs, but these stress changes are still

smaller compared to a SE to NW propagation direction.

Fig. 6.16 shows ∆CS for San Jacinto-like structures due to a rupture propagating at

various speeds and opposite directions of propagation on the San Andreas fault. We see

that in general these structures are favorably oriented for activation at distances upto 5W

when the supershear rupture is now propagating from NW to SE on San Andreas. The

fault structures once again strike almost perpendicular to the Mach fronts for this direc-

tion of propagation. SE to NW propagation of rupture on the San Andreas fault is highly

discouraged for activation of such structures by Mach front stressing.

It is interesting to note that the radiated stress field from stopping a supershear rupture

at vr = 1.6cs is only slightly larger compared to the stress field from a stopping sub-

Rayleigh rupture. This is due to the fact that the rupture is approaching the P-wave speed

of the medium (cp =
√

3cs), resulting in a significant contribution from the dilatational

field (due to a Lorentz-like contraction of the stress fields in the fault parallel direction

[and corresponding extension in the fault normal direction) at fault-normal distances up to

approximately 2 to 4W . Furthermore, we see that the amplitude of Coulomb stress changes

at the Mach front is generally comparable to the stress changes in the immediate vicinity of

the fault from a stopping sub-Rayleigh rupture. For a stress drop of 3 MPa, the Coulomb

stress perturbation carried by the Mach front for vr = 1.6cs is about 0.1 MPa at a distance

of 5W .

Harris et al. [1991]; Harris and Day [1993] and Fliss et al. [2005] suggest that such

stopping-phase stress fields might activate slip on adjacent, but unconnected, fault seg-

ments. However, while the large stress perturbation experienced in the near-fault-end re-
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gion (for both sub-Rayleigh and supershear ruptures) is a permanent feature (at least until

the next earthquake), the Mach-front stress perturbations are transient. The duration of

these features can be seen in the Coulomb stress “seismograms” in Figs. 6.17 and 6.18.

The typical duration of these features (for the probably too large slip-weakening zone sizes

in our simulations) at a distance of 5W is 0.5W/cs or about 1.67 seconds for representative

values of W and cs. It is not yet established whether or not such stress perturbations of

such short duration (but large amplitude) can nucleate ruptures on secondary faults.

Fig. 6.19 shows the maximum positive Coulomb stress change, ∆CSmax, experienced

at locations along a line extending from the fault at x = 10W and y = 0.5W . The direction

of propagation for sub-Rayleigh ruptures barely changes ∆CSmax in the far field (z >> W )

experienced by our two secondary fault orientations. For supershear ruptures, the propa-

gation direction that favors activation of San Jacinto-like and Sierra Madre-like ruptures

is clear. A NW to SE supershear rupture moving at on the San Andreas fault transmits

stresses along the Mach front out to large distances, 10W , that might activate San Jacinto-

like faults. ∆CSmax at such a distance is about 0.3 MPa for ∆σ = 3 MPa and vr = 1.6cs.

For activation of Sierra Madre-like thrust features, due to Mach front stresses, at distances

(up to 3W ) the most favorable direction of propagation of supershear rupture on the San

Andreas fault is now from SE to NW. In this case, too, thrust structures at a distance of 3W

experience ∆CSmax ≈ 0.3 MPa for ∆σ = 3 MPa and vr = 1.6cs. Finally, these stress

changes from supershear ruptures are sensitive to details of the weakening process at the

rupture front, as discussed earlier in the context of the velocity field. The estimates given

here should be interpreted as a lower bound, since we are constrained to the most gradual

of physically likely weakening rates by numerical constraints. When parameterized by the
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slip-weakening distance, a reduction of Dc from about 2 m (as used in the calculations

shown here) to 0.5 m (with a corresponding increase in the strength drop) would increase

amplitudes at the Mach front by a factor of four. Also, the overlapping Mach bands are

sometimes partly self-cancelling as regards contributions to ∆CS, a feature that would not

be present when they do not overlap.

6.7 Discussion

We have explored the influence of rupture speed on the character and amplitude of

ground motion and radiated stresses from ruptures on a finite-width surface-beraking fault

in a half-space. This extends our previous work on supershear dynamic ruptures in two

dimensions [Dunham and Archuleta, 2005; Bhat et al., 2007a]. In those two-dimensional

steady-state models, the Mach wave transports velocities and stress comparable to those

experienced on the fault out to infinity. Without a source of waves below the bottom edge of

the fault, field amplitudes in our three-dimensional model must diminish beyond a distance

that scales with the fault width, W . As Ben-Menahem and Singh [1987] pointed out, the

decay rate will be governed by the geometrical spreading of the Mach cone, causing shear

wave amplitudes to decrease with the inverse square-root of distance from the fault. The

same consideration suggest no attenuation of Rayleigh waves.

We have not modeled two important factors that will influence field amplitudes: inco-

herence of the rupture process, and scattering and attenuation along the path of radiating

waves. The former has been examined by Bernard and Baumont [2005] in the context of

rupture-front curvature. At distances much closer than W , an extra factor proportional the

inverse square-root of distance to the fault must be added. Ben-Menahem and Singh [1987]
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accounted for attenuation in the form of a constant quality factor in their study of propagat-

ing supershear point dislocations, finding the precise manner in which attenuation bounds

otherwise infinite accelerations (from their delta-function source time function).

Unlike the 2D supershear slip pulse models of Dunham and Archuleta [2005] and Bhat

et al. [2007a] where the Mach front was solely due to the S-waves, supershear ruptures

in 3D elastic half space also lead to the generation of Mach fronts from Rayleigh waves.

This leads to a more complex stress and velocity field within a Mach band. Also, since the

Rayleigh waves attenuate a lot slower that the S-waves we see significant ground motion

and off-fault stressing at large distances.

As our two-dimensional models suggested, there are significant differences between

the radiated wavefields of sub-Rayleigh and supershear ruptures. Off-fault fields not in

the immediate vicinity of the fault are only sensitive to details of the weakening process

at the rupture front within the Mach beams of supershear ruptures. Decreasing the extent

of the cohesive zone while simultaneously increasing the strength drop (e.g. to hold frac-

ture energy fixed) increases the amplitudes of the Mach waves and makes their region of

non-overlap move closer to the fault. In general, we find larger amplitudes of velocities

and stresses far from faults for supershear ruptures that for sub-Rayleigh ruptures. For

W = 10 km, a stress drop of 3 MPa, and a slip-weakening distance of about 2 m, peak

velocities of 0.1 m/s are expected at 10 km. Coulomb stress changes (on favorably oriented

faults) at these distances are about 0.3 MPa. Both velocity and stress amplitudes scale

linearly with stress drop and, quite importantly, depend also on the extent of the cohesive

zone. The estimates given above lie at the least conservative end of physically likely val-

ues, since much smaller slip-weakening distances, corresponding to higher velocities and
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stresses, have been suggested from a combination of laboratory constraints and seismic ob-

servations. When decreasing the cohesive-zone size by a factor of two and four, the peak

velocities and stresses at the Mach front are increased by approximately the same factor.

Our results raise the possibility that stresses from a supershear rupture might initiate

slip on faults adjacent to the one hosting the supershear rupture. As a hypothetical example,

we consider what might occur if the southern San Andreas fault fails at supershear speeds.

Activation of San Jacinto-like structures is favored if the rupture propagates from the NW to

SE direction while Sierra Madre-like structures are activated if the rupture propagates from

SE to NW. Our least conservative, but computationally most feasible, parameter choice

involves overlap of the two Mach bands at all distances shown, a condition which usually

leads to some partial cancellation of Coulomb stress changes that would not be present for

more conservative choices when the bands do not overlap except quite near the fault.
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As discussed in the introduction the role of fault geometric complexity in dynamic

earthquake rupture propagation and off-fault damage is very pertinent one both from a

fundamental and practical aspects. Some of these issues that are still not fully resolved in

earthquake source physics are

1. How do earthquakes navigate through a geometrically complex fault system?

2. How do earthquakes stop and what determines the size of an earthquake or how do

faults host earthquakes of various rupture lengths?

3. What are the sources of complexities in the stress and strength distribution on the

fault?

4. What is the extent and distribution of off-fault damage due to an earthquake rupture

and does it strongly depend on the rupture speed?

5. Are supershear ruptures more harmful from a seismic hazard point of view since they

manifest homogeneous shear wave Mach fronts (and newly identified Rayleigh wave

Mach fronts)?

We address each of the above questions in this work. We first address the question of

dynamic rupture propagation through a branched fault system. The theory of fault branch-

ing developed by Poliakov et al. [2002] and Kame et al. [2003] was tested on the recent

Denali fault earthquake using the numerical method developed by Kame et al. [2003]. In

brief, their results showed that a shallow branching angle (ϕ = ±15o) and a pre-stress state

conducive for branching (Ψ = 13o for ϕ = 15o and Ψ = 56o, 70o for ϕ = −15o) resulted

in rupture termination on the main fault for all rupture velocities, when approaching the



Chapter 7: Conclusion 207

branch junction, except high valued ones (vr = 0.90cs) because of reduced interaction be-

tween the main and the branched faults. However, when the orientation of the principal

maximum compressive stress, Ψ, approached its extremum, Ψ = 0o or 90o, even the high

rupture velocity cases led to exclusive branching.

We numerically simulated the observed slip transfer from the Denali to Totschunda

faults by the methodology of Kame et al. [2003] which uses a 2D elastodynamic boundary

integral equation model of mode II rupture with self-chosen path along a branched fault

system. The strength of the faults was assumed to follow a Coulomb law with a friction

coefficient that slip-weakens from its static to dynamic value. All but one of our simulations

for incoming sub-Rayleigh rupture velocities predict that the rupture path will branch off

along the Totschunda fault without continuation along the Denali fault. The exception is the

case when the prestress inclination is 70o, a lower limit to the plausible range, and incoming

rupture speed at the branching point is 0.90cs. In this case rupture follows the branch

but there is also a continuation of rupture along the Denali fault beyond the branching

location, at a lower speed than that along the Totschunda fault. However when the prestress

inclination is steeper, at 80o, the rupture chooses Totschunda exclusively when its velocity

near the branching location is around 0.90cs. We also see exclusive continuation of rupture

on the Totschunda fault when the rupture is supershear, 1.40cs. We thus add one more

field case, to the five other discussed in Kame et al. [2003] showing that a relatively simple

2D theory of fault branching developed by Poliakov et al. [2002] and Kame et al. [2003]

sufficiently explains/predicts the general direction of rupture propagation.

The above theory of fault branching focussed on the role of pre-stress state, rupture

velocity at the branching junction, and the branch angle in controlling rupture path selection
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on branched fault systems, without terminating the rupture on the branch (referred here as

“infinite” branches). We extend this theory to incorporate the role of fault branch lengths

in dynamic rupture propagation on a main fault. We studied the cases by Kame et al.

[2003] and Bhat et al. [2004] where branching was observed and terminated rupture on the

branched fault at various distances from the branching junction. A dynamically propagating

rupture when stopped radiates stress perturbations as it tries to establish a static stress field.

The zone of influence of this static-like field depends on many parameters including the

length of the rupture. Harris and Day [1993]; Harris et al. [2002] and Fliss et al. [2005]

have studied the phenomenon of rupture jumping to an adjacent fault due to stoppage on the

main fault. In our studies, with finite branched systems, we thus expect some complexity in

the rupture propagation process due to the stoppage of rupture on the branch in comparison

with the previous studies on “infinite” branches done by Kame et al. [2003].

We have noticed that for branches on the compressional side termination of rupture

on the same barely affects the rupture on the main fault except for the case when Ψ =

13o, vr = 0.80cs, ϕ = 30o and Lbr = 30R0. For the above case we pointed out that

a propitious combination of parameters led to the direct interaction between the rupture

front on the main fault and the large stress perturbation from the branch end led to the

termination of rupture on the main fault. A short or an infinite branch would have allowed

for the rupture to continue on the main fault [Figure 3.10].

For branches on the extensional side, while an infinite branch would have allowed con-

tinuation of rupture on the main fault for high incoming rupture velocity and shallow branch

angle, termination of rupture on the branch led to its continuation on the main fault for and

Ψ = 70o, Lbr = 6, 20R0. We also showed that, for the above cases, when vr was reduced to
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0.80cs terminating the rupture on the branch closer to the main fault led to re-nucleation of

rupture on the main fault [Bhat et al., 2007b]. We, however, still lack good field examples

to validate the results obtained in our numerical simulations.

We also addressed the relation between fault branches left after a large, complex earth-

quake and rupture directivity in the event. For that we investigated a new dynamic mecha-

nism which leaves behind a feature that looks like a backward fault branch, that is, a branch

directed opposite to the primary direction of rupture propagation. The mechanism consists

of the stopping of the rupture on one fault strand and jumping to a neighboring strand, by

stress radiation to it and nucleation of rupture on it which propagates bilaterally. Rare as

such a feature might be, it could mislead observers attempting to understand the directiv-

ity of a past complex earthquake, contrary to the simplifications assumed by Nakata et al.

[1998]. We conclude that it is difficult to judge the directivity of the main event from the

pattern of branches it left, and that additional understanding of the structure near the fault

junction is needed to reach definitive conclusions [Fliss et al., 2005].

We analyze a field example of a backward fault branch formed during the Landers

1992 earthquake, when rupture propagating along the Kickapoo fault stopped at the end of

that strand and then jumped to the Homestead Valley fault, where it developed bilaterally.

The southern end (4 km) of the Homestead Valley rupture formed a backward branch,

while the main rupture continued NNW. We conclude that what we describe is definitely

possible mechanically, that it very plausibly was the rupture mechanism in the Kickapoo to

Homestead Valley transition, and that it could act more generally in other large earthquakes,

as well as at the northern segements of the 1992 Landers earthquake, which rupture through

complex fault systems. This means that caution is needed when relating fault branches of
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past earthquakes with their directivity. Simple forward branching, even if probably most

common, is certainly not the only branching mechanism.

Our work has broadened the mechanical analysis of fault jumping, the basis of which is

due to Harris et al. [1991], Harris and Day [1993] andHarris and Day [1999] who numer-

ically analyzed ruptures jumping between parallel faults. Here we analyzed ruptures jump-

ing onto possibly non-parallel faults, and subsequent propagation along gradually curving

faults, using the elastodynamic boundary equation (BIE) method with a Coulomb type of

slip-weakening. A fully systematic analysis of such jumps has to be left for future work.

A phenomenon revealed in our simulations is how adverse curvature of a fault, like

for the southern Homestead Valley fault in this modeling, can slow (and surely, sometimes

stop) rupture propagation. By adverse curvature, we mean curvature towards the com-

pressional side of a fault. With such curvature, nonuniform slip like that occurring near

the rupture tip induces locally increased normal stress, and assuming as we have here that

friction strength is proportional to effective normal compression, that locally increases the

resistance to slip-weakening failure compared to that which coud be estimated based on the

fault-normal component of the pre-stress field. While the curvature significantly slowed,

but did not stop, the rupture propagation in our simulations it is clear that stronger curvature

could stop propagation.

To address the issue of the role of supershear ruptures in the generation/re-activation of

off-fault damage we studied here the off-fault stressing induced by a 2D steady slip pulse

propagating at supershear speeds in a homogeneous isotropic elastic medium with a linear

strength degradation boundary condition like in Figure 5.1. This work is an extension of

the Rice et al. [2005] model which looked at the sub-Rayleigh speed regime.
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Because of the supershear nature of the pulse, Mach fronts develop at the two ends

of the slip pulse and, because our model is 2D and steady state, the elastic field within

this band of Mach fronts does not attenuate with distance leading to a unique feature of

the supershear slip pulse. We expect significant effects of the supershear slip pulse to be

observed as damage at large distances. Bernard and Baumont [2005] also show, in their

analytic and numerical model for kinematic ruptures, that the ground acceleration due to

a supershear rupture is unusually high at distances of the order of few tens of kilometers,

for an assumed rupture depth extent of 17 km. We observe that this feature is consistent

with extension-like failure features observed a few kilometers away from the Kunlun fault

during the 2001 Kokoxili event, thus lending support to the suggestion that its rupture speed

was supershear in that region.

We also evaluated the change in Coulomb stress (∆CS), in the medium hosting the

slip pulse, on optimally oriented structures allowing for out-of-plane failure too. Failure

is encouraged (∆CS > 0) mainly on the extensional side of the fault and increases in

extent with increasing rupture velocity (vr) and decreasing size of the process zone, R,

with respect to the slip pulse length, L. Increasing angle of orientation of the maximum

in-plane principal compressive stress (Ψ) with the slip pulse results in the switching of the

zone of ∆CS > 0 from the compressional to the extensional side of the slip pulse.

We also evaluated the radiated seismic energy and fracture energy due to a supershear

slip pulse for a fixed dynamic stress drop (scaled by the strength drop), (σ0
yx−τr)/(τp−τr)

= 0.3, and showed that the total of radiated and fracture energy decreases monotonically

with increasing rupture velocity. Using those results we also showed that the size of the

slip-weakining zone decreases monotonically too with increasing rupture velocity in the
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supershear regime.

To quantify the character and amplitude of radiated ground motion and stresses in a

3D medium we have explored the influence of rupture speed on a finite-width fault. This

extends the previous work on supershear dynamic ruptures in 2D [Dunham and Archuleta,

2005; Bhat et al., 2007a]. Without a source of waves below the bottom edge of the fault,

field amplitudes in our 3D model must diminish at a distance that scales with the fault

width, W . For W = 10 km, a stress drop of 3 MPa, and a slip-weakening distance of 2.1

m, peak velocities of about 0.3 m/s are expected at 30 km. The (dynamic) stress changes,

on faults oriented favorably at these distances are about 0.3 MPa. Both velocity and stress

amplitudes scale linearly with stress drop and depend also on the extent of the cohesive

zone. The estimates given above are least conservative in that the cohesive zones in our

models extend over a few kilometers; much smaller distances have been suggested from

a combination of laboratory constraints and seismic observations [Rice et al., 2005]. Our

results raise the possibility that stresses from a supershear rupture might initiate slip on

faults adjacent to the one hosting the supershear rupture. As a hypothetical example, we

consider what might occur if the southern San Andreas fault fails at supershear speeds.

While activation of San Jacinto-like structures is favored if the rupture propagates from

the NW to SE direction Sierra Madre-like thrust structures get activated when the rupture

propagates SE to NW along the San Andreas.

We have also newly identified Mach fronts due to Rayleigh waves propagating from

the rupture front of a supershear rupture in a 3D elastic half-space. These Mach fronts

manifest from the rupture front to satisfy the plane strain like conditions on the earth’s

surface. In an ideally elastic material these Mach fronts will not geometrically attenuate
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with distance from the fault resulting in larger ground motions and stresses than from a

pure shear Mach front. However, since our slip-weakening zone size is substantially larger

(4.72 km for vr = 1.6cs compared to the few tens of meters estimated by Rice et al. [2005])

we expect the Rayleigh and shear Mach fronts to overlap over a substantial distance. The

resulting overlap will lead to partial cancellation of stresses that would not be present for

more conservative choices of model parameters.

Bhat et al. [2007a] have speculated that the distance at which supershear ruptures sig-

nificantly perturb stresses and particle velocity in the medium should be of the order of

the width of the seismogenic zone. We have now shown, in our numerical simulations of

supershear ruptures in a 3D elastic half space, that this distance is atleast a few times the

width of the seismogenic zone.
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Numerical implementation of the dynamic rupture propagation scheme was done using

the 2D Boundary Integral Equation (BIE) method as described in [Kame et al., 2003, and

references therein]. Boundary integral equation methods are very efficient for the study of

cracks in homogeneous media, in that the calculations are done only along the crack trace

which therefore allows the study of complex crack geometries.

This method derives from the basic integral representation theorem in dynamic elastic-

ity, (e.g., Aki and Richards [1980]). Tada [1995] has calculated the change in tangential

and normal stresses due to a mode II rupture along an arbitrarily shaped crack/fault. To nu-

merically calculate the stresses for such arbitrarily shaped fault, represented by Γ in figure

A.1, it is approximated by a polygon consisting of elements of constant length ∆s. The

time is also discretized by a set of equally spaced time steps with an interval of ∆t. In

applications (Koller et al. [1992]; Kame and Yamashita [1999a], among others) the ratio

cp∆t/∆s has been chosen equal to 1/2 where cp is the P-wave speed of the medium. This

ensures that the dynamical procedure is explicit (true for all cp∆t/∆s < 1). This value in

practice should be smaller than 1/
√

2, to respect the stability conditions of corresponding

two-dimensional finite difference methods, as explained by Koller et al. [1992].

Following earlier works by, e.g.,Andrews [1985], Das and Kostrov [1987], Koller et al.

[1992], Cochard and Madariaga [1994], Tada and Yamashita [1997], Kame and Yamashita

[1999a], and Kame et al. [2003], the displacement discontinuities along the fault are rep-

resented in the BIE using a piecewise constant interpolation. A constant slip velocity V i,k,

to be determined, is assumed within each spatial element (cell i of length ∆s) and during

each time step k, which runs from (k − 1)∆t to k∆t; here k = 1...n. A discretized ver-

sion of stresses were then calculated in earlier works by Koller et al. [1992], Cochard and
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Madariaga [1994], Kame and Yamashita [1999a, 1999b, 2003], Kame et al. [2003], and

Fliss et al. [2004] using piecewise constant interpolation cells.

 

T(l,n)T

 wave cone

(i,k)

nth step

i th cell

x1

t

(l,n)

x'

n

 u(x',t)

Γ

x2

Figure A.1: Nomenclature used and schematic diagram of the discretized BIE method. The
points represent the cells with non-zero slip velocity [Fliss et al. 2004].

The resulting expressions for σl,n21 and σl,n22 , at the center of cell l at the end of time step

n, are

σl,n21 = − µ

2cs
V l,n +

n−1∑
k=0

∑
i

V i,kK l,i,n−k
t + σl,021 , (A.1)

σl,n22 =
n−1∑
k=0

∑
i

V i,kK l,i,n−k
n + σl,022 (A.2)

for n = 1, 2, ... Here K l,i,n−k represents the stress at the center of cell l, at the end of

time step n due to a unit slip velocity within cell i during time step k. These kernels can
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be calculated analytically in 2D by appropriate integrations of the stress field in response

to impulsive point double-couples. Also, K l,i,0
t = −µ/(2cs) when i = l and is 0 otherwise,

given that our ∆t is less than a P-wave travel time over a cell; µ/(2cs) is the radiation

damping factor or fault impedance [Cochard and Madariaga, 1994; Guebelle and Rice,

1995] and represents the instantaneous contribution of the current slip velocity to the shear

stress at the same position. K l,i,0
n = 0 is zero because we consider no opening along the

fault. Also, σl,021 and σl,022 are the tractions in the static initial state at t = 0.

Because of the proprieties of wave propagation, the convolution sums have to be done

only for those cells i and prior time steps k that fall inside the P-wave cone of l, n, as illus-

trated in Figure A.1.

Nucleation of the rupture

In order to nucleate dynamic rupture, we first assume [Kame et al., 2003] a nucleation zone

in a static equilibrium state (corresponding to the state at t = 0 discussed above). We

allow slip in a region of length Lnucl slightly larger than the minimum nucleation size Lc

given by equation 4.15, but prevent slip outside this region until t > 0, so that a dynamic

rupture begins with non-negligible slip rate at the crack tip at time step n = 1. The static

equilibrium is found when the slip and the stress field due to the initial stress and the slip

in the nucleation region satisfies the slip-weakening law.

If the nucleation zone consists of N cells, then their N unknown pre-slips Dl (the

notation D is synonymous with ∆u) alter the tectonic prestress σl,021 at the center of cell l to

a new static stress
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σl21 =
∑
i

DiK l,i
t,static + σl,021 (A.3)

Here K l,i
t,static is the corresponding static stress kernel. Because we nucleate here along

a straight segment of the fault, that kernel depends there only on l − i. Also, sliding gives

no change in the normal stress on that same planar segment from its value σl,022 ) due to the

prestress field.

We must choose the Dl for the N cells of the nucleation zone so that stresses at each

cell are consistent with the slip-weakening strength of equations 4.13 and 4.14. That is, if

the law is represented as τ = −σnF (∆u), then we require that the σl21 for the N cells also

satisfy

σl21 = −σl,022F (Dl) (A.4)

The solution of that and equation A.3 is numerically determined using the Newton-Raphson

method. The resulting slips Dl are identified as Dl,0, i.e., at time 0, for the dynamic analy-

sis.

The distribution of slip along this initial nucleation region causes an initial stress con-

centration which is slightly larger than the peak strength at the both tips of the zone and so

enables propagation of the rupture at the first dynamic time steps.

Rupture dynamics procedures

At time 0+, we begin the dynamic analysis. For n = 1, 2, ..., stresses at the end of the nth

time step are determined in terms of slip rates V i,k by
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σl,n21 = − µ

2cs
V l,n + (σl,n21 )past, (A.5)

(σl,n21 )past =
n−1∑
k=0

∑
i

V i,kK l,i,n−k
t +

∑
i

Di,0K l,i
t,static + σl,021 , (A.6)

σl,n22 =
n−1∑
k=0

∑
i

V i,kK l,i,n−k
n +

∑
i

Di,0K l,i
n,static + σl,022 (A.7)

and, of course, slips are updated to the end of the step by Dl,n = Dl,n−1 + ∆tV l,n.

Here (σl,n21 )past is the stress at time n∆t due to the history of slip everywhere up to time

(n− 1)∆t; it is equal to σl,n21 for cells which do not slip in that nth time step.

To solve for the slip rate in each time step, we assure that the stresses and slip at the

end of that step precisely satisfy the slip-weakening constitutive law. Thus, as above, let

τ = −σnF (∆u) represent the strength. Then if

(σl,n21 )past < −σl,n22 F (Dl,n−1) (A.8)

we must set V l,n = 0, which is consistent with Dl,n = Dl,n−1 and σl,n21 = (σl,n21 )past. For the

cells at each rupture tip, that test becomes (σl,n21 )past < −σl,n22 F (0) = −µsσl,n22 and, if met,

it means that the rupture front does not advance in that time step.

On the other hand, for all cells satisfying

(σl,n21 )past ≥ −σl,n22 F (Dl,n−1) (A.9)

we must choose V l,n to satisfy

(σl,n21 )past −
µ

2cs
V l,n = −σl,n22 F (Dl,n−1 + ∆tV l,n) (A.10)

Kame et al. [2003] stated conditions on the ∆t to ensure that there exists a unique solution

of equation A.10 satisfying V l,n ≥ 0. For the linear slip-weakening law adopted here, that
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reduces to
µ

2cs
> −σl,n22 (µs − µd)

∆t

Dc

(A.11)

(It assures, e.g., that if there is equality in A.9, then the obvious solution V l,n = 0 is the

only possible one.) For the linear law the solution is readily written out explicitly, with

different forms depending on whether Dl,n−1 < Dc or Dl,n−1 ≥ Dc. In the latter case the

result is just V l,n = (2cs/µ)[(σl,n21 )past + µdσ
l,n
22 ]. Thus, we determine the slip velocity on

each fracturing element.

If we use the definition of the different parameters given earlier, the above inequality

assuring a unique nonnegative slip velocity becomes [Kame et al., 2003]:

∆s/R0 < 8/(
√

3π) that is ∆s/R0 < 1.47. (A.12)

Here, however, it is important to understand that the R0, which scales inversely with

τp − τr [= (µs − µd)(−σn)] as in equation 4.16, must be evaluated with σn equated to the

momentary normal stress σl,n22 . That is not constant in time for propagation along branched

or curved faults, and the criterion, which must be satisfied all along the rupturing zone(s)

considered, can only be tested for certain during the solution itself (which may then have to

be redone with a more refined ∆s, and hence ∆t). This is important in propagation along

faults which curve towards the compressional side of the advancing rupture, because that

locally increases the fault-normal compression and can invalidate the choice of a ∆s that

seemed acceptable in terms of the prestress field.

Regularization; smoothing the slip rate distribution

Following Yamashita and Fukuyama [1996], we introduce what they call “artificial atten-

uation” to eliminate short-wavelength oscillations which appear in slip velocity, due to the
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abrupt progress of the fracture front along the discretized fault trace. The oscillations only

gradually become evident for large numbers time steps but then they grow rapidly, and in-

validate the results [Yamashita and Fukuyama, 1996; Kame and Yamashita, 1999a; Kame

et al., 2003]. We likewise try to eliminate the oscillations by their regularization procedure.

Thus, after calculating the slip velocity V over the ruptured region, at each time step, n, we

transform it to a smoothed one by

V i,n
sm = V i,n + α

(
V i−1,n

sm + V i+1,n
sm − 2V i,n

sm

)
(A.13)

The unknown V i,n
sm is then solved for numerically, along the currently ruptured zone where

V i,n ≥ 0 (but with V i,n
sm set to 0 for all cells where V i,n = 0), using a matrix inversion. The

V i,n
sm are then used to redefine V i,n for updating the slip and doing future convolution sums.

The choice of the smoothing factor α is delicate: stronger smoothing suppresses not

only the oscillations but the amount of slip. A compromise has to be made between stability

and plausibility of the solution. Comparing their numerical results using this procedure

with an analytical solution, Yamashita and Fukuyama [1996] have shown that the value α =

1/2 gives stable and reasonably accurate results. This value is chosen for our simulations.
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Figure B.1: Data smoothing for rupture tip position and rupture velocity data. (a) Rupture
tip position versus time before smoothing (Oval inset shows zoomed in plot). (b) Rup-
ture tip position versus time after locally weighted polynomial regression smoothing (Oval
inset shows zoomed in plot). (c) Rupture velocity evolution obtained by numerically dif-
ferentiating A1(b). (d) Rupture velocity after after locally weighted polynomial regression
smoothing.

Due to the discretized (spatial and temporal) nature of the numerical procedure the

rupture tip progress is quantized. In other words the incremental rupture tip advance is

through a distance equal to the length of the spatial cell over a variable, but necessarily

integer, number of time steps. This leads to a staircase like data-set [Figure B.1(a)] for

rupture tip advance over time. Direct numerical differentiation of this data to obtain rupture

velocity evolution with time is hence not recommended.
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In earlier work Bhat et al. [2004] the above mentioned issue with numerical differenti-

ation was partially overcome by evaluating the rupture velocity in the following way. They

calculated the average time (∆tavg) taken for the rupture tip to advance by three spatial cells

(3∆s). The rupture velocity, vr, is then simply given by vr = 3∆s/∆tavg. The procedure is

robust enough for calculations where there are no abrupt changes in the crack-tip advance

history and produces a relatively good rupture velocity evolution data. In the current work

we noticed several abrupt transitions in the rupture tip history data and the above mentioned

algorithm would fail to capture such transitions.

We instead use locally weighted quadratic polynomial regression [Cleveland, 1979]

to smooth the rupture tip position versus time data [Figure B.1(b)]. At each point in the

data set a quadratic polynomial is fit to a subset of the data using weighted least squares

method, giving more weight to points near the point whose response is being estimated

and less weight to points further away. The value of the regression function for the point

is then obtained by evaluating the local polynomial. The resulting data-set was then nu-

merically differentiated using a forward difference scheme to calculate the rupture velocity

evolution data [Figure B.1(c)]. This data was further smoothed using the locally weighted

quadratic polynomial regression method to produce the rupture velocity evolution plot [Fig-

ure B.1(d)].

We also used the above algorithm to verify the results obtained by Bhat et al. [2004],

Figure 12 (see Figure 2.14 for the updated version). While the resulting rupture velocity

curve was significantly smoother the general conclusions obtained by Bhat et al. [2004]

agrees with the smoothed data.
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Coulomb Stress on a fault plane of known orientation

Consider a fault plane Σ lying in a 3D space (Figure C.1). Let x, y and z form a right-

handed co-ordinate system where the surface of the earth is in the x-y plane and the z axis

points vertically upwards from the earth’s surface. The strike direction, ~s, is chosen along

the surface trace of the fault plane such that the dip, defined below, is ≤ 900. Let ~s make

an angle of φ with the x axis (measured positive for counterclockwise rotation about z) and

let γ be the dip of the faulting plane, measured positive for right-handed rotation about the

strike direction (i. e., angle from earth’s surface at right of the strike direction to the fault

plane). The positive strike direction is always chosen such that 0 < γ ≤ 900. Let Σ+ and

Σ− to be the positive and the negative side of the fault plane respectively [Figure C.1a]; Σ−

is the footwall (or is assigned arbitrarily if γ = 900).

Let ~n be the unit normal to the fault plane directed from Σ− to Σ+. This will imply that

any traction calculated with respect to this vector represents the action on the Σ− plane due

to the Σ+ plane.

Looking at Figure C.1b the z axis component of ~n is cos γ. The component of ~n on the

x-y plane is then sin γ. Since this component is perpendicular to ~s, the strike vector, the

projections of ~n on the x and y axes are sinφ sin γ and − cosφ sin γ respectively. Thus

~n = (sinφ sin γ)̂i+ (− cosφ sin γ)ĵ + (cos γ)k̂ (C.1)

The unit vector acting along the strike direction is then given by [Figure C.1b]

~s = (cosφ)̂i+ (sinφ)ĵ + (0)k̂ (C.2)
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Figure C.1: a) Σ− side of the fault plane, taken as the footwall for the dipping fault, and
chosen arbitrarily if the fault is vertical. φ is the angle measured from the x-axis to the
surface trace of the fault corresponding with strike direction ~s, counter-clockwise about z.
γ is the angle from the x-y plane, at the right of the strike direction, to the fault plane. s, d
and n are the strike, updip and outward normal vectors respectively to the Σ− surface. b)
Various angles between the (s, d, n) and (x, y, z) coordinate systems.

Then the vector acting along the updip direction is simply given by ~d = ~n× ~s which is

~d = (− sinφ cos γ)̂i+ (cosφ cos γ)ĵ + (sin γ)k̂ (C.3)

The traction acting on the fault plane is then given by Ti = σjinj where σij are the

components of the stress tensor (tensile positive) in the original x-y-z coordinate system.

The normal stress on the fault plane is then given by σ = Tini.

The maximum shear stress acting on the plane is given by τmax =
√
τ 2
s + τ 2

d where

τs(= Tisi) and τd(= Tidi) are the shear stresses acting along the strike and the updip
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directions respectively. Define rake angle (λ) as the angle between the unit slip vector, ~ξ,

(slip vector ∆~u is defined = ~u+ − ~u− where ~u is the displacement vector) and ~s, measured

positive from the strike direction to that of ~ξ for counterclockwise rotation about the ~n

direction.

In terms of the rake angle (λ) the unit slip vector ~ξ is given by ~ξ = ~s cosλ+ ~d sinλ and

the shear stress in the slip direction is given by τ = Tiξi.

It is then clear that a rake angle of 0 or π would result in pure left or right lateral faulting

respectively and a rake angle of−π/2 or π/2 would result in pure normal or thrust faulting

respectively.

The Coulomb Stress (CS) is now given by CS = τ + fsσ where fs is the static friction

coefficient of the fault plane. τ is positive when slip occurs in the direction of the unit slip

vector and σ is positive when the fault is unclamped.

The above methodology may be used In circumstances for which the fault plane is given

and the geological sense of motion along it is known and is assumed to be active after stress

change.

Coulomb Stress on optimal Mohr-Coulomb planes

From Mohr-Coulomb failure theory it is known that for optimally oriented planes for failure

(planeson which CS is maximum) the unit normals make angles of β = ±(π/4 + ϕ/2)

(where tanϕ = fs) with the maximum compressive stress direction, and their line of

intersection aligns with the intermediate principal stress direction. The slip vectors of the

conjugate planes are in the plane comprising the maximum and minimum compressive
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stress directions. [Figure C.2]

The shear and normal stresses on these planes are then given by

τ =
(σ1 − σ3)

2
sin 2β

σ =
(σ1 + σ3)

2
+

(σ1 − σ3)

2
cos 2β (C.4)

where σ1 ≥ σ2 ≥ σ3 are the principal stresses, and (like σ) are positive if tensile.

Application to plane strain in the x-y plane aligned with the earth’s sur-

face

Case 1. σ1 = σzz (least compressive stress normal to the surface). This case results in

pure thrust faulting and both the conjugate planes are thrust faults. The strike of the two

planes are along ±~ν2 where ~ν2 is the eigen-vector corresponding to the intermediate prin-

cipal stress, σ2. The dip is π/4− ϕ/2.

Case 2. σ2 = σzz. This case results in strike-slip faulting and the conjugate planes strike left

laterally and right laterally. The strike of the two planes makes an angle of ±(π/4− ϕ/2)

with the maximum compressive stress (σ3) direction. The dip is π/2.

Case 3. σ3 = σzz (most compressive stress normal to the surface). This case results in

pure normal faulting and both the conjugate planes are normal faults. The strike of the two

planes are given by ±~ν2 where ~ν2 is the eigen-vector corresponding to the intermediate

principal stress, σ2. The dip is π/4 + ϕ/2.
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Figure C.2: Optimally oriented conjugate planes (Σ1 and Σ2) for failure. ~ν1, ~ν3 are the
eigen-vectors corresponding to the minimum and maximum principal compressive stresses
respectively. ~n1, ~ξ1 and ~n2, ~ξ2 are the unit normal and unit slip vectors respectively to the
conjugate planes. tanϕ = fs where fs is the coefficient of friction for the planes.

Determination of the change in Coulomb Stress (∆CS) due to an earth-

quake rupture

Case when fault plane and candidate direction of slip is known: Let σ0
ij be the initial

stress state (in the x-y-z system) and ∆σij be the perturbation to the stress-field due to an

earthquake rupture. Then ∆CS is given by ∆CS = ∆τ + fs∆σ where ∆τ and ∆σ are

given by ∆τ = ∆σijniξj and ∆σ = ∆σijninj . The vectors ~n and ~ξ are defined in the first

section.

Case when fault planes are optimally oriented: We first begin by determining the conju-

gate failure planes for the total stress state i.e. for σij = σ0
ij + ∆σij . Let ~ν1 and ~ν3 be the
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eigen-vectors associated with the minimum and maximum principal stresses respectively

of the total stress state. The failure plane normals are then obtained by rotating ~ν3 about

~ν2 by an angle of ±(π/4 + ϕ/2). Let ~n1 and ~n2 be the outward unit normals to the con-

jugate planes and ~ξ1 and ~ξ2 be the unit vectors in the direction of slip on the Σ+
1/2 planes

respectively [Figure C.2]. Then

~ξ1 = ~ν3 cos (π/4− ϕ/2) + ~ν1 sin (π/4− ϕ/2) (C.5)

~n1 = −~ν3 cos (π/4 + ϕ/2) + ~ν1 sin (π/4 + ϕ/2) (C.6)

~ξ2 = ~ν3 cos (π/4− ϕ/2)− ~ν1 sin (π/4− ϕ/2) (C.7)

~n2 = −~ν3 cos (π/4 + ϕ/2)− ~ν1 sin (π/4 + ϕ/2) (C.8)

∆CS is then calculated for each of the optimal planes by ∆CS = ∆τ + fs∆σ where ∆τ

and ∆σ are given by ∆τ = ∆σijniξj and ∆σ = ∆σijninj . ni, ξi are the components

of the unit normal and unit slip vectors respectively for each of the optimal planes. The

maximum of the two ∆CS values is then sometimes identified as the plane more likely to

slip due to an earthquake rupture, although we see no firm basis for that. However, this

is not the only way the change in Coulomb stress on optimal planes be identified. The

different conjugate fault plane orientations can be determined for stress states both before

(σ0
ij) and after the rupture (σij) and then the Coulomb stress changes can be evaluated as

∆CS = (CS)σ
0+∆σ
optimal − (CS)σ

0

optimal. This would give a unique value of ∆CS regardless of

the optimal plane chosen in each of the stress states. Our contour plots here use the first

method.
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In their study of an supershear slip pulse, propagating at steady state in a two di-

mensional homogeneous isotropic medium under plane strain conditions, Dunham and

Archuleta [2005] have shown that the off-fault velocity fields trace out the exact slip veloc-

ity during the passsage of the S-wave front. This means that a non-attenuating field, caused

by the passage of the S-wave front, is traced out in the medium, through which the slip

pulse passes, and extends, theoreticaly, to infinity. Nevertheless this observation points out

that siginificant effects of the supershear slip pulse can be observed at large distances away

from it unlike its sub-Rayleigh analogue where both the P wave and the S wave stress fields

attenuate as 1/r with distance from the source, r. In the following section we re-express

the far field stress distribution in terms of the slip velocity distribution on the fault. Let

V (x) be the slip rate along the rupture and ∆u the slip, i.e.,

V (x) = (∂ux/∂t)
+ − (∂ux/∂t)

−

= −vr[(∂ux/∂x)+ − (∂ux/∂x)−]

= −2vr(∂ux/∂x)+ = −2vrε
fault
xx

= −2vr[
1− ν

2µ
σfaultxx ]

= −[vr(α̂
2
s + 1)/(2µαd)]=S(zs) (D.1)

using ν = 0.25 and equation 5.1. S(zs) is given by equation 5.2, and zs = x + i0+,

the limit as we approach the fault from y > 0, in order to get the sign of =S(zs) correct.

Solving for =S(zs) and using this in equation 5.1 (ignoring the P wave contribution) with

zs = x+ α̂s|y|, the far field stress changes are
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∆σfarxx = −µ(v2
r − 2c2

s)V (zs)sign(y)/v3
r

∆σfaryx = −µ(v2
r − 2c2

s)
2V (zs)/(2v

3
rc

2
sα̂s)

∆σfaryy = −∆σxx

∆σfarzz = 0 (D.2)

Because V (x) is always positive in our cases, ∆σfarxx and ∆σfaryy change signs as vr

increases past
√

2cs, but ∆σfaryx is negative for all vr, except for
√

2cs at which all the

∆σfarkl vanish. The expressions predict that when vr >
√

2cs, the sign of the far-field

∆σfarxx is the same as that along the rupture surface on the corresponding side of the fault,

but that the sign is reversed when vr <
√

2cs. It can also be quite easily shown that the

far-field stress perturbation, ∆σfarxx = 0.75(1 − 2 sin2 β)∆σon−faultxx where β is the Mach

angle, sin β = cs/vr. Thus at velocities close to
√

2cs the far-field stress perturbation is

still a significant percentage of the same on the fault.

We note that an alternative way to derive the ratio of far-field shear to normal stresses is

to employ Mohr’s circle concepts. We know that for an element of material, in the medium

in which a steady state supershear rupture is propagating, one of whose faces is aligned with

the Mach front (in y > 0 say), the stress component that jumps in value as the Mach front

is crossed is the shear stress acting on it. The shear and normal stresses in the cartesian

coordinate system for this element is then obtained by rotating it about the center by an

angle β. This translates to a rotation in the Mohr’s circle plane by an angle of 2β. Thus,

if ∆τ is the shear stress acting on the element aligned with the Mach front then ∆σfaryy =

∆τ sin(2β) and ∆σfaryx = −∆τ cos(2β). Thus ∆σfaryx /∆σ
far
yy = − cot(2β) [Figure D.1].

Using the results above we can now make some estimates on far field stress perturbations
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Figure D.1: Stresses acting on an element aligned with the Mach-fronts and in the cartesian
system. ∆τ is the shear stress acting on the element in that orientation and ∆σ is the normal
stress (= 0). β is the inclination of the Mach-front with respect to the slip pulse. ∆σfarxy

and ∆σfaryy are the shear and normal stress in the far-field measured with respect to the x-y
co-ordinates. For the Mohr’s circle we use tensile positive convention. Note that ∆τ > 0
when vr <

√
2cs and changes sign at higher speeds crossing zero at vr =

√
2cs.

left in the wake of an supershear slip pulse. Some assumptions need to be made before

making estimates of the far field stress values. Firstly, we shall use the maximum slip

velocities obtained from our model for small (R/L = 0.05) and large (R/L = 1.0) values

of the process zone (R) with respect to the length of the slip pulse (L) [Figure 5.6]. Slip

velocity, V , in our model is non-dimensionalized as µV/[(σ0
yx−τr)cs], where µ is the shear

modulus of the medium, (σ0
yx − τr) is the dynamic stress drop and cs is the shear wave

speed of the medium. We assume that µ = 30GPa, (σ0
yx − τr) = 3MPa and cs = 3km/s.

This gives us maximum slip velocity values varying from 0.5m/s to 10.5m/s and increasing

with increasing rupture velocity.

Using the above values of slip velocity one can now make reasonable estimates of far

field stresses [Figure 5.6]. This provides some interesting results. Firstly, the perturbation
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in the shear stress field ∆σfarxy is always negative in the far field as expected earlier. ∆σfarxx

changes sign from being extensional (∆σfarxx > 0) to compressional as one crosses the
√

2cs

rupture velocity value. The magnitude of the stress perturbation is also quite high, varying

between -17MPa and 8MPa (using the maximum value of slip velocity). Also, the changes

in the far field stresses seem to be very sensitive to the rupture velocity. For example,

∆σfarxx increases from 1MPa to 3MPa as the rupture velocity changes from 1.45cs to 1.5cs.

Ofcourse, the slip velocity also changes here as the rupture velocity changes. Hence it is

useful to know the change in the stress field for fixed value of peak slip velocity and slightly

different values of rupture velocity. Taking V = 5m/s as representative of the faster slip

velocities we get the rough estimates for vr = 1.51cs to 1.61cs (on the compressional side

of the fault),

∆σfarxx = −(4.0 to 7.0 MPa )sign(y)

∆σfaryx = −(0.4 to 1.5 MPa )

∆σfaryy = +(4.0 to 7.0 MPa )sign(y) (D.3)

Those are large normal stress changes, 40 bars at 1.51cs, 70 bars at 1.61cs, especially

given that they do not attenuate with distance until 3D effects enter the model. For vr =

1.21 to 1.31cs, the normal stress changes have the same magnitude range but reverse sign

from those above. The estimtes are peak stress values; average stress changes, if Vaverage is

about 1m/s, would be a fifth as large, but still significant at about 10 bars.
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